
A Component-Based Approach to Localization and Collision Avoidance for

Mobile Multi-Agent Systems

P. Alriksson, J. Nordh, K.-E. Årzén

Department of Automatic Control, LTH

Lund University, Sweden

A. Bicchi, A. Danesi, R. Schiavi, L. Pallottino

Department of Electrical Systems and Automation

University of Pisa

Pisa, Italy

Abstract— In the RUNES project a disaster relief tunnel
scenario is being developed in which mobile robots are used
to restore the radio network connectivity in a stationary sensor
network. A component-based software development approach
has been adopted. Two components are described in this
paper. A localization component that uses ultrasound and dead
reckoning to decide the robot positions and a collision avoidance
component that ensures that the robots do not collide with each
other.

I. INTRODUCTION

Within the EU/IST FP6 integrated project RUNES (Re-

configurable Ubiquitous Networked Embedded Systems) a

disaster relief tunnel scenario has been defined. In the

scenario mobile robots are used as mobile radio gateways

that ensure the connectivity of the tunnel sensor network. In

order to enable this accurate localization, collision detection,

and collision avoidance mechanisms are required.

In RUNES a component-based approach to software de-

velopment has been adopted. The RUNES tunnel scenario

and the component model are described in more detail in the

introductory paper [1]. This paper describes the localization

method and the collision avoidance method used in the

demonstrator. It also describes how these mechanisms have

been implemented using the component framework.

A. Outline of the Paper

Section II is devoted to the localization component. An

ultrasound-based active localization scheme is used. Motiva-

tions for this approach are given, as well as details of how

it has been implemented. Special attention is given to the

Extended Kalman Filter that is used for data fusion.

Section III describes the collision avoidance component

(CAC). The overall policy is described together with simu-

lation and experimental results and implementation details.

II. LOCALIZATION COMPONENT

A. Localization of Mobile Robots

In the disaster relief tunnel scenario autonomous mobile

robots are used as radio gateways responsible for restoring

the tunnel network connectivity. This implies that the robots

are required to navigate inside the tunnel avoiding collisions

with other robots and with unknown obstacles. A prerequisite

for navigation is localization, i.e., the robots must know their

current position and heading. Since the tunnel is assumed to

be well-known, automatic map building is not considered.

Instead it is assumed that the overall layout of the tunnel is

known, with the exception of the position of a number of

stationary obstacles, modeling, e.g., stalled vehicles.

Localization of mobile robots can be performed with a

number of techniques. In laboratory experiments it is com-

mon to use vision, e.g., a ceiling-mounted camera combined

with an image-processing system. In the tunnel scenario this

is not a realistic approach due to, e.g., problems with light

and smoke. Another possibility is to use dead-reckoning

using a high-precision inertial measurement sensor unit on-

board the robot. A problem with dead reckoning-based

approaches, however, is that they are open loop and that

unmeasurable disturbances will cause position errors that

cannot be compensated for. In an outdoor environment GPS

would have been another possibility, but inside a tunnel this

is less realistic.

The localization approach chosen in the RUNES project

is based on ultrasound. The basic idea is to transmit a

wireless radio packet simultaneously with an ultrasound

pulse from each sender node. The receiver nodes measure the

difference in time of arrival between the radio packet and the

ultrasound pulse and can in this way calculate their distance

to the sender node. By combining, or fusing, several distance

measurements an estimate of the position can be obtained.

Two main approaches exists, [2]. In an active mobile

system the infrastructure, in this case the tunnel, has re-

ceivers at known locations, which estimate distances to a

mobile device based on active transmissions from the device.

Examples of this approach are the Active Badge [3], and the

Ubisense [4] systems. In a passive mobile system, instead,

the infrastructure has active beacons at known positions that

periodically transmits signals to a passive mobile device. The

most famous example of this is the Cricket system [5].

An advantage of the active approach is that it is more likely

to perform accurate tracking than the passive approach. The

passive approach, on the other hand, scales better with the

number of mobile devices. Since in the tunnel scenario good

tracking is important and the number of mobile robots is

small, the active approach was chosen. The stationary sensor

nodes in the tunnel are each equipped with an ultrasound re-

ceiver and each mobile robot is equipped with an ultrasound

transmitter. The stationary sensor nodes are implemented as

Tmote Sky sensor network “motes” together with a small

ultrasound receiver circuit interfaced to the mote via the

AD converter, see Figure 1. The mobile robots are equipped

Proceedings of the European Control Conference 2007
Kos, Greece, July 2-5, 2007

WeD15.3

ISBN: 978-960-89028-5-5 4285

Fig. 1. Stationary sensor network nodes with ultrasound receiver circuit.
The nodes are packaged in a plastic box to reduce wear.

with an ultrasound transmitter circuit. Both the ultrasound

transmitters and receivers are designed to be isometric, i.e.,

to transmit and receive in the full 360◦ degree plane.

