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Abstract

In this paper we study the problem of optimally designing glove–based sens-
ing devices for hand pose reconstruction to maximize their potential for precision.
In a companion paper we studied the problem of maximizing the reconstruction
accuracy of the hand pose from partial and noisy data provided by any given pose
sensing device (a sensorized “glove”) taking into account the knowledge on how
humans most frequently use their hands in grasping tasks. In this paper we con-
sider the dual problem of how to design pose sensing devices, i.e. how and where
to place sensors on a glove, to get maximum information about the actual hand
posture. We study the optimal design of gloves of different nature, according to a
classification of current sensing technologies adopted in the domain. The objective
is to provide, for given a priori information and fixed number of sensor inputs, the
optimal design minimizing the reconstruction error statistics (assuming that opti-
mal reconstruction algorithms are adopted). Finally, an experimental evaluation of
the proposed method for optimal design is provided.

1 Introduction
Hand Pose Reconstruction (HPR) systems are gaining an increasing importance, since
they provide useful human–machine interfaces in many applications ranging from tele–
robotics, to virtual reality, entertainment and rehabilitation [Dipietro et al., 2008]. To
enable a widespread use of low–cost glove–based HPR, it is crucial to address the
problem of correct hand pose estimation despite the many non–idealities arising, for
example, from the complexity of human hand biomechanics and from measurement
inaccuracies.

In [Bianchi et al., 2012b] we describe how to optimize HPR system accuracy — for
a given hardware configuration — so as to provide optimal hand pose estimation from
incomplete and imperfect glove data. In the present paper we extend the analysis to the
optimal sensing glove design. The issue is to choose the optimal sensor distribution
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Figure 1: Location of cutaneous mechanoreceptive units in the dorsal skin of the human
hand. Adapted from [Edin and Abbs, 1991], courtesy of the authors.

which maximizes the information on the actual posture. This information, used with
the algorithms proposed in [Bianchi et al., 2012b], will lead to the minimization of the
reconstruction error statistics.

That the optimal distribution of sensitivity for HPR is not trivial is strongly sug-
gested by the observation of the human example. Indeed, the role of cutaneous informa-
tion in kinesthesia and movement control in human hands and fingers has been exten-
sively studied in the neuro-physiology literature. For example, [Edin and Abbs, 1991]
describe the response to finger movements of cutaneous mechanoreceptors in the dor-
sal skin of human hand. The involved mechanoreceptors mainly consist of two types:
Fast Adapting afferents of the first type (FAI), and Slow Adapting afferents, of both the
first and second type (SAI and SAII, respectively). The non–uniform distribution of
these receptors is shown in figure 1(a) and 1(b). FA units, whose response is localized
to movements about one or, at most, two nearby joints, are found primarily close to
joints; on the other hand SA units, whose discharge rate is influenced by several joints
at the same time, are more uniformly distributed (see figure 1(c)).

These observations suggest that in the human hand sensory system, different ty-
pologies of proprioceptive sensors are distributed in the dorsal skin with different densi-
ties. This produces a non–uniform map of sensitivities to joint angles, whose functional
motivation is unclear, but might correspond to the different importance of different el-
ementary percepts in building an overall representation of the hand pose. Motivated
by this biological evidence, in this paper we deal with the problem of searching for a
preferential distribution and density of different typologies of sensors, so as to optimize
the accuracy of glove–based HPR systems.

The design of sensorized gloves for HPR has received already some attention in
the literature. For example, in [Sturman and Zeltzer, 1993] an investigation of “whole-
hand” interfaces for the control of complex tasks is presented, along with the descrip-



tion, design, and evaluation of whole-hand inputs, based on empirical data from users.
In [Edmison et al., 2002] authors discussed the properties, advantages, and design as-
pects associated with piezoelectric materials for sensing glove design, in an application
where the device is used as a keyboard. Finally, [Chang et al., 2007] explored how to
methodically select a minimal set of hand pose features from optical marker data for
HPR. The objective is to determine marker locations on the hand surface that is ap-
propriate for classification of hand poses. All the aforementioned approaches rely on
ad–hoc experimental or qualitative observations: from actual sensor data, locations that
provide the largest and most useful information on the system are chosen.

More analytical approaches to the problem can be based on the existing literature on
optimal experimental design (see e.g. [Pukelsheim, 2006]). Among optimal design cri-
teria, Bayesian methods are ideally suited to contribute to experimental design for error
statistics minimization (see e.g. [Chaloner and Verdinelli, 1995, Ghosh and Rao, 1996,
Bicchi and Canepa, 1994] for a review). On the contrary, non–Bayesian criteria are
adopted when the linear Gaussian hypothesis is not fulfilled and/or when the designer’s
primary concern is to minimize worst-case errors rather than error statistics. Crite-
ria on explicit worst-case/deterministic bounds on the errors and tools from the the-
ory of optimal worst–case/deterministic estimation and/or identification are discussed
e.g. in [Helmicki et al., 1991, Tempo, 1988, Bicchi, 1992].

It is noteworthy that most results in optimal experimental design refer to the case
where the number of measurements is redundant or at least equal to the number of
variables to be estimated. However, the opposite case that fewer sensors are available
than the hand variables is of main concern in our problem. To circumvent this problem,
it is natural to think of exploiting a priori knowledge to disambiguate poses from scarce
data.

In this paper, partially based on [Bianchi et al., 2012a], optimal HPR system design
is obtained by relying on results from neuro–scientific studies about hand postures in
grasping tasks [Santello et al., 1998, Schieber and Santello, 2004]. The main finding
of these studies is that, despite the hand complexity, simultaneous motion and force of
the fingers occur in a consistent fashion and is characterized by coordination patterns
(“synergies”) that effectively reduce the number of independent hand degrees of free-
dom to be controlled. In [Bianchi et al., 2012b], this prior knowledge on how humans
most frequently use their hands is fused with partial and noisy data provided by any
given HPR device, to maximize reconstruction accuracy. Here, the goal is to charac-
terize a design which enables for optimally exploiting – in a Bayesian sense – such an
a priori information.

The optimization goals of this paper become particularly relevant when restrictions
on the production costs limit both the number and the quality of sensors. In these cases,
a careful design is instrumental to obtain good performance. Different technologies and
sensor distributions can be considered to realize an HPR device. At the physical level,
sensors for HPR gloves can be classified as either lumped (as e.g. a mechanical angular
encoder about a joint) or distributed (e.g. a flexible optic fiber running along a finger
from base to tip, as in the DataGlove [Zimmerman, 1988]). At the signal level, glove
sensors can be coupled (if more than one hand joint angle influences the reading) or
uncoupled. Of course, all distributed sensors are coupled, but also lumped sensors can
be coupled due to cross–coupling.



