
Lifetime and Coverage Maximization in

Wireless Sensor Networks ⋆

Daniele Fontanelli, Luigi Palopoli, Roberto Passerone,
David Macii, Dario Petri

Dipartimento di Ingegneria e Scienza dell’Informazione, University of
Trento - Trento, Italy (e-mail:

{fontanelli,palopoli,passerone,macii,petri}@disi.unitn.it)

Abstract In the considered scenario, a wireless sensor network (WSN) operates in a difficult
to reach (or even hostile) environment, and is therefore required to autonomously configure
itself and tune its parameters. We investigate techniques that guarantee a good compromise
between conflicting requirements: 1) a good coverage of the area, 2) a long lifetime, 3) a good
temporal accuracy in classifying the events. Our solution is based on the combination of two
complementary techniques. The first one, the wakeup scattering algorithm, iteratively identifies
a periodic schedule that keeps the node awake for a limited time, so saving power. In this
paper, we consider the global convergence of this algorithm. The second technique is a small
overhead distributed algorithm for the synchronization of the nodes, which takes into account
the communication delays.

Keywords: Sensor Systems, Distributed Control, WSN coverage, Synchronization

1. INTRODUCTION

In this paper, we consider the use of a wireless sensor net-
work (WSN) to monitor an area. Our goal is threefold: 1)
detecting events with a good probability, 2) ensuring a long
and controllable lifetime for the network, 3) achieving a
good accuracy in associating an event with the occurrence
instant.

An effective way to extend the lifetime (which is de-
termined by the battery duration) is by duty-cycling: a
periodic alternation of intervals of time in which nodes are
active and intervals of time in which nodes are in stand-by
mode. The potential risk of duty-cycling is that some areas
might be uncovered for a long time, with a detrimental
effect on the probability of detecting events in those areas.
This risk can be mitigated by choosing an appropriate
schedule of the wake-up intervals that reduces the overlap
between the nodes that cover the same area, the problem of
wake-up scattering. In the absence of a precise knowledge
of the position and of the sensing range of each node,
which would enable an off-line computation of the opti-
mal schedule (Palopoli et al. [2009]), it is possible to use
decentralized heuristic algorithms, which use information
from neighboring nodes (Cao et al. [2005], Cărbunar et al.
[2006]). Important issues are then the algorithm conver-
gence to a solution, how far the solution is from optimal,
and how long the transient of the computation lasts.

The first important contribution of this paper is report-
ing global convergence results for the wake–up scattering
algorithm, first proposed in Giusti et al. [2007]. The algo-

⋆ The research leading to these results has received funding from

the European Community’s Seventh Framework Programme FP7

under grant agreement n◦ IST-2008-224428 “CHAT - Control of

Heterogeneous Automation Systems”.

rithm operates through a series of iterations, in which the
network gets progressively closers toward the maximum
coverage. In view of our result, the algorithm is guaranteed
to converge to a global periodic schedule with a good
average coverage of the area. The results presented in this
paper (Section 2) extend prior work of the authors, in
which the convergence problem was studied for particular
topologies (see Fontanelli et al. [2009]).

Clearly, in order to implement this schedule, as well as
to associate a meaningful temporal tag with each detected
event, nodes need to synchronize their clocks. The problem
of time synchronization is of paramount interest for the sci-
entific communities dealing with networking and measure-
ment science (IEEE [2008]), and several synchronization
protocols has been proposed in recent years (Yoon et al.
[2007], Schenato and Gamba [2007]). As a second contri-
bution of this paper (Section 4), we propose a solution
to the clock synchronization problem in which each node
computes and updates individually its own local time us-
ing information collected from nearby nodes. Local clocks
exchange their time data using a mechanism similar to
the Reference Broadcast Synchronization (RBS) protocol
and apply an enhanced version of the proportional and
integral (PI) consensus controller (see Olfati-Saber et al.
[2007] and Carli et al. [2008]). The specific contribution of
our paper is that we consider time-varying communication
delays and, more importantly, we adapt the sampling pe-
riod to the variance of the clocks so as to keep in check
the communication overhead.

Finally, we show how the concurrent application of the
two techniques enhances the performance of the system in
terms of area coverage, with respect to the application of
each of the two techniques separately (Section 5).