A second reason for choosing ultrasound-based localiza-

tion is that it involves the use of the sensor network in

closed loop. One of the objectives of the RUNES project

was to investigate the possibilities and problems associated

with networked control over sensor networks. In wireless

networks the lack of worst-case latency guarantees and risk

of losing radio packets creates extra challenges for control.

The ultra-sound based location method provides a possibility

for evaluating this.

The non-determinism of wireless radio communication

makes it necessary to combine the ultra-sound localization

with dead reckoning. The latter is based on the measured, and

in certain situations also the commanded, wheel movements.

This combination is especially important when the robots

approach the zone where the tunnel network is disconnected,

i.e. where the stationary sensor nodes are malfunctioning.

Here the robots can only use the dead reckoning. An addi-

tional reason for using dead reckoning is lack of information

about the robot heading from the ultrasound. Although, this

can be obtained also in ultrasound-based systems, e.g., in

the Cricket system, it has not been included in the hardware

setup for the tunnel scenario.

B. Ultrasound Based Localization

The implemented localization method works according to

the following principles. At the beginning of each mea-

surement cycle, the robot first transmits a broadcast radio

message to alert the nodes of the incoming ultrasound pulse.

After a fixed time the robot then emits an ultrasound pulse.

When the radio message reaches the sensor node, it starts

sampling the ultrasound microphone signal. During this

phase, the sensor node detects the beginning of the pulse

using a moving median filter.

Next the sensor node reports the sample index of the

moving median filter back to the robot over the radio channel.

To avoid radio collisions the node waits a pre-specified time

based on its IP address, before sending. The sample index

provided by the nodes is proportional to the distance between

the sensor node and the robot when the pulse was emitted.

If the speed of sound is assumed constant and the sampling

interval in the sensor nodes is known the actual distance can

be computed.

By combining multiple distance measurements with the

actual movements of the robot accurate position and heading

estimates can be derived. Once each robot has updated its

own position estimates these are broad-casted to all the other

mobile robots.

The proposed scheme above does not work with multiple

robots. If more than one robot send an ultrasound pulse at the

same time or close in time, then their positions can become

mixed up. To avoid this a CSMA (Carrier-Sense Multiple

Access) approach is used. Before a robot sends an ultrasound

pulse it listens so that no radio message has been sent from

some other robot. If this is the case the robot aborts the

ultrasound emission and inserts a small delay in its schedule.

The delay will stretch the schedule and after, possibly, a few

additional collisions the ultrasound send schedules of the two

robots will be de-synchronized and no further collisions will

occur. A prerequisite for the scheme to work is that all robots

are sufficiently close together during initialization to avoid

problems with hidden nodes.

In order to detect unknown obstacles the robots developed

in Lund (the RBbots) are equipped with an IR proximity

sensor that is mounted on a small RC-servo. The sensor acts

as a radar that sweeps a 150◦ degree sector in front of the

robot. In addition to this this the robots are equipped with

fixed touch sensors.

C. Data Fusion

To make good use of the distance measurements a dy-

namical model of the robot is required. The Lund robot, see

Figure 2, is a dual-drive unicycle robot.

θ

px

py

ω1

ω2

Fig. 2. Definition of coordinates with respect to the robot.

It is modeled as a third order system

ṗx =
1

2
(R1ω1 + R2ω2) cos(θ)

ṗy =
1

2
(R1ω1 + R2ω2) sin(θ)

θ̇ =
1

D
(R2ω2 − R1ω1)

(1)

where the state consists of the x- and y-position together

with the heading θ. Input to the system are the angular

velocities ω1 and ω2 of the two wheels, see Figure 2. The

angular velocities are controlled by two PI-controllers and

thus assumed known.

The model has three physical parameters; R1, R2 the

radius of the two wheels and D the distance between the

WeD15.3

4286

wheels. All these are easily obtained by physical measure-

ments.