An example of a distributed, coupled glove is the one described in [Tognetti et al., 2006]
(cf. figure 2, on the left). On the other hand, the Humanglove (Humanware s.r.l., Pisa,
Italy) shown in figure 2, on the right, is an example of lumped glove.

Figure 2: Examples of sensorized gloves. On the left, a sensing glove based on conduc-
tive elastomer sensor strips printed on fabric, each measuring a linear combination of
joint angles [Tognetti et al., 2006]. On the right, the Humanglove (image courtesy by
Humanware s.r.l. (www.hmw.it/)), using individual joint angle Hall effect sensors. De-
pending on the level of cross–talk between joint angles and measurements, this device
can result in either a coupled or uncoupled model.

To validate our optimal designs we use an experimental setup consisting of a highly
accurate optical tracking system. We use these data to measure a number of hand pos-
tures completely, providing reliable ground truth, and to simulate low-accuracy sensors
of different design. Optimal solutions referring to different sensing strategies are com-
pared in terms of HPR performance. Statistical analyses on the estimated hand postures
obtained by using measurements coming from simulated optimal gloves demonstrate
the effectiveness of the proposed method.

2 Problem Definition
For reader’s convenience we summarize here the definitions and results of [Bianchi et al., 2012b].
Let us assume a n Degrees of Freedom (DoFs) kinematic hand model and let y ∈ IRm

be the measures provided by a sensing glove. The relationship between joint variables
x ∈ IRn and measurements y is

y = Hx+ν , (1)

where H ∈ IRm×n (m < n) is a full row rank matrix, and v ∈ IRm is a vector of mea-
surement noise which has zero mean and Gaussian distribution with covariance matrix
R. Different sensor arrangements generate different measurement matrices H: the row
corresponding to a lumped, uncoupled sensor has a non–zero element only in cor-
respondence to the measured joint, hence (up to rescaling) it is a binary “selection”
matrix. We will call such a matrix discrete, i.e. Hi j ∈ {0,1}— a discrete set of values.
Conversely, a coupled sensor with general weights, i.e. a distributed sensor or a lumped
sensor with not negligible cross–coupling, produces a matrix whose row elements are



real numbers, i.e., up to rescaling, Hi j ∈ [−1, 1]⊂ IR — a continuous set of values. In
the following, we will call such a matrix continuous. Finally, a glove employing both
lumped (uncoupled and coupled) and distributed sensors will generate a hybrid mea-
surement matrix which consists of a continuous part and a discrete one. Notice that,
according to the discussion in figure 1, the human hand sensing distribution could be
considered to belong to the latter glove class.

In [Bianchi et al., 2012b], the goal is to determine the hand posture, i.e. the joint
angles x, by using a set of measures y whose number is lower than the number of DoFs
describing the kinematic hand model in use. To improve the hand pose reconstruction,
we used postural synergy information embedded in the a priori grasp set, which is
obtained by collecting a large number N of grasp postures xi, consisting of n DoFs,
into a matrix X ∈ IRn×N . This information can be summarized with a covariance matrix
Po ∈ IRn×n, which is a symmetric matrix computed as Po = (X−x̄)(X−x̄)T

N−1 , where x̄ is a
matrix n×N whose columns contain the mean values for each joint angle arranged in
vector µo ∈ IRn.

Based on the Minimum Variance Estimation (MVE) technique, in [Bianchi et al., 2012b]
we obtained the hand pose reconstruction as

x̂ = (P−1
o +HT R−1H)−1(HT R−1y+P−1

o µo) , (2)

where matrix Pp = (P−1
o +HT R−1H)−1 is the a posteriori covariance matrix. When

R tends to assume very small values, the solution described in (2) might encounter
numerical problems. However, by using the Sherman-Morrison-Woodbury formulae,
(2) can be rewritten as

x̂ = µo−PoHT (HPoHT +R)−1(Hµo− y) , (3)

and the a posteriori covariance matrix becomes Pp = Po−PoHT (HPoHT +R)−1HPo.
The a posteriori covariance matrix, which depends on measurement matrix H, rep-

resents a measure of the amount of information (i.e. observed information) that an
observable variable carries about unknown parameters. In this paper we explore the
role of the measurement matrix H on the estimation procedure, providing the optimal
design of a sensing device able to obtain the maximum amount of the information on
the actual hand posture.

Let us preliminary introduce some useful notations. If M is a symmetric matrix with
dimension n, let its Singular Value Decomposition (SVD) be M =UMΣMUT

M , where ΣM
is the diagonal matrix containing the singular values σ1(M) ≥ σ2(M) ≥ ·· · ≥ σn(M)
of M and UM is an orthogonal matrix whose columns ui(M) are the eigenvectors of M,
known as Principal Components (PCs) of M, associated with σi(M). For example, the
SVD of the a priori covariance matrix is Po = UPoΣPoUT

Po
, with σi(Po) and ui(Po), i =

1,2, . . . ,n, the singular values and the principal components of matrix Po, respectively.

3 Optimal Sensing Design
Referring to model (1), we first analyze the case that individual sensing elements in
the glove can be designed to measure a linear combination of joint angles (i.e. a glove



which can be modeled with a continuous matrix), and provide, for given a priori in-
formation and fixed number of measurements, the optimal continuous measurement
matrix, minimizing the reconstruction error statistics. We then consider the case where
each measure provided by the glove corresponds to a single joint angle (i.e. a glove
which can be modeled with a discrete matrix). For these types of gloves we determine
the optimal discrete measurement matrix, i.e. which joints should be individually mea-
sured in order to optimize the design. Finally, we also define a procedure to obtain the
optimal hybrid measurement matrix.

In the ideal case of noise–free measures (R = 0), Pp becomes zero when H is a
full rank n matrix, meaning that available measures contain a complete information
about the hand posture. In the real case of noisy measures and/or when the number
of measurements m is less than the number of DoFs n, Pp can not be zero. In these
cases, the following problem becomes very interesting: find the optimal matrix H∗

such that the hand posture information contained in the few number of measurements
is maximized. Without loss of generality, we assume H to be full row rank and we
consider the following problem.

Problem 1. Let H be an m× n full row rank matrix with m < n and V1(Po,H,R) :
IRm×n→ IR be defined as V1(Po,H,R) = ‖Po−PoHT (HPoHT +R)−1HPo‖2

F , find

H∗ = argmin
H

V1(Po,H,R)

where ‖ · ‖F denotes the Frobenius norm defined as ‖A‖F =
√

tr(AAT ), for A ∈ IRn×n.