2. BACKGROUND AND MODEL DEFINITION

We consider a WSN consisting of n nodes N1, . . . , Nn.
Nodes are deployed on an area and are endowed with a
sensing mechanism operating within a range. An effective
heuristic solution to optimize the coverage, as required by
such applications as surveillance against intrusion detec-
tion, is to “scatter” the activation times of the nodes (see
Giusti et al. [2007]). We denote by wi ∈ [0, E] the wake-up
time of node Ni and by Vi the set of nodes visible from
node Ni (i 6∈ Vi). The wake-up time of node Ni at step k
is updated as follows:

wk+1
i = (1− α)wk

i + α
2

(

min
j∈Vi

{wk
j : wk

j ≥ wk
i }+

max
j∈Vi

{wk
j : wk

j ≤ wk
i }

)

mod E.
(1)

The rationale behind this algorithm is the assumption that
neighboring nodes are more likely to cover the same area.
This assumption is strictly verified only when the sensing
and the communication ranges are comparable, but the
resulting technique is simple and relies solely on connec-
tivity, instead of requiring exact position information.

In order for the outcome of the computation of the wake-
up times to be applicable, we need that nodes have
synchronized clocks. The relative time of each node can
be measured by means of a local timer clocked by a local
(preferably crystal) oscillator of nominal frequency f0. In
general, clocks may be dis-aligned for two reasons: 1) each
node can with a different initial offset, 2) clocks can drift
for the differences between the oscillator frequencies.

In the rest of the paper, we will discuss the convergence
of the wakeup scattering algorithm and show our specific
solution for clock synchronization. In this section, we
briefly discuss a state space model for the two systems.

2.1 Modelling the Wakeup Scattering Algorithm

Let us start with an example. Suppose that the epoch
is equivalent to one minute and that the granularity of
the wakeup times is the second. In such a case, each
wi corresponds to a position of the second hand, that is
invariant to the minute and/or hour chosen. The epoch E
defines a ring symmetry, visually equal to the clock dial.

For each pair of nodes (Ni, Nj), we define two distances
w.r.t. the wake up times wi and wj : one, denoted E ≥
−→
d i,j ≥ 0 that goes forward in time, the other, denoted

E ≥
←−
d i,j ≥ 0 that goes backward. Using the update

Equation (1), it is possible to derive the dynamics of
−→
d i,j

and
←−
d i,j . Given the ring invariance

←−
d i,j = E−

−→
d i,j , ∀i, j,

consider a state vector x whose entries are the distances−→
d i,l, ∀l ∈ Vi and for i = 1, . . . , n. The discrete time
evolution of distances is xk+1 = Axk, where A has, at
least, one eigenvalue equals to one.

In Fontanelli et al. [2009], the reader can find additional
details on this construction. In particular, we showed that
if two nodes do not see each other, their distance can
change in sign. This behavior, along with the non-linearity
of Equation (1), makes the overall system dynamics
switching. Defining σ(k) as the switching signal, that takes

values 1, . . . , S, the switching system xk+1 = Aσ(k)x
k is

thus derived, with system matrices {A1, A2, . . . , AS}. The
region of the state space in which the system evolves using
a dynamic Ai is a convex polyhedron delimited by a set
of subspaces of the type xi < xj , for appropriate choices
of i and j. Hence, in the general case, the number S of
linear dynamics is upper bounded by the number of pairs
of nodes that do not see each other.

On the other hand, the distances between visible nodes
never change in sign. Intuitively, by Equation (1), wk+1

i
will be placed in between the wakeup times of the preced-
ing and following nodes that it sees. Therefore, if all nodes
see their nearest neighbors, the system evolves with a
linear and time–invariant dynamics. The algorithm in this
case asymptotically converges to an equilibrium in which
the wake–up times are equally spaced in the epoch E. The
convergence analysis for the general case is reported in the
next section.