The relation between distance to node i and the robot

position is

di = hi(·) =
√

(px − pxi)2 + (py − pyi)2 + (pz − pzi)2

(2)

where pxi, pyi, and pzi are the position coordinates of node

i. The locations of the stationary nodes are assumed to

be known. Note that the elevation pz is not estimated and

assumed known as the robot is only allowed to move in

two dimensions. The available distance measurements di are

stacked in a vector d with a corresponding stacked function

h(·, k). Note that the time variation in h(·, k) is due to the

varying number of available measurements.

To solve the state filtering problem, that is, to estimate the

position and heading of the robot, a discrete-time extended

Kalman filter [6] is used. Using a Tustin discretization

scheme with sampling interval T and adding stochastic

disturbances a model on the following form was obtained.

xk+1 = f(xk, uk) + wk (3)

yk = h(xk, k) + ek (4)

Here xk denotes the state and uk the known angular ve-

locities of the wheels at time kT . The white stochastic

disturbances wk and ek are assumed independent of each

other with covariance Q and R.

Let us first briefly review the extended Kalman filter or

EKF for short. The algorithm consists of two steps; the

prediction step and the update step.

In the update step the measurements, that is yk in this

case, are used to update the mean and covariance of the

state estimate. As (4) is a nonlinear function of the state

this is non trivial. In the EKF, (4) is linearized around the

mean from the previous prediction step, which simplifies the

update. The mean (x̂) and covariance (P) are updated as

x̂k|k =x̂k|k−1 + Kk

(

yk − h(x̂k|k−1)
)

Pk|k =(I − KkCk)Pk|k−1

(5)

where

Kk = Pk|k−1C
T
k (CkPk|k−1C

T
k + R)−1 (6)

and Ck is the linearization of h(·) around x̂k|k−1.

In the prediction step (3) is used to make a prediction

of the state. Also here, only the mean and covariance are

propagated. The tool used to overcome the non-linearity is

once again linearization, but this time around the mean after

the update step. The mean and covariance are updated as

x̂k+1|k =f(x̂k|k, uk)

Pk+1|k =AkPk|kAT
k + Q

(7)

where Ak is the linearization of f(·) around x̂k|k.

In the actual implementation a number of problems arise.

The update step in an EKF is computationally intensive and

numerically sensitive, since it involves the inversion of a

matrix of the same size as the number of measurements, i.e.,

the number of stationary nodes in range. To overcome this,

a sequential update scheme where one update step is done

for each available measurement was implemented.
In the scenario considered here more than one robot will

use the network simultaneously, thus the update frequency

is limited. However the prediction step does not use any

shared resources, therefore two extra prediction steps are

done between each update. In the current implementation

the prediction step is executed every 400 ms and the update

step every 1200 ms. The main execution schedule is shown

in Fig. 3. The length of the schedule is 1, 2 ms. It consists of

three repeating phases. In all the three phases the prediction

step of the EKF and the collision avoidance component and

the robot navigator/controller are executed. In the first phase

only an ultrasound range request is sent out. As soon as a

distance measurement is received a sequential update of the

EKF is performed.

400 ms 400 ms400 ms

1 2 3 1

EKF Predict

Range Request

Collision avoidance, Navigation & Control

EKF Sequential Update

Distance measurement arrival

Fig. 3. Main execution schedule.

D. Experimental Results

In Figures 4, 5 and 6 the estimated position and heading

is shown together with measurements from a camera system.

The accuracy of the position and heading measurements

generated by the camera system is approximately 1 cm and

2o respectively. Data was logged at the same frequency as

the update step was run, that is every 1200 ms.

0 20 40 60 80 100 120 140 160 180 200
−0.5

0

0.5

1

1.5

2

2.5

Time (s)

X
−

p
o
s
it
io

n
 (

m
)

Camera

Ultrasound

Fig. 4. X-position estimate generated by the ultrasound system (solid)
together with measurements from a camera system (dashed). Data is logged
every 1200 ms.

WeD15.3

4287

0 20 40 60 80 100 120 140 160 180 200
−0.5

0

0.5

1

1.5

2

2.5

Time (s)

Y
−

p
o
s
it
io

n
 (

m
)

Camera

Ultrasound

Fig. 5. Y-position estimate generated by the ultrasound system (solid)
together with measurements from a camera system (dashed). Data is logged
every 1200 ms.