To solve problem 1 means to minimize the entries of the a posteriori covariance
matrix: the smaller the values of the elements in Pp, the greater is the predictive effi-
ciency.

In order to simplify the analysis, in the following we will consider separately the
optimal procedure to define the continuous, discrete and hybrid measurement matrix.

3.1 Continuous Measurement Matrix
For this case, each row of the measurement matrix H is a vector in IRn and hence can
be given as a linear combination of a IRn basis. Without loss of generality, we can
use the principal components of matrix Po, i.e. the columns of the previously defined
matrix UPo , as a basis of IRn. Consequently the measurement matrix can be written
as H = HeUT

Po
, where He ∈ IRm×n contains the coefficients of the linear combinations.

Given that Po =UPoΣPoUT
Po

, the a posteriori covariance matrix becomes

Pp =UPo

[
Σo−ΣoHT

e (HeΣoHT
e +R)−1HeΣo

]
UT

Po , (4)

where, for simplicity of notation, Σo ≡ ΣPo .
Next sections are dedicated to how to obtain the optimal the continuous measure-

ment matrix both in a numerical and analytical manner. For this purpose, let us intro-
duce the set of m× n (with m < n) matrices with orthogonal rows, i.e. satisfying the
condition HHT = Im×m, and let us denote it as Om×n.



3.1.1 Analytical Solutions

We first consider the case of noise–free measures, i.e. R = 0. Let A be a non–negative
matrix of order n. It is well known (cf. [Rao, 1964]) that, for any given matrix B of
rank m with m≤ n,

min
B
‖A−B‖2

F = α
2
m+1 + · · ·+α

2
n , (5)

where αi are the eigenvalues of A, and the minimum is attained when

B = α1w1w1
T + · · ·+αmwmwm

T , (6)

where wi are the eigenvector of A associated with αi. In other words, the choice of B
as in (6) is the best fitting matrix of given rank m to A. By using this result we are able
to show when the minimum of (4), hence of

‖Σo−ΣoHT
e (HeΣoHT

e )
−1HeΣo‖2

F , (7)

can be reached. Let us preliminary observe that the row vectors (hi)e of He can be
chosen, without loss of generality, to satisfy the condition (hi)e Σo (h j)e = 0, i 6= j,
which implies that the measures are uncorrelated ([Rao, 1964]). Let Om×n denotes the
set of m× n matrices, with m < n, whose rows satisfy the aforementioned condition,
i.e. the set of matrices with orthonormal rows (HeHT

e = I). By using (5), the minimum
of (7) is obtained when (cf. [Rao, 1964])

ΣoHT
e (HeΣoHT

e )
−1HeΣo = σ1(Σo)u1(Σo)uT

1 (Σo)+ · · ·+
+σm(Σo)um(Σo)uT

m(Σo) .
(8)

Since Σo is a diagonal matrix, ui(Σo) ≡ ei, where ei is the i-th element of the canon-
ical basis. Hence, it is easy to verify that (8) holds for He = [Im |0m×(n−m)]. As
a consequence, row vectors (hi) of H∗ are the first m principal components of Po,
i.e. (hi) = ui(Po)

T , for i = 1, . . . ,m.
From these results, a principal component can be defined as a linear combination of

optimally–weighted observed variables meaning that the corresponding measures can
account for a maximal amount of variance in the data set. As reported in [Rao, 1964],
every set of m optimal measures can be considered as a representation of points in
the best fitting lower dimensional subspace. Thus the first measure gives the best
one–dimensional representation of data set, the first two measures give the best two–
dimensional representation, and so on.

In the noisy measurement case, (8) can be rewritten as

ΣoHT
e (HeΣoHT

e +R)−1HeΣo−σ1(Σo)u1(Σo)uT
1 (Σo)+ · · ·+

+σm(Σo)um(Σo)uT
m(Σo) = ∆

In this case, ∆ = 0 can not be attained for any finite H: indeed, for unconstrained
H, infH V1(P0,H,R) would be attained for ‖H‖ → ∞, i.e. for infinite signal–to–noise
ratio. The problem can be recast in a well–posed form by imposing a constraint on
the magnitude of the measurement matrix. Up to a possible re–normalization of R, we



can search the optimum design in the set A = {H : HHT = Im}. This problem was
discussed and solved in [Diamantaras and Hornik, 1993], showing that, for arbitrary
noise covariance matrix R,

min
H∈A

V1(H) =
m

∑
i=1

σi(Po)

1+σi(Po)/σm−i+1(R)
+

n

∑
i=m+1

σi(Po) , (9)

which is attained for

H∗ =
m

∑
i=1

um−i+1(R)uT
i (Po) . (10)

Hence, if A consists of all matrices with mutually perpendicular, unit length rows, the
first m principal components of Po are still the optimal choice for H rows only in case
of uncorrelated noise (i.e. R is a diagonal matrix). For generic noise covariance matri-
ces, the optimal choice of matrix H depends also on the principal components of noise
matrix R. The alternative case that the solution is sought under a Frobenius norm con-
straint on H, i.e. A = {H : ‖H‖F ≤ 1} is discussed in [Diamantaras and Hornik, 1993].

3.1.2 Numerical Solution: Gradient flows on Om×n

In this subsection we describe a different approach to the solution of problem 1, which
consists of constructing a differential equation whose trajectories converge to the de-
sired optimum. The method lends itself directly to efficient numerical implementations.
Although a closed–form solution has been proposed in the previous subsection, the nu-
merical solution considered here is very useful when constraints are imposed on the
measurement structure (as they will be for instance in the hybrid case), where closed
form solutions are not applicable.

The following proposition describes an algorithm that minimizes the cost function
V1(Po,H,R), providing the gradient flow which will be useful in the method of steepest
descent.

Proposition 1. The gradient flow for the function V1(Po,H,R) : IRm×n→ IR is given by,

Ḣ =−∇‖Pp‖2
F = 4

[
P2

p PoHT
Σ(H)

]T
, (11)

where Σ(H) = (HPoHT +R)−1.

Proof. See Appendix.

Let us observe that rows of matrix H can be chosen, without loss of generality,
such that HiPoHT

j = 0, i 6= j which imply that measures are uncorrelated, i.e. satisfying
the condition HHT = Im. Of course, in case of noise–free sensors, this constraint is
not strictly necessary. On the other hand, in case of noisy sensors, the minimum of
V1(Po,H,R) can not be obtained since it represents a limit case that can be achieved
when H becomes very large (i.e. an infimum) and hence increasing the signal–to–noise
ratio.