2.2 Modelling the Clock Synchronization Problem

Let us consider a generic WSN consisting of n identical
nodes, each one with a unique identifier in the set ID =
{1, . . . , n}. Formally, the WSN timers are a set of discrete–
time linear integrators, i.e.,

xτ (t + 1) = xτ (t) + d(t) + q(t), (2)

where t ∈ N0 represents the number of clock ticks on an
ideal timescale, xτ ∈ R

n is the column vector containing
the time values of all WSN nodes and formally correspond
to the state of the system, q ∈ R

n is the random
vector (whose elements are uniformly distributed in the
interval [0, 1

f0
]) modelling the quantization noise due to

the resolution of the timer 1 . d ∈ R
n is the vector

containing the actual time increments of each clock, i.e.,
the clock drifts, during the t−th tick of the timer. In
particular, d is given by: d(t) = 1

f0
1+∆(t)+ν(t) where 1

is the unit vector, ∆ ∈ R
n is the vector of the systematic

offsets between the ideal and the real clock periods of the
various nodes and ν ∈ R

n is a random vector modelling the
jitter resulting from the superimposition of different types
of power–law noise (Bregni [1997]). Of course, if xτi

(0) =
xτj

(0) and if di(0) = 1/f0, for all i, j = 1, . . . , n, then the
clocks will remain synchronized from the very beginning.
However, in a realistic scenario initial clock offsets and
clock frequency skews differ, thus the corresponding time
values drift away from one another.

In this context, the term time synchronization should
be intended as the compensation of the inter–node time
differences, regardless of the Coordinated Universal Time
(UTC), here indicated by t. Hence, the nodes can be
considered as synchronized, if there exists a finite time t̄
and two values b1, b2 ∈ R such that ‖xτi

(t)−(b1t+b2)‖ ≤ ε
for t ≥ t̄ and for ∀i = 1, . . . , n, with fixed ǫ ≥ 1/f0.

3. CONVERGENCE OF WAKEUP SCATTERING

For lack of space, we cannot report the entire analysis
of the global convergence. In this paper, we only offer
an intuitive description of the most important results,
omitting the proofs of the theorems.
1 In this paper random variables are denoted by underlined symbols.



(A)

(B)

Figure 1. On the left the initial configuration or the
networks is depicted, while on the right the reached
equilibrium is shown. The circumferences are of length
E. (A) Two connected sub–networks topology. Near-
est neighbors are the closest nodes in clockwise and
counter–clockwise direction, i.e. the nearest neighbor
to c are d and a respectively. Visibility is depicted
with different symbols, squares and circles in this case
({b, d, g} 6∈ Vc,e,f and viceversa). (B) Generic network
topology. Notice that if a node has m associated
symbols, it means that m different nodes can be the
nearest for some instants.

Instrumental to the analysis of global convergence is
the fact that nodes that see each other never overtake
each other, regardless of the switchings that may occur
(see Fontanelli et al. [2009]).

3.1 Global Stability for Connected Sub–Networks

We start our analysis, by considering a particular topology,
defined as follows.

Definition 1. A network with n nodes is called ordered if
for any pairs of ordered indices i < j implies wi < wj ,
∀i, j = 1, . . . , n.

Definition 2. Given an ordered network, a sub–network
Θ is a set of nθ + 2 nodes, with ordered indices
{θ0, θ1, . . . , θnθ

, θnθ+1} (θi < θj if i < j), whose wake–up
times are ordered wθ0

< wθ1
< · · · < wθnθ

< wθnθ+1
and

such that node θi sees nodes θi−1 and θi+1. Nodes θ0 and
θnθ+1 are defined as the end–points of the sub–network.

The previous definitions are instrumental for the subse-
quent definition of partial visibility network by means of
sub–networks.

Definition 3. Given an ordered network and two sub–
networks Θ and Σ whose end–points are coincident and
equal to θ0 ≡ σ0 ≡ νi and θnθ+1 ≡ σnσ+1 ≡ νe

respectively, Θ and Σ are named connected sub–networks
Θ ! Σ if any element of Θ does not see any element of
Σ, except the end–points νi and νe.

Example 1. The network of figure 1-A has Θ = {a, b, d, g, h}
and Σ = {a, c, e, f, h} with Θ ! Σ.