0 20 40 60 80 100 120 140 160 180 200

0

100

200

300

400

500

600

Time (s)

H
e

a
d

n
in

g
 (

d
e

g
)

Camera

Ultrasound

Fig. 6. Heading estimate generated by the ultrasound system (solid)
together with measurements from a camera system (dashed). Data is logged
every 1200 ms.

E. Software Structure

The API of the RUNES component model is defined in

terms of interfaces and receptacles. A component interface is

a set of functions that are implemented by a component and

offered to others. In order to access these functions, other

components must define a corresponding receptacle and ask

for a binding between its receptacle and the desired interface.

A receptacle is a construct that the RUNES middleware uses

to define a set of functionalities that a component expect to be

implemented by other components. The RUNES middleware

allows to bind a receptacle to different components declaring

a proper interface.

The localization component consists of two parts. A dis-

tance sensor component that resides in the stationary sensor

nodes and the data fusion component that resides in the

mobile robots according to Figure 7.

The distance sensor component is more or less self-

contained. Except for, possibly, an initializing setup function

it only interacts with the environment through the radio

Fig. 7. The localization component.

interface. It is implemented as a Contiki proto-thread [7]

that waits for an incoming radio message, listens for the

ultrasound pulse, and sends a radio message back to the

robot.

The interface of the localization component that resides

in the mobile robots contains the following functions:

Syntax:

void get_self_position(int16& x, int16& y,

int& positionAccuracy, int16& orientation

int& orientAccuracy)

This function returns the current position and orientation of

the mobile agent together with an estimate of how accurate

these values are.

Syntax:

get_neighbours(agents[] neighbours)

Returns all neighbours that currently are within radio range,

i.e., have updated their position within a certain time window.

Syntax:

get_closest_neighbour(agent& neighbour)

Returns the closest mobile agent.

Syntax:

get_location(agent neighbour, int16& x,

int16& y, int& positionAccuracy,

int16& orientation, int& orientAccuracy)

Returns the position information for a certain neighbour

agent

F. Receptacles

The localization component requires the collision

avoidance component to provide the following function:

Syntax:

obstacle_detected(agent ag, int16& distX)

Informs the collision avoidance algorithm that an obstacle

has been detected at a certain distance in front of a mobile

agent.

WeD15.3

4288

III. CAC: COLLISION AVOIDANCE COMPONENT

The collision avoidance component (CAC) is responsible

for the motion coordination of the mobile agents in the

environment. It prevents collisions and guarantees that each

agent eventually accomplishes its individual task by reaching

a desired destination.

A. The collision avoidance policy

The component implementation is based on a decentral-

ized collision avoidance protocol, called “generalized round-

about policy” (GRP), that has been recently proposed for

mobile agents evolving on the plane [8], [9], [10]. The GRP

is briefly described for the reader’s convenience.

Consider a number of mobile agents moving in the plane

at constant speed, along paths with bounded curvature. The

state of each agent is represented by the coordinates (x, y)
and the heading angle θ. According to the protocol a first

circle is assigned to each agent, called the safety disk,

being the circle centered at the agent position (x, y) with a

predefined radius Rs. A collision is said to occur whenever

two or more safety disks overlap.

A collision avoidance policy has the main requirement of

safety to be verified, i.e. to avoid collisions of the mobile

agents while they attend to their tasks. Another important

requirement is the scalability of the policy that imposes

the absence of a centralized traffic supervisor dispatching

detailed instructions to all agents. Rather, the policy should

be completely decentralized and for example hinging upon a

set of “traffic rules” shared among agents. These traffic rules,

must enable each agent to autonomously make decisions

about its own motion, based on information of its own state

and the state of only a fixed, small number of “neighboring”

agents.

The collision avoidance policy has been developed taking

into account such requirements and vehicles with non-trivial

kinematics, such as vehicles that are not able to stop their

motion and have constraints in the angular velocities. For

dealing with such a case, the policy defines a reserved disk

for each agent as the circle that contains the path traveled

by the safety disk, when its associated agent turns right at

the minimum allowable curvature. The center of a reserved

disk can easily be obtained from its agent state ((xc, yc) =
(x + Rc sin(θ), y − Rc cos(θ)) ; where Rc is the minimum

feasible curvature radius). In spite of the agent constraints,

the motion of the reserved disk can be stopped at any time,

by making the agent turn right at the minimum curvature

rate. The reserved disk has radius Rc + Rs and inherits the

heading angle θ of the mobile agent.