A reasonable solution for the constrained problem will be provided by using the
Rosen’s gradient projection method for linear constraints [Rosen, 1960], which is based



on projecting the search direction onto the subspace tangent to the constraint. Hence,
given the steepest descent direction for the unconstrained problem, this method consists
on finding the direction with the most negative directional derivative which satisfies the
constraint on the structure of the matrix H, i.e. HHT = Im. This can be obtained by
using the projection matrix

W = In−HT (HHT )−1H , (12)

and then projecting the unconstrained gradient flow (11) into the subspace tangent to
the constraint, obtaining the search direction

s = ∇‖Pp‖2
F W . (13)

Having the search direction for the constrained problem, the gradient flow is given
by

Ḣ =−4
[
P2

p PoHT
Σ(H)

]T
W (14)

where Σ(H) = (HPoHT +R)−1. The gradient flow (11) guarantees that the optimal
solution H∗ will satisfy H∗(H∗)T = Im, if H(0) satisfies H(0)H(0)T = Im, i.e. H ∈
Om×n.

Notice that both Om×n and V1(Po,H,R) are not convex, hence the problem could not
have a unique minimum. However, in case of noise–free measures, the invariance of the
cost function w.r.t. changes of basis, i.e. V1(Po,H,0) =V1(Po,MH,0), with M ∈ IRm×m

a full rank matrix, suggests that there exists a subspace in IRm×n where the optimum
is achieved. Hence, considering results reported in previous section (see (8)), we can
conclude that gradient (11) with R = 0 becomes zero when rows of matrix H are any
linear combination of the first m principal components of the a priori covariance matrix
Po. This does not happen in case of noisy measures with generic noise covariance
matrix and gradient (14) becomes zero only for a particular matrix H which depends
also on the principal components of the matrix R (see (10)). Notice that, according to
previous analytical results, when the noise covariance matrix is diagonal, then gradient
(14) becomes zero only if matrix H consists of the first m principal components of Po.

3.2 Discrete Measurement Matrix
When each measure y j, j = 1, . . . ,m provided by the glove corresponds to a single joint
angle xi, i = 1, . . . ,n, the problem is to find the optimal choice of m joints or DoFs to
be measured. Measurement matrix becomes in this case a full row rank matrix where
each row is a vector of the canonical basis, i.e. matrices which have exactly one nonzero
entry in each row.

Let Nm×n denote the set of m×n element–wise non–negative matrices, then Pm×n =
Om×n ∩Nm×n, where Pm×n is the set of m× n permutation matrices (see lemma 2.5
in [Zavlanos and Pappas, 2008]). This result implies that if we restrict H to be or-
thonormal and element–wise non–negative, we get a permutation matrix. In this paper
we extend this result in IRm×n, obtaining matrices which have exactly one nonzero entry
in each row. Hence, the problem to solve becomes:



Problem 2. Let H be a m× n matrix with m < n, and V1(Po,H,R) : IRm×n → IR be
defined as V1(Po,H,R) = ‖Po − PoHT (HPoHT + R)−1HPo‖2

F , find the optimal mea-
surement matrix

H∗ = argmin
H

V1(Po,H,R)

s.t. H ∈Pm×n .

In this case a closed–form solution is not available. Nonetheless, as the model
used to describe the kinematics of the hand has usually a low number of DoFs, the
optimal choice H∗ can be computed by exhaustion, substituting all possible sub–sets of
m vectors of the canonical basis in the cost function V1(Po,H,R). In the next section,
a more general approach to compute the optimal matrix will be provided in order to
obtain a result also when a model with a large number of DoFs is considered.

3.2.1 Numerical Solution: Gradient Flows on Pm×n

In this section, we describe an alternative approach to the solution of problem 2 based
on a gradiental method. Once again, although the enumeration approach can solve the
problem in practical cases, the numerical solution based on the method here presented
will be useful in the hybrid case.

A numerical solution for problem 2 can be obtained following a method presented
in [Zavlanos and Pappas, 2008], which consists in defining a function V2(P) with P ∈
IRn×n that forces the entries of P to be as positive as possible, thus penalizing negative
entries of H. In this paper, we extend this function to measurement matrices H ∈ IRm×n

with m < n. Consider a function V2 : Om×n→ IR as

V2(H) =
2
3

tr
[
HT (H− (H ◦H))

]
, (15)

where A ◦ B denotes the Hadamard or element–wise product of the matrices A =
(ai j) and B = (bi j), i.e. A ◦ B = (ai jbi j). The gradient flow of V2(H) is given by
([Zavlanos and Pappas, 2008])

Ḣ =−H
[
(H ◦H)T H−HT (H ◦H)

]
, (16)

which minimizes V2(H) converging to a permutation matrix if H(0) ∈ Om×n.
The two gradient flows given by (11) and (16), both defined on the space of or-

thogonal matrices, tend to minimize their cost functions, respectively. By combining
these two gradient flows we can achieve a solution for Problem 2. An interesting result
applies to the dynamics of the convex combination of these gradients, which can be
stated as follows.

Theorem 1. Let H ∈ IRm×n with m < n be the measurement process matrix and as-
sume that H(0) ∈ Om×n. Moreover, suppose that H(t) satisfies the following matrix
differential equation,

Ḣ = 4(1− k)
[
P2

p PoHT
Σ(H)

]T
W+

+ k H
[
(H ◦H)T H−HT (H ◦H)

]
, (17)



where k ∈ [0, 1] is a positive constant, W = In−HT (HHT )−1H and Σ(H) = (HPoHT +
R)−1. For sufficiently large k, limt→∞ H(t) = H∞ exists and approximates a permuta-
tion matrix that also (locally) minimizes the squared Frobenius norm of the a posteriori
covariance matrix, ‖Pp‖2

F .

The proof of this theorem is a direct extension of results in [Zavlanos and Pappas, 2008],
and is omitted for brevity.

As in most numerical optimization algorithms, the non–convex nature of the cost
function and of the support set implies the need for multi–start approaches. A possible
technique to help converge towards the global optimum consists in increasing k during
the search procedure (cf. [Zavlanos and Pappas, 2008]).

3.3 Hybrid Measurement Matrix
Up to re–arranging the sensor numbering, we can write a hybrid measurement matrix
Hc,d ∈ IRm×n as

Hc,d =

[
Hc
Hd

]
,

where Hc ∈ IRmc×n defines the mc rows of the continuous part, whereas Hd ∈Pmd×n

describes the md single–joint measurements of the discrete part, with mc +md = m.
Neither the closed–form solution valid for the continuous measurement matrix, nor the
exhaustion method used for discrete measurements are applicable in the hybrid case.
Therefore, to optimally determine the hybrid measurement matrix, we will recur to
gradient–based iterative optimization algorithms.