Let us consider the case of two connected sub–networks
with nθ > nσ We can construct a state vector z =

[
−→
d θ1,σ1

, . . . ,
−→
d θnσ ,σnσ

]T , composed of nσ distances be-
tween nodes that do not see each other in the connected
sub–networks. Applying Equation (1) and considering that
the distance between two nodes can be expressed as dif-
ference of distances between nodes that see each other
(e.g.,

−→
d θi,σi

=
−→
d νi,σi

−
−→
d νi,θi

) we come up with an
update expression for the state z+ = Acnz + c, where

c = [0, . . . , 0, α/2
−→
d θi+1,νe

]T , represents the dynamics of
a linear system with Acn be a tridiagonal Toepliz matrix
with eigenvalues λi. Since −1 < λi < 1 if and only
if 0 < α < 1, the unforced linear system dynamics is
asymptotically stable with equilibrium z = 0. Since c
converges to a constant value independently of z, the
system with bounded input c is asymptotically stable with
a number of switchings that depends on the eigenvalues of
the matrix Acn and on the initial conditions z(0). In the
case of Figure 1-(A) with nθ = nσ, the analysis follows
trivially since c = 0.

In light of the discussion above, the following summarizing
results hold.

Theorem 1. Given a network with n nodes and with two
connected sub–networks with nθ ≥ nσ, the distances
between nodes that see each other will eventually converge
to E/(n− nσ).

Corollary 1. The equilibrium of the distances between the
nodes of the shorter sub–network Σ is given by E(nθ +
1)/[(n− nσ)(nσ + 1)]

Remark 1. The Theorem 1 still holds if: 1) νi ≡ νe 2) there
exists any number of connected sub–networks between
nodes νi and νe; 3) one or more connected sub–networks
comprise additional connected sub–networks.

3.2 Global Stability for a Generic Network Topology

To prove the convergence in the general case, we will
firstly construct all the possible sub–networks for a generic
network topology (see figure 1-(B), left). Consider an
ordered network ∆ with n nodes and with associated
ordered indices {δ1, δ2, . . . , δn}. For each i = 1, . . . , n,
consider δi and construct the set, ordered with respect
to the wake–up times in the clockwise direction, of all
the nodes that it sees. In this set, remove the nodes that
see each other, obtaining Ci = {δi,1, . . . , δi,mi

}. Notice
that mi ≥ 1, ∀i. Indeed, mi = 0 for blind nodes (not
considered). Furthermore, mi = 1 for all i in the case of
nearest neighbor visibility.

Starting from node i, construct a tree with root δi and
first level nodes given by the set Ci. For each node δi,j ,
j = 1, . . . , mi, construct the second level using the sets
Cj . If a node δj,k ∈ Cj is equal to δi, the construction
procedure stops for δj,k with leaf δi. If the sum of the
wake–up times distances from the root to a node δj,k ∈ Cj
is greater than E, the construction procedure stops for
that node and the branch to δj,k is removed. In all the
other cases, the procedure continues recursively. This way,
all the possible paths π from the root δi to a leaf δi are
available. The set of all the paths generated from each
node δi is dubbed P .

Let us consider the i–th path πi ∈ P . The path πi,
of length li, is represented by an ordered set of nodes
{δπi

1
, δπi

2
, . . . , δπi

li

}, with δπi
j
6= δπi

k
except for j = 1



and k = li. Furthermore, it is straightforward that all
paths obtained by πi by permutations that preserve the
order represents the same path, i.e., {δπi

1
, δπi

2
, . . . , δπi

li

}

is equivalent to {δπi
j
, . . . , δπi

li

, δπi
2
, . . . , δπi

j
}. Hence, let us

call π̄i the set of all the possible node sequences regardless
of the path πi node permutations. Moreover, let us define
P̄ the set of paths ordered with respect to the length of
the paths, in descending order, such that π̄i 6⊂ π̄j , for all
π̄i, π̄j ∈ P̄.

Example 2. Let us consider the case of connected sub–
networks, represented in figure 1-(A). The procedure pro-
duces π̄1 = {a, c, e, f, h, i, j, a}, π̄2 = {a, b, d, g, h, i, j, a}
that comprises the connected sub–networks of the fig-
ure. For the generic network topology of figure 1-(B),
the P̄ has 6 strings, i.e., π̄1 = {a, c, d, g, h, i, a}, π̄2 =
{a, b, d, g, h, i, a}, π̄3 = {c, d, g, h, j, c}, π̄4 = {e, j, e}, π̄5 =
{e, i, e}, π̄6 = {c, f, c}.