Suppose that each agent has to reach a desired final

position and heading to accomplish its task. The motion

strategy followed by the agent is based on four distinct modes

of operation, each assigning a suitable value to the curvature

rate of the agent. Figure 8 shows these operation modes along

with the corresponding switching conditions, a.k.a. guards.

The policy has been defined in order to keep reserved disks

disjoint. With reference to the figure, each agent enters the

straightmode if the motion along the line directed as the

agent heading is directed toward the goal configuration and

Fig. 8. Finite state automaton that summarizes the collision avoidance
protocol GRP.

Fig. 9. Example of a possible trajectory of an agent applying the proposed
collision avoidance protocol. Smaller circles are safety disks, larger circles
are reserved disks.

is permitted, i.e. its reserved disk does not overlap with other

reserved disks. During this mode, the agent’s curvature rate

is set to zero. Whenever its reserved disk becomes tangent to

the one of another agent, a test is made based on the current

motion heading θ. If a further movement in the direction

specified by θ causes an overlapping, then the agent enters

the holdmode. Otherwise, the agent is able to proceed, and

remains in the straight mode. When the hold mode is entered,

the agent’s curvature rate is set to the minimum allowable

(turning on the right), and the motion of its reserved disk

is stopped. As soon as the agent heading is permitted but

not directed towards the target destination, the agent enters

the roll mode, and tries to go around the other reserved

disk. This is achieved by selecting a suitable value for the

curvature rate of the agent such that the two disks never

overlap. During the roll mode, the tangency of the two disks

can unexpectedly be lost, then the agent enters the roll2

mode, and the curvature rate is set to the maximum allowable

in order to restore the contact (turning on the left). The roll2

mode can only be entered if the previous mode was roll.

When the tangency is restored, the agent switches back to

roll mode. A simple example of a possible trajectory of an

agent that moves according to the GRP is depicted in Figure

9.

WeD15.3

4289

From the description above, it is important to notice that

the only information that agents need to exchange is the

current configuration. Furthermore, each agent must know

the configuration of neighbour agents that in case of identical

agents are at most six. Hence, the policy is completely

decentralized and the amount of information to be exchanged

is limited and not based on intentions but only on positions.

The decentralized characteristic of the protocol allows the

CAC to be implemented on-board the agents. As a matter

of fact, each agent is able to make a safe decision about

its motion, based only on the locally available information.

This information consists of the position and heading of

agents that are within a certain sensing or communication

radius. If agents are not homogeneous (different dimensions,

safety radii or different curvature radii) the policy is still

applicable. However, in this case the agents need to exchange

information on the safety and curvature (or reserved) radii

dimension.

In [8], under mild conditions on the initial configurations,

the policy has been proved to be safe, i.e. to guarantee

collision avoidance throughout the system evolution. Fur-

thermore, conditions on the desired configurations of agents

under which the ultimate convergence of all vehicles to their

goals can also be guaranteed have been obtained. To show

that such conditions are actually necessary and sufficient,

which turns out to be a challenging liveness verification

problem for a complex hybrid automaton, a probabilistic

verification method has been used [8].

Even though the proposed collision avoidance policy has

been designed based on mobile agent conflicts, it may also

be applied in case of fixed obstacles. No details on the

obstacle avoidance strategy based on the GR policy is herein

presented for the sake of brevity. Please refer to Figure 9 for

a possible obstacle avoidance in the simple case of obstacle

with shape and dimension equal to the reserved disk.

B. Simulations and experimental results

A large number of simulations have been conducted on

the collision avoidance component. Simulations have shown

that the CAC provides effective solutions for large-scale

problems, such as e.g. the 70-agents conflict resolution

illustrated in Figure 10.

In parallel, a preliminary platform has been designed for

testing safe and secure decentralized traffic management

policies for multi-agent mobile systems. In particular, several

experiments have been conducted on the the GRP policy

[11]. The architecture is based on wireless communication

between agents. Furthermore, the architecture provides the

agents with services such as the localization, which was

implemented based on a centralized server that monitors the

environment through a camera. In Figure 11 some screen-

shots of a three-vehicle case are reported with overprinted

reserved disks. For technical details and experimental data

please refer to [11]. Recently this preliminary platform has

been revisited and updated to meet RUNES middleware

requirements.