By combining the continuous and discrete gradient flows, previously defined in (11)
and (16), respectively, and constraining the solution in the sub–set Hc,d = {Hc,d :
Hc,dHT

c,d = Im}, we obtain

Ḣc,d = 4(1− k)
[
P2

p PoHT
c,dΣ(Hc,d)

]T
W+

+ k H̄d
[
(H̄d ◦ H̄d)

T H̄d− H̄T
d (H̄d ◦ H̄d)

]
, (18)

where k ∈ [0, 1] is a positive constant, Pp = Po−PoHT
c,d(Hc,dPoHT

c,d +R)−1Hc,dPo, W =

In−HT
c,d(Hc,dHT

c,d)
−1Hc,d , Σ(Hc,d) = (Hc,dPoHT

c,d +R)−1, and

H̄d =

[
0mc×n

Hd

]
.

Starting from any initial guess matrix Hc,d ∈Hc,d , the gradient flow defined in (18)
remains in the sub–set Hc,d and, on the basis of Theorem 1, it converges toward a
hybrid measurement matrix, (locally) minimizing the squared Frobenius norm of the a
posteriori covariance matrix. Multi–start strategies have to be used to circumvent the
problem of local minima.

When noise is not negligible, without constraining the solution in Hc,d by W , the
gradient search method of (18) would tend to produce measurement matrices whose
continuous parts, Hc, are very large in norm. This is an obvious consequence of the
fact that, for a fixed noise covariance R, larger measurement matrices H would produce
an apparently higher signal–to–noise ratio in (1).



4 On the Practical Realization of Optimal Sensing De-
vices

In this section we describe some feasible solutions to realize a device which can be
modeled by the previously obtained optimal continuous, discrete and hybrid measure-
ment matrices, to achieve a trade–off between accuracy, cost, usability and ease to
made, on the basis of the current technology.

Lumped, uncoupled sensing devices, which generate a discrete measurement ma-
trix, are probably the easiest to be implemented, as they require to individually measure
single joints according to the optimal measurement matrix. Common sensing strategies
include Hall–effect (e.g. Humanglove) or piezoresistive sensors (e.g. CyberGlove, by
CyberGlove System LLC, San Jose, CA – USA), directly placed on the joints to be
measured, hence obtaining a lumped device. However some difficulties can occur due
to coupling between non–measured and measured joints and cross–coupling between
sensors. This last problem becomes particularly relevant when the optimality requires
to place sensors on adjacent joints. To circumvent these drawbacks, attention must
be paid on the ergonomics of sensor physical support as well as appropriate sensor
shielding (e.g. with Hall–effect transducer).

On the other hand, distributed sensors, which generate an optimal continuous ma-
trix, should provide measurements in terms of optimally weighted linear combina-
tions of the contributions of different DoFs, according to the principal components
of the a priori data and of noise covariance matrix. Of course, under a technologi-
cal viewpoint, the weight of each measured DoF can be approximated with a given
level of accuracy due to the particular application and sensor technology. The liter-
ature ([Dipietro et al., 2008]) describes at least two main technologies to implement
distributed sensing strategies. A first one is based on resistive ink printed on flexible
plastic bends that follow the movement of hand joints (e.g. PowerGlove by Mattel Inc.,
El Segundo, CA–USA). In this case a change in the configuration of the joints results
in a change of the overall resistance. It is possible to weight each joint contribution
in a different manner by suitably modifying its electrical resistance (e.g. increasing
or decreasing the section of the printed segments corresponding to different joints). A
second technology adopts capacitive sensors (as e.g. in the Didjiglove by Dijiglove
Pty. Ltd., Melbourne, AUS), i.e. two layers of conductive polymer separated by a di-
electric, which overlap different joints. By bending the sensors, a change in the overall
capacitance will be produced. Also in this case we can weight each joint differently
by varying the thickness and the type of dielectric surface as well as the electrode sur-
face overlapping. Finally, the above discussed technologies (lumped, uncoupled and
distributed) can be adopted and combined in an efficient manner to optimally realize
devices which can be modeled by a hybrid measurement matrix.

5 Experimental Setup for A Priori and Validation Data
To validate our optimal design, we performed some simulations using measurements
from human posture data acquired by means of an optical tracking system. As de-
scribed in the following, this data contains joint angles for a large set of grasping poses,



and can be regarded as a reasonable reference to compare reconstruction outcomes.
These values were used to simulate optimally designed gloves, i.e. they were combined
each time to provide a measurement outcome according to the continuous, hybrid and
discrete measurement matrix, i.e. H∗c , H∗c,d and H∗d , respectively, as well as to other non–
optimal measurement matrix. Without loss of generality, for hand pose reconstruction

DoFs Description
TA Thumb Abduction
TR Thumb Rotation
TM Thumb Metacarpal
TI Thumb Interphalangeal
IA Index Abduction
IM Index Metacarpal
IP Index Proximal

MM Middle Metacarpal
MP Middle Proximal
RA Ring Abduction
RM Ring Metacarpal
RP Ring Proximal
LA Little abduction
LM Little Metacarpal
LP Little Proximal

Figure 3: Kinematic model of the hand with 15 DoFs.

we adopt the 15 DoFs model also used in [Santello et al., 1998, Gabiccini et al., 2011]
and reported in figure 3. The model DoFs are: 4 DoFs for the thumb, i.e. TR, TA, TM,
TI (Thumb Rotation, Abduction, Metacarpal, Interphalangeal); 3 DoFs for the index,
i.e. IA, IM, IP (Index Abduction, Metacarpal, Proximal Interphalangeal); 2 DoFs for
the middle, i.e. MM, MP (Middle Metacarpal, Proximal Interphalangeal); 3 DoFs for
the ring, i.e. RA, RM, RP (Ring Abduction, Metacarpal, Proximal Interphalangeal);
3 DoFs for the little, i.e. LA, LM, LP (Little Abduction, Metacarpal, Proximal Inter-
phalangeal). Notice that the middle finger has no abduction since it is considered the
“reference finger” in the sagittal plane of the hand.

An optical motion capture system (Phase Space, San Leandro, CA – USA) with
19 active markers was used to collect a large number of static grasp positions (see
figure 4). Subject AT (M,26) performed all the grasps of the 57 imagined objects
described in [Santello et al., 1998]; these data were acquired twice to define a set of
114 a priori data.