If π̄i ∩ π̄j = {δk}, they generate two connected sub–
networks with start and end points in δk. In general, if
π̄i ∩ π̄j = {δk, . . . , δk+m} is a sequence of consecutive
nodes, then the two sub–network Σ ∈ π̄i and Θ ∈ π̄j

have start–point δk+m and end–point δk (see Example 2).
Such results can be generalized to networks with general
topology.

Example 3. Consider two paths π̄i, π̄j ∈ P̄ , with li ≤ lj .
Let π̄i ∩ π̄j = {δk, . . . , δk+m}, where Σ ∈ π̄i and Θ ∈ π̄j

are the two connected sub–networks. In light of Theorem 1
and Corollary 1, the equilibrium distances of the nodes in
π̄j is E/lj , while the equilibrium distances of the nodes in
π̄i\(π̄i ∩ π̄j) is given by E(lj −m + 1)/[lj(li −m + 1)].

Without loss of generality, consider that the undirected
graph representing the network visibility is strongly con-
nected, i.e., from each node in P̄ it is possible to reach
any other node of the network. If the graph is not strongly
connected, the two (or more) disjoint sub–networks can be
analyzed separately.

Let us summarize the previous results in matrix terms,
noticing that each path π̄i is a network with nearest
neighbor visibility. With reference to the longest path π̄1,
the dynamic of the distances between nearest neighbor
nodes xπ̄1 can be expressed by a single matrix Aπ̄1 ∈

R
(l1−1)×(l1−1). The dynamic of the distances of the net-

work π̄1 ∪ π̄2 is determined by the switching matrix set
Aπ̄1∪π̄2 . Arranging the new distances in a vector xπ̄1∪π̄2 =

[xπ̄1 , xπ̄2/π̄1 ]T , by means of Theorem 1 and Corollary 1
follows that the steady state matrix governing the dynamic
of the distances is given by

Aπ̄1∪π̄2 =

[

Aπ̄1 0
Bπ̄1∪π̄2 Aπ̄2

]

.

By Remark 1, the same holds if there are two (or more)
sequences of common nodes in π̄1 ∩ π̄2. Adding an addi-
tional path π̄3, with l3 ≤ l2 ≤ l1, the steady state matrix
of the overall distances would be given by

Aπ̄1∪π̄2∪π̄2 =

[

Aπ̄1∪π̄2 0
Bπ̄1∪π̄2∪π̄2 Aπ̄3

]

.

Therefore:

Theorem 2. Given a generic network, the wake–up scatter-
ing algorithm asymptotically converges towards an equi-

librium where the node distances are given by the path
lengths li.

4. CLOCK SYNCHRONIZATION ALGORITHM

In principle, we can achieve time synchronization by suit-
ably controlling the timers of the various nodes. Accord-
ingly, the discrete–time linear system (2) can be modified
as follows:

xτ (t + 1) = xτ (t) + d(t) + q(t) + u(t), (3)

with u ∈ R
n being the vector of the control inputs to

each timer. In Carli et al. [2008] it is proved that the
problem can be solved by using a Proportional Integral
(PI) controller on each node. In matrix notation, a general
expression for this controller is:

y(t + 1) = y(t) − αKx̂τ (t) (4)

u(t) = y(t) −Kx̂τ (t) (5)

where y ∈ R
n is the state vector of the controller, the

feedback matrix K and the coefficient α result from the
consensus–related theory and x̂τ = xτ−l is the vector of
the time values measured by the various nodes. Notice
that in general the elements of x̂τ are different from those
of xτ because both collecting the time values from all
nodes and computing the next controller output requires
an additional time, represented by the latency random
vector l ∈ R

n, usually in the order of several tens of ms.
It is worthwhile to note that the communication latencies
may increase considerably as a function of the number of
nodes, since they are related to the number of messages
for transferring the time values and to the probability of
having packet collisions (see Ageev et al. [2008]).