Fig. 10. A conflict resolution problem with 70 agents in narrow space, for
which the proposed policy provides a correct solution. Initial configurations
are identified by the presence of gray circles, indicating their reserved disks.

C. CAC Interface Implementation

The implementation of interface for the CAC with other

components (including the localization component described

before) consists of the following three core functions

(auxiliary interface functions are not described here for the

case of brevity).

C.1 Parameter Initialization

Syntax:

setup_parameters(int16 Safety_Disk_Radius,

int16 Reserved_Disk_Radius,

int8 Vehicle_Speed, struct process

*subscriber_process);

This function initializes parameters necessary for the cor-

rect execution of each CAC iteration. The safety of the

policy can be compromised if these parameters are not

properly initialized. The Safety_Disk_Radius and the

Reserved_Disk_Radius are two numeric parameters re-

lated to the agent dimension and technical constraints and

represent the radii of the safety disk and the reserved disk, re-

spectively. The definition of these quantities is tightly related

to the uncertainties of the environment and the maneuvering

capabilities of the agent. The Vehicle_Speed is the desired

forward velocity of our agent. The necessity of defining the

speed of the robot is related to the possibility of the CAC to

be directly bounded to the motion control component.

The subscriber_process is a pointer to the process

that the CAC will activate after the vehicle reaches the goal

position. The RUNES middleware for the Contiki operating

system, even though very efficient for network stacks and

multitasking, has a drawback in the scheduling process.

Indeed, a process explicitly needs to block over an event to

introduce a precise order in the scheduling. As programming

paradigm, every time a callback parameter is needed, the

code explicitly blocks on a PROCESS WAIT UNTIL

procedure. The invoked function that comes to an end

can awake the calling process with a PROCESS POST

WeD15.3

4290

Fig. 11. Snapshots of GRP evolution in a three-vehicle scenario

procedure with subscriber_process as the parameter.

C.2 Get Parameters

Syntax:

get_parameters(int16 Safety_Disk_Radius,

int16 Reserved_Disk_Radius,

int8 Vehicle_Speed,

strict process *subscriber_process);

This function returns the current value for each parameter

that has been initialized. As mentioned in the previous

section if agents have different dimensions or kinematic

constraints, it is necessary to exchange information also

on the radii used in the CA policy with the neighboring

agents. Hence, each agent that wants to implement the CA

policy must declare these parameters to its neighbours.

As mentioned, the subscriber_process will receive an

explicit PROCESS POST as the current values are copied

in the returned parameters.

C.3 Set Goal Configuration

Fig. 12. Hardware Expansion Layout. All external hardware communica-
tion is performed by I2C bus sharing.

Syntax:

goal_specification(int16 X, int16 Y,

int16 orientation);

This function sets the goal position of the vehicle. The

position is specified in Cartesian X,Y coordinates and ori-

entation angle. When the goal_specification is called,

the CA algorithm begins to iterate. When the final position is

achieved or some error occurs, the subscriber_process

is awakened.

D. Receptacles

The receptacles of the CAC are strictly related to the

localization component that gives information about the

position of the neighbors and of the agent itself, and the

motion control component, that provides the basic control

that allows the agent to reach the desired position.

The Localization Receptacle defines functionalities

for acquiring agents’ position. The self localization

receptacle is related to the agent position, while the

neighbours localization receptacle asks for neighbours

current configuration. The two services can be implemented

by different technologies for different components. In our

case, the described localization component provides both

functionalities.

D.1 Receptacle toward Localization Component

The receptacles of the CAC component related to localization

correspond to the localization interface functions defined in

Section II (i.e., get_self_position etc)

D.2 Receptacle for Actuation: Motion Control

Syntax:

void set_steering(int8 heading, int8 speed);

The receptacle sets the desired heading and speed of the

vehicle. These parameters are set-points for the motion

controller of the robots.

WeD15.3

4291

E. Hardware extensions

To overcome the limitations of the Tmote Sky board for

complex control tasks, the RUNES partners have agreed to

use a common paradigm for extending the capabilities of the

experimental platform with dedicated hardware. As shown in

Figure 12 all external computational resources and devices

(such as sonar sensor boards, actuation control electronics)

are connected over the I2C bus provided by the Tmote

Sky board. The Tmote Sky board acts as the master of the

bus according to requests that the component functionalities

demand to external devices. The proposed CA policy has

memory and computation needs that can hardly fit into Tmote

Sky micro-controller. The same is true for the part of the

localization component residing on the mobile robots.