The disposition of the markers on the hand refers to [Fu and Santello, 2010]. We
used four markers for the thumb and three markers for each of the rest of the fingers.
Three markers were also placed on the dorsal surface of the palm to define a local
reference system SH (see figure 3). The positions of the markers, which were sampled



Figure 4: Experimental setup for hand pose acquisition with Phase Space system.

at 480 Hz, are given referring to the global reference system SMC (which is directly
defined during the calibration of the acquisition system).

An additional set of Np = 54 grasp poses was performed by subject LC (26,M).
Subject was asked to perform some imagined grasped object poses contained in the a
priori data set and also some new postures which identify basic grasping configura-
tions of the hand (e.g. precision and power grasp) 1. None of the subjects had physical
limitations that would affect the experimental outcomes. Data collection from subjects
in this study was approved by the University of Pisa Institutional Review Board. The
latter set of poses will be referred hereinafter as validation set, since these poses can be
assumed to represent accurate reference angular values for hand pose configurations,
given the high accuracy provided by the optical system to detect markers (the amount of
static marker jitter is inferior than 0.5 mm, usually 0.1 mm) and assuming a linear cor-
relation (due to skin stretch) between marker motion around the axes of rotation of the
joint and the movement of the joint itself [Zhang et al., 2003]. The validation set was
then used to simulate optimal gloves. According to the number of measures, we consid-
ered from the postures in this set only the joint values resulting from the optimization
procedure, assuming to select them in a linear weighted combination (continuous mea-
surement matrix), individually (discrete measurement matrix) or combining discrete
and continuous measurements (hybrid measurement matrix). Since all the DoFs of
the postures in the validation set are known, we compare the reconstructed hand con-
figurations obtained from simulated optimal glove measures with the reference ones.
The same procedure is used for hand pose reconstruction achieved starting from non
optimal measures provided by Hs, which is described in the following section.

1These hand posture acquisitions are available at http://handcorpus.org/



6 Application of Optimal Glove Design Techniques
In this section we analyze the main features of hand pose sensing devices, whose design
is determined on the basis of the optimal procedures proposed in previous sections.
First, based on the covariance matrix of the a priori data set (cf. Section 5), we give
examples of optimal distributions of sensors in terms of continuous, hybrid and discrete
measurement matrix in case of noise-free measures. Furthermore, we characterize how
the information available by measurement process increases with the minimization of
the squared Frobenius norm of the a posteriori covariance matrix as well as with an
increasing number of measures.

Second, we show how the optimal design improves the estimation algorithms pro-
posed in the companion paper [Bianchi et al., 2012b] and briefly described in Section 2
of this manuscript. In [Bianchi et al., 2012b], we tested the proposed estimations al-
gorithms using discrete matrix Hs, which models a lumped, uncoupled sensing device,
providing the individual measures of five metacarpal joints, i.e. TM, IM, MM, RM and
LM. In this section, we compare the hand posture reconstruction obtained by Hs with
the one obtained by using the optimal matrix H∗d with the same number of measure-
ments. Improvements on the estimation of hand postures in case of both noise–free
and noisy measures are shown. In case of noisy measures, an additional random noise
was artificially added on each measure. A zero–mean, Gaussian noise with standard
deviation 0.122 rad ( 7◦) was chosen based on data about common technologies and
tools used to measure hand joint positions [Simone et al., 2007], thus obtaining a noise
covariance matrix R≈ diag(0.0149).

Finally, for the sake of completeness, we compare hand pose estimation perfor-
mance achievable with the optimal design of corresponding to continuous, hybrid and
discrete measurement matrix, considering the same number of measures. The purpose
of this comparison is to analyze and discuss benefits of each type of optimal sensor
distribution w.r.t. the other ones.

6.1 Sensor Distributions Based on Continuous, Discrete and Hy-
brid Measurement Matrices

As shown in Section 3, the optimal choice H∗c of the measurement matrix H ∈ IRm×n is
represented by the first m principal components (synergies) of the a priori covariance
matrix Po. Figure 5 shows the optimal sensor distribution related to a continuous mea-
surement matrix which furnishes a number of measures up to three. In this case, each
measure is given as yk = ∑

n
i=1 wi xi with k = 1, . . . ,m. In figure 5 a representation, in

grayscale, of the absolute value of wi, is reported: the greater is the absolute coefficient
wi, the darker is the color of that joint.

The optimal measurement matrix H∗d , for a number of noise–free measures m rang-
ing from 1 to 14, is reported in table 1. Notice that, H∗d does not have an incremental
behavior, especially in case of few measures. In other words, the set of DoFs which
have to be chosen in case of m measures does not necessarily contain all the set of
DoFs chosen for m− 1 measures. Moreover, noise randomness can slightly change
which DoFs have to be measured compared with the noise–free case.



Figure 5: Optimal sensing distribution according to the first three PCs of Po, which
correspond to the rows of the optimal continuous measurement matrix up to three mea-
sures. The greater is the absolute coefficient wi of the joint angle in the PC and hence
in each measure yk = ∑

n
i=1 wi xi with k = 1,2,3, the darker (in grayscale) is the color

of that joint. For representation purposes only, we consider the absolute value of the
coefficient of the i-th joint in the PC to be normalized w.r.t. the maximum absolute
value of the coefficients that can be achieved all over the joints.

For the sake of completeness, table 2 shows also an example of optimal measure-
ment matrix H∗c,d for a number of noise–free measures m ranging from 1 to 14, where
only the first measure is continuous (i.e. mc = 1). Of course, table 2 shows only the
selected DoFs of each discrete measure. However, results obtained with the gradient



m TA TR TM TI IA IM IP MM MP RA RM RP LA LM LP V1

1 X 7.12 ·10−2

2 X X 2.39 ·10−2

3 X X X 6.59 ·10−3

4 X X X X 3.30 ·10−3

5 X X X X X 1.90 ·10−3

6 X X X X X X 5.32 ·10−4

7 X X X X X X X 2.92 ·10−4

8 X X X X X X X X 1.98 ·10−4

9 X X X X X X X X X 1.30 ·10−4

10 X X X X X X X X X X 6.86 ·10−5

11 X X X X X X X X X X X 2.70 ·10−5

12 X X X X X X X X X X X X 1.40 ·10−5

13 X X X X X X X X X X X X X 3.39 ·10−6

14 X X X X X X X X X X X X X X 1.32 ·10−6

Table 1: Optimal measured DoFs for H∗d with an increasing number of noise–free
measures m (cf. figure 3).