4.1 Controller Design

The main consequence of the presence of the latencies is
that the input values to the controller can be updated at
a rate which is much smaller than the frequency of the
oscillator clocking the timer, thus generating a switching
behavior between two different controllers.

The first one is represented by equations (4) and (5)
and occurs as soon as a new complete set of local time
values for all nodes is available. In this case, plugging the
equation (5) into clock dynamic equation (3), we have

[

xτ (t + 1)
y(t + 1)

]

=

[

In −K In

−αK In

] [

xτ (t)
y(t)

]

+ ξ1(t)

= A1
cl

[

xτ (t)
y(t)

]

+ ξ1(t) ,
(6)

where In is a n× n identity matrix and

ξ1(t) =

[

d(t) + q(t) + Kl

αKl

]

, (7)

is the vector containing all the described nuisances.

The second configuration, when new local time values
x̂τ are not available, hold constant the output u of the
controller. Hence, the corresponding closed–loop dynamics
is given by (6), where the matrix A0

cl and the vector ξ0(t)
are obtained imposing K = 0 in (6) and (7).

The system switches between the two different dynamics
depend on the time interval between two subsequent



synchronizations. The lower bound γ of this interval is
equal to the (random) time spent to run each iteration.
On the contrary, the time interval γk ≥ γ after the k–
th synchronizations can be, in principle, arbitrarily large.
In more strict theoretic terms, the overall closed loop is

governed by the closed–loop matrix A
σ(t,γk)
cl , determined

by the switching signal σ(t, γk), that is equal to 1 if local
time values are available and 0 otherwise. Therefore, the
dynamics of the system is given by

A0
cl

γk−1
A1

cl = Aclγk
=

[

In − [1 + α(γk − 1)]K γkIn

−αK In

]

(8)

Similarly to Carli et al. [2008], the asymptotic stability of
the system governed by the dynamic matrix (8) for a fixed
γk can be obtained by choosing the eigenvalues λi of K,
with i = 1, . . . , n, in the set (0, 4/[2 + α(γk − 2)]), where
α ∈ (0, 1). Notice that the feedback matrix K computation
can be distributed in each node, since it is obtained by
scaling the Laplacian L of the visibility matrix. This way,
the system can be made stable and

xτi
(t)→

1

n

n
∑

j=1

[

djt + xτj
(0)

]

, ∀i, t→+∞. (9)

In other words, every timer converges to the mean of the
time values measured by all network nodes. The effect of
ξ1(t) and ξ0(t) is to decrease the steady state accuracy of
the algorithm.

In the case of complete visibility, i.e., when all the WSN
nodes of a cluster are able to communicate within a single–
hop link, the feedback matrix K and the parameter α can
be computed by each node on the basis of the planned
synchronization period γk. In particular, by choosing

α =
1

γk + 1
and K =

γk + 1

nγk
L, (10)

two of the eigenvalues of the closed–loop matrix in (8) are
equal to 1 and all the others are 0, which guarantees the
fastest convergence (dead–beat controller).

Notice that if the time interval γk between the k−th and
the (k+1)−th synchronization changes, then also (8) must
change according to (10). This leads to a set of switching
matrices, namely one for each γk. Since switching between
stable controllers may disrupt stability, unstable behaviors
are avoided assuming an appropriate dwell time between
two successive switches. Hence, define σ2

x(t) as the variance
of the time differences for the first time t in which the
period γk is selected. If γk+1 6= γk at a certain time
t̄ > t and σ2

x(t) ≤ σ2
x(t̄), then the next period has to

be kept equal to γk. Conversely, if σ2
x(t) > σ2

x(t̄), the
next period can be safely set to γk+1. This way, the
asymptotic stability of the switching system is assured and
the synchronization uncertainty still globally decreases,
although some local divergence during the dwell time may
exist.