The proposed solution is to implement the CA policy on a

separate micro-controller of the PSoC 29 series. The micro-

controller is connected over I2C and all functionalities are

controlled by a CAC on the Tmote Sky. This solution allows

to shrink the CAC footprint to 3KB. On the micro-controller,

the code is about 15KB occupancy on ROM and 200 bytes

on the RAM. Partners that want to implement the CA policy

over an embedded systems may run the algorithm on the

main CPU or use an external micro-controller. With the

proposed implementation we have been able to achieve more

than 50 iterations per second. A similar situation holds for

the localization component. Although it does fit on the Tmote

Sky processor it may be desirable to migrate it completely,

or partly, to one or several micro-controllers. On the Lund

robot an ATMEL AVR Mega128 processor is used as co-

processor to the Tmote Sky. The extended Kalman filter can

either execute on the Tmote Sky or on the AVR depending

on memory and speed requirements.

IV. CONCLUSIONS

Component-based techniques in software developments

have many benefits: components are well-defined entities that

can be replaced without affecting the rest of the systems,

they can be developed and tested separately and easily

integrated later, and they are reusable. These features are

important for the development of large-scale complex sys-

tems. Component-based approaches for embedded applica-

tions such as sensor networks or mobile robots create special

challenges.

Within the RUNES project a component-based approach

has been adopted in a combined sensor network and mobile

robot application. Two of the key components are the local-

ization component and the collision avoidance component.

The principles and implementation of these components have

been described in this paper.

A. Acknowledgment

The work has been done with partial support from EC

project RUNES (Contract IST-2004-004536).

REFERENCES

[1] K.-E. Årzén, A. Bicchi, G. Dini, S. Hailes, K. Johansson, J. Lygeros,
and A. Tzes, “A component-based approach to the design of networked
control systems,” in Proceedings of the European Control Conference
(ECC), Kos, Greece, Kos, Greece, 2007.

[2] A. Smith, H. Balakrishnan, M. Goraczko, and N. B. Priyantha,
“Tracking Moving Devices with the Cricket Location System,” in
2nd International Conference on Mobile Systems, Applications and
Services (Mobisys 2004), Boston, MA, June 2004.

[3] R. Want, A. Hopper, V. Falcao, and J. Gibbons, “The Active Badge
Location System,” ACM Transactions on Information Systems, vol. 10,
no. 1, pp. 91–102, 1992.

[4] J. Cadman, “Deploying commercial location-aware systems,” in Proc.
Fifth International Conference on Ubiquitous Computing, October
2003.

[5] N. Priyantha, A. Chakraborty, and H. Balakrishnan, “The Cricket
location-support system,” in Proc. Sixth ACM MOBICOM Conf.,
Boston, MA, August 2000.

[6] A. H. Jazwinski, Stochastic Processes and Filtering Theory. Aca-
demic Press, 1970.

[7] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads:
Simplifying event-driven programming of memory-constrained
embedded systems,” in Proceedings of the Fourth ACM
Conference on Embedded Networked Sensor Systems (SenSys
2006), Boulder, Colorado, USA, Nov. 2006. [Online]. Available:
http://www.sics.se/∼adam/dunkels06protothreads.pdf

[8] L. Pallottino, V. G. Scordio, E. Frazzoli, and A. Bicchi, “Decentralized
cooperative policy for conflict resolution in multi-vehicle systems,”
IEEE Transactions on Robotics, May 2006, subm.

[9] L. Pallottino, V. Scordio, E. Frazzoli, and A. Bicchi, “Probabilistic
verification of a decentralized policy for conflict resolution in multi-
agent systems,” in ICRA06, 2006.

[10] E. Frazzoli, L. Pallottino, V. G. Scordio, and A. Bicchi, “Decentralized
cooperative conflict resolution for multiple nonholonomic vehicles,” in
Proc. AIAA Guidance, Navigation and Control conference, 2005.

[11] A. Danesi, A. Fagiolini, I. Savino, L. Pallottino, R. Schiavi, G. Dini,
and A. Bicchi, “A scalable platform for safe and secure decentralized
traffic management of multiagent mobile systems,” in ACM Workshop
on Real-World Wireless Sensor Networks, June 2006, Uppsala, Swe-
den.

WeD15.3

4292