m = 1+md TA TR TM TI IA IM IP MM MP RA RM RP LA LM LP V1

2 X 1.81 ·10−2

3 X X 5.49 ·10−3

4 X X X 2.68 ·10−3

5 X X X X 1.27 ·10−3

6 X X X X X 3.64 ·10−4

7 X X X X X X 2.46 ·10−4

8 X X X X X X X 1.58 ·10−4

9 X X X X X X X X 9.10 ·10−5

10 X X X X X X X X X 4.95 ·10−5

11 X X X X X X X X X X 2.09 ·10−5

12 X X X X X X X X X X X 8.70 ·10−6

13 X X X X X X X X X X X X 3.02 ·10−6

14 X X X X X X X X X X X X X 4.59 ·10−7

Table 2: Optimal measured DoFs for the discrete part of the optimal hybrid matrix
H∗c,d with only one continuous measure (mc = 1) and with an increasing number of
noise–free measures m (cf. figure 3).

flow (18) proposed in Section 3.3 show that the elements of the continuous part of H∗c,d
corresponding to DoFs measured by the discrete part, tend to be zero. For instance,
if m = 2 with mc = 1, matrix H∗c,d furnishes two measures: the discrete one gives the
angle of RM DoF (see table 2), while the continuous part is a linear combination of all
joints angle but RM one. Indeed, the RM angle is perfectly known, i.e. we have the
maximum information available on that DoF and hence, the continuous measure has to
furnish information only on the other DoFs.

Let us quantify the information made available by the optimal measurement pro-



cess through the square Frobenius norm of the a posteriori covariance matrix (V1).
Figure 6 shows the values of V1 for increasing number m of noise–free measures. The
best performance is obtained by the continuous measurement matrix, as expected and
the observed information is always the greatest one. Indeed, principal components
are considered the optimal measures for the representation of points in the best fitting
lower dimensional subspace [Rao, 1964]. The optimal hybrid measurement matrix we
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Figure 6: Squared Frobenius norm of the a posteriori covariance matrix with noise–free
measures in case of H∗c , H∗d and H∗c,d (mc = 1) with an increasing number of noise-free
measures. A zoomed detail of the graph is shown for m = 2,3,4,5 measures.

consider for this analysis has only a continuous measure, the first one. For this rea-
son, in figure 6, the same value for V1 is observed for both hybrid and continuous case
when only one measure (m = 1) is considered, hence leading to same performance.
Then, increasing the number of discrete measures, performance of hybrid matrix tends
to be close to the discrete one (see the zoomed detail in figure 6), even if observed
information for hybrid measurement matrix is always greater than the observed infor-
mation for the discrete measurement matrix. Notice that V1 values decrease with the
number of measures, tending to be zero (cf. figure 6) for all three cases. This fact is
trivial because increasing the measurements, the uncertainty on the measured variables
is reduced. When all the measured information is available V1 assumes zero value with
perfectly accurate measures in all three cases. In case of noisy measures, V1 values
decrease with the number of measures tending to a value which is larger, depending on
the level of noise.



For noise–free measures, we analyze how much V1 reduces with the number of
measurements w.r.t. the value it assumes for zero measures (Pp ≡ P0). In terms of mea-
surement process, i.e. from the observability viewpoint, a reduced number of measures
coinciding with the first three principal components enable for ' 97% reduction of
the squared Frobenius norm of the a posteriori covariance matrix. An analogous re-
sult can be found also under the controllability point of view. In [Santello et al., 1998]
authors state that three postural synergies are crucial in grasp pre–shaping since they
take into account for ' 90% of pose variability in grasping tasks. The above reported
result seems logic considering the duality between observability and controllability.
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Figure 7: Squared Frobenius norm for the a posteriori covariance matrix of Hs which
models a sensing device, providing the individual measures of five (m = 5) metacarpal
joints, i.e. TM, IM, MM, RM and LM, and H∗d with m = 2, 3, 4, 5 measures, in case of
noise–free measures (see table 2).

Finally, let us consider figure 7 and 8, where squared Frobenius norm for the a posteri-
ori covariance matrix of Hs with m = 5 measures, and H∗d with m = 2,3,4,5 measures,
in case of noise-free and noisy measures, respectively, is reported. Notice that, V1 is
significantly smaller in the optimal case, even when a reduced number of measures is
considered, leading to a better estimation performance also with an inferior number
of measured DoFs w.r.t. Hs. For sake of space, in Subsection 7.1, we report only the
estimation comparison when both Hs and H∗d provide five measures.
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Figure 8: Squared Frobenius norm for the a posteriori covariance matrix of Hs which
models a sensing device, providing the individual measures of five (m = 5) metacarpal
joints, i.e. TM, IM, MM, RM and LM with m = 5 measures, and H∗d with m = 2, 3, 4, 5
measures, in case of noisy measures.

7 Experimental Results
In this section, we compare the hand posture reconstructions, considering m = 5 mea-
sures provided by matrix Hs and by optimal matrix H∗d in case of both noise–free and
noisy measures. Second, we analyze HPR performance for the tree sensing typolo-
gies of optimal sensor distributions corresponding to the three optimal measurement
matrices.

7.1 Hs vs. H∗d with m = 5

In figure 9, sensor locations related to matrix Hs and H∗d (with noise–free and noisy
measures), are represented. For the comparison, measures are provided by grasp data
acquired with the optical tracking system as described in Section 5 (see also [Bianchi et al., 2012b]
for more details), where degrees of freedom to be measured are chosen on the basis of
optimization procedure outcomes, while the entire pose is recorded to produce accurate
reference posture.

In figure 10, some reconstructed poses with MVE algorithm are reported by us-
ing both Hs and H∗d , with and without additional noise. Under a qualitative point of
view, what is noticeable is that reconstructed poses are not far from the real ones for
both measurement matrices, even if the pose error ei =

1
n ∑

n
i=1 |xi− x̂i| is smaller for

the optimal case. Moreover, it may happen that some poses are estimated in a better
manner using Hs and vice versa, even if, as we will show in next subsections, from a
statistical point of view, H∗d provides best average performance. Indeed, MVE methods
are thought to minimize error statistics rather than worst–case sensing errors related to
particular poses [Bicchi and Canepa, 1994].



Figure 9: Measured joints (highlighted in color) for matrix Hs, and H∗d , with and with-
out noise (cf. figure 3).

In the following, as evaluation indices, the average pose estimation error and av-
erage estimation error for each estimated DoF are used. Maximum errors are also
reported. These errors as well as statistical tools are chosen according to the ones con-
sidered in [Bianchi et al., 2012b]. Statistical differences between estimated pose and
joint errors obtained with different glove designs are computed by using classic tools,
after having tested for normality and homogeneity of variances assumption on samples
(through Lilliefors’ composite goodness–of–fit test and Levene’s test, respectively).
Standard two–tailed t–test (hereinafter referred as Teq ) is used in case of both the as-



sumptions are met, a modified two–tailed T–test is exploited (Behrens–Fisher problem,
using Satterthwaite’s approximation for the effective degrees of freedom, hereinafter
referred as Tneq ) when variance assumption is not verified and finally a non parametric
test is adopted for the comparison (Mann–Whitney U–test, hereinafter referred as U )
when normality hypothesis fails. Significance level of 5% is assumed and p-values less
than 10−4 are posed equal to zero.