4.2 Synchronization Procedure

The synchronization procedure based on the control algo-
rithm described in the previous Section consists of four
iterative steps:

Step 1: When a generic synchronization interval γk (for
any k ≥ 1) expires, the node with identifier equals to

0 1 2 3 4 5 6 7 8
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time [s]

T
im

e
 E

rr
o

rs
 [

s
]

a=1.0

2 4 6 8
−5

0

5
x 10

−4

a

b

c

d

e

Figure 2. Time differences measured by 5 WSN nodes
obtained with the synchronization algorithm with
a = 1. Each line style corresponds to a different node.

mod (k, n) is elected as the synchronization master (SM)
and it broadcasts a MAC time–stamped beacon packet.
We will refer to tsm

as the sending time–stamp of the
synchronization beacon. Each other node receiving the
synchronization beacon, time–stamps the incoming packet
using its local clock at time tirm

and modifies the visibility

matrix accordingly (tsm
6= tirm

due to latencies). Noticing
that the communication broadcasting times are approxi-
mately the same for all nodes and that the interrupt service
routines are smaller than l, the differences between the
values of tirm

are mainly caused by unequal offsets and
skews of the local clocks;

Step 2: The i–th receiving node broadcasts the value of
its own tirm

, which is time–stamped at time tsi
. Any other

receiving node j time–stamps the incoming packet at time
tjri

and updates the visibility matrix;

Step 3: The i-th node is now able to estimate the mean
communication latency, used to compensate the differences
between the reception/sending time–stamps applied by the
SM, and to compute its feedback ui using (10) to apply
to (3);

Step 4: Immediately after correcting the timers the next
synchronization interval γk+1 is set to γk(1 + a) if the
dwell–time time condition on σ2

x is met, γk otherwise. Since
a ≥ 0 the duration of subsequent synchronization intervals
may only increase.

5. SIMULATIONS

5.1 Synchronization Algorithm

The effectiveness of the proposed approach has been vali-
dated through several simulations in MatlabTM. All simu-
lations take advantage of the synchronization uncertainty
models developed in previous research works (Ageev et al.
[2008]). Fig. 2 shows the performance of the algorithm
when the interval expansion coefficient a = 1. The sim-
ulated WSN consists of 5 nodes, whose timers are clocked
by crystal oscillators (XO) running at f0 = 32768 Hz, as
in XBow TelosBTM or Tmote-SkyTM platforms. Nodes’
timers are randomly initialized in the range [0, 1] seconds.
Clock relative systematic frequency skews are randomly
chosen between ±100 ppm, while the timing jitter caused
by phase noise is in the order of 2 ns rms over 1 s.
Communication latencies depend on the offered network
traffic and they are in the order of several milliseconds.



−200 −150 −100 −50 0 50 100 150 200
−200

−150

−100

−50

0

50

100

150

200

a

b

c
d

e

Covered Area

0 10 20 30
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

UTC Time (seconds)

A
re

a
 (

%
)

Area Covered by the Network

Ideal case

Only offset errors

Only drift errors

Unsynchronized clocks

Clock synchronization

Figure 3. Node deployment in the area of interest (left) and
results of the scattering algorithm w.r.t. to different
clock synchronizations (right).

The steady state accuracy of the proposed clock synchro-
nization algorithm obtained in simulation has been shown
to be of ±1 timer tick.

5.2 Synchronization and Scattering Algorithms

The coexistence of the scattering and the clock synchro-
nization algorithms is straightforward since each algo-
rithm is distributed and works on a different subset of
information exchanged in the network. Indeed, the clock
synchronization algorithm needs the timer information of
each clock, collected in the state vector xτ . On the other
hand, the scattering algorithm defines the node wake–up
schedules w based on the visibility and on the chosen epoch
E, regardless of the actual clock timers.

Nevertheless, the clock synchronizations affects the overall
performance of the scattering algorithm. For example,
suppose E = 3 time units and 3 nodes (a, b and c)
with complete visibility and with a wake-up interval for
the nodes, i.e., the time in which a node is awake, equals
to 1. In this case, the scattering algorithm will converge
to a solution in which the node a is active if 0 ≤
mod (ta, E) < 1, b for 1 ≤ mod (tb, E) < 2 and c for 2 ≤
mod (tc, E) < 3, where ti is the clock timer of node i. If
all the clock nodes are synchronized, ta = tb = tc = t and
during the epoch at least one node is awake. Unfortunately,
in the worst case of unsynchronized clocks ta = t, tb = t+1
and tc = t + 2 and, hence, the node will be all active only
in the same time unit.

In order to show the performance of the cooperation of
both the algorithms, we present the coverage problem
with 5 nodes, randomly deployed over a bi-dimensional
area (fig. 3, left). For the sake of simplicity, we consider a
rectangular sensing range and a complete visibility among
the nodes of the WSN. The wake-up interval for the nodes
equals to E/5 s, i.e., each node is awake for 20% of the total
time. The application of the wake-up scattering algorithm
produces the result shown in fig. 3, right, from which it is
evident how the clock synchronization algorithm correct
the skews among the clock timers and allow the scattering
algorithm to converge towards the ideal solution.

6. CONCLUSIONS

In this paper, we have considered a realistic application of
a WSN to monitor an area of interest. Firstly, a suboptimal
coverage of the area, with a controlled lifetime for the
WSN, is obtained by means of the wake-up scattering
algorithm, for which global convergence has been proved.

Then, the problem of node clock synchronization for a
realistic WSN has been solved using a consensus–based
switching controller. By simulations, the benefits of the
combination of both the techniques has been shown. As
a future work, we plan to apply the wake-up scattering
to target tracking problems and to study the robustness
issues of the clock synchronization protocol in case of
unstable radio links.

REFERENCES

A. Ageev, D. Macii, and D. Petri. Synchronization uncer-
tainty contributions in wireless sensor networks. In Proc.
of Int. Instrumentation and Measurement Technology
Conference, pages 1986–1991, 2008.

S. Bregni. Clock stability characterization and measure-
ment in telecommunications. IEEE Trans. on Instru-
mentation and Measurement, 46(6):1284–1294, Decem-
ber 1997.

Q. Cao, T. Abdelzaher, T. He, and J. Stankovic. Towards
optimal sleep scheduling in sensor networks for rare-
event detection. In Proc. of the 4th Int. Symp. on
Information Processing in Sensor Networks (IPSN),
April 2005.

R. Carli, A. Chiuso, L. Schenato, and S. Zampieri. A
PI consensus controller for networked clocks synchro-
nization. In Proc. of 17th IFAC World Congress, Seoul
(Korea), July 2008.

B. Cărbunar, A. Grama, J. Vitek, and O. Cărbunar.
Redundancy and coverage detection in sensor networks.
ACM Transaction on Sensor Networks, 2(1):94–128,
February 2006.

D. Fontanelli, L. Palopoli, and R. Passerone. Convergence
of distributed wsn algorithms: The wake-up scattering
problem. In R. Majumdar and P. Tabuada, editors,
Proc. of Hybrid Systems: Computation and Control,
pages 180–193, San Francisco, April 2009. Springer-
Verlag Berlin Heidelberg.

A. Giusti, A.L. Murphy, and G.P. Picco. Decentralized
Scattering of Wake-up Times in Wireless Sensor Net-
works. In Proc. of the 4th European Conf. on Wireless
Sensor Networks (EWSN), LNCS 4373, pages 245–260.
Springer, January 2007.

IEEE. IEEE 1588:2008, Precision clock synchronization
protocol for networked measurement and control sys-
tems. New York, USA, July 2008.

R. Olfati-Saber, J.A. Fax, and R.M. Murray. Consen-
sus and cooperation in networked multi–agent systems.
Proc. of IEEE, 95(1):215–233, January 2007.

L. Palopoli, R. Passerone, A.L. Murphy, G.P. Picco, and
A. Giusti. Solving the wake-up scattering problem
optimally. In Utz Roedig and Cormac J. Sreenan,
editors, 6th European Conf. Wireless Sensor Networks
(EWSN), volume 5432 of Lecture Notes in Computer
Science, pages 166–182. Springer, 2009.

L. Schenato and G. Gamba. A distributed consensus
protocol for clock synchronization in wireless sensor
network. In Proc. of IEEE Conf. on Decision and
Control, pages 2289–2294, New Orleans, LA, USA, 12-
14 December 2007.

S. Yoon, C. Veerarittiphan, and M.L. Sichitiu. Tiny-sync:
Tight time synchronization for wireless sensor networks.
ACM Trans. on Sensor Networks (TOSN), 3(2):1–33,
June 2007.