7.1.1 Noise–Free Measures

In terms of average absolute estimation pose errors ([◦]), performance obtained with
H∗d is always better than the one exhibited by Hs (3.67±0.93 vs. 6.69±2.38). More-
over, H∗d exhibits smaller maximum error than the one achieved with Hs (i.e. 8.25◦ for
H∗d vs. 13.18◦ for Hs). Statistical difference between results from Hs and H∗d is found
(p ' 0, Tneq). In table 3 average absolute estimation errors with their corresponding
standard deviations for each DoF are reported. For the estimated DoFs, performance
with H∗d is always better or not statistically different from the one referred to Hs. Max-
imum estimation errors underline cases where Hs furnishes smaller values and vice
versa, since they strictly depend on particular poses.

7.1.2 Noisy Measures

In case of noise, performance in terms of average absolute estimation pose errors ([◦])
obtained with H∗d is better than the one exhibited by Hs (5.96±1.42 vs. 8.18±2.70).
Moreover, maximum pose error with H∗d is the smallest (9.30◦ vs. 15.35◦ observed with
Hs). Statistical difference between results from Hs and H∗d is found (p=0.001, Tneq). In
table 4 average absolute estimation error with standard deviations are reported for each
DoF. Also in this case, for the estimated DoFs, performance with H∗d is always better or
not statistically different from the one referred to Hs. Maximum estimation errors with
H∗d are usually inferior to the ones obtained with Hs. The MVE method seems to give
more accurate estimates for certain DoFs (e.g. TA, IA, RA, LA, for Hs and MP, RA,
RM, LP for H∗d ) with noise than without noise even if in the latter case, the average
absolute pose estimation error is the smallest one.

It should be noticed that the MVE method guarantees that the mean squared norm
of the joint error vector (i.e. the Mean Squared Error, MSE = 1

N ∑
N
i=1 ‖x̂− x‖2, where

N represents the number of predictions) is minimized, but not necessarily the value of
each single component. Same applies with noise: indeed, some particular joints have a
lower error with noise than without noise, yet the overall error norm (across all joints) is
always higher if noise is present. Indeed, if the joint angles of both the estimations and
the reference poses are in degrees, the MSE with the optimal measurement matrix H∗d
(Hs) is 522 (1583) in case of noise–free measures and 948 (1992) in case of noise, hence
it increases with noise. The fact that noise happens to reduce the error in some joints
is a statistically insignificant case, that has occurred with the validation set reported
in the paper. Using other validation sets, we have obtained estimates where noise
reduces the error of different individual joints, or increases all components: however,
as theory predicts, the overall mean square error vector is always increased by noise.
The whole argument rests on the fact that the validation sets are samples from the same



Figure 10: Hand pose reconstructions MVE algorithm by using matrix Hs which allows
to measure T M, IM, MM, RM and LM and matrix H∗d which allows to measure TA,
MM, RP, LA and LM (cf. figure 3). In color the real hand posture whereas in white the
estimated one. The pose error is given by ei =

1
n ∑

n
i=1 |xi− x̂i|.

distribution, of which the a priori set is assumed to provide a statistically accurate
description.



DoF
Mean Error [�] Hs vs. H⇤d Max Error [�]

Hs H⇤d p-values Hs H⇤d
TA⌦ 10.74±8.45 0 0 31.65 0
TR 7.16±4.54 6.84±4.75 0.72 ⇧ 19.50 20.13

TM� 0 2.17±2.21 0 0 13.04
TI 4.81±3.68 5.33±4.16 0.64 19.68 15.15
IA 11.96±5.33 10.55±5.65 0.14 26.35 26.15

IM� 0 4.02±3.43 0 0 16.01
IP 13.26±7.06 5.42±6.44 0 27.46 43.86

MM�⌦ 0 0 – 0 0
MP 12.35±7.75 4.90±2.91 0 ‡ 29.94 9.91
RA 3.45±2.43 3.82±2.94 0.73 9.51 12.68

RM� 0 6.68±3.68 0 0 16.01
RP⌦ 13.40±9.65 0 0 39.33 0
LA⌦ 11.33±5.87 0 0 24.47 0

LM�⌦ 0 0 – 0 0
LP 11.94±9.52 6.27±3.97 0.0002 36.58 16.63

1 �����������������0
p-values

� indicates a DoF measured with Hs⌦ indicates a DoF measured with H⇤d

Table 3: Average estimation errors and standard devia-
tions for each DoF [�] for the simulated acquisition con-
sidering Hs and H⇤d both with five noise–free measures.
Maximum errors are also reported as well as p-values
from the evaluation of DoF estimation errors between Hs
and H⇤d . ⇧ indicates Teq test. ‡ indicates Tneq test. When
no symbol appears near the tabulated values, U test is
used. Bold value indicates no statistical difference be-
tween the two methods under analysis at 5% significance
level. When the difference is significative, values are re-
ported with a 10�4 precision. p-values less than 10�4 are
considered equal to zero. Symbol “–” is used for those
DoFs which are measured by both Hs and H⇤d .

7.1.2 Noisy Measures

In case of noise, performance in terms of average absolute estimation pose errors ([�])
obtained with H⇤d is better than the one exhibited by Hs (5.96±1.42 vs. 8.18±2.70).
Moreover, maximum pose error with H⇤d is the smallest (9.30� vs. 15.35� observed with
Hs). Statistical difference between results from Hs and H⇤d is found (p=0.001, Tneq). In
table 4 average absolute estimation error with standard deviations are reported for each

Table 3: Average estimation errors and standard deviations for each DoF [◦] for the
simulated acquisition considering Hs and H∗d both with five noise–free measures. Max-
imum errors are also reported as well as p-values from the evaluation of DoF estimation
errors between Hs and H∗d . � indicates Teq test. ‡ indicates Tneq test. When no symbol
appears near the tabulated values, U test is used. Bold value indicates no statistical
difference between the two methods under analysis at 5% significance level. When
the difference is significative, values are reported with a 10−4 precision. p-values less
than 10−4 are considered equal to zero. Symbol “–” is used for those DoFs which are
measured by both Hs and H∗d .

7.2 Estimation Performance Comparison for Optimal Sensor De-
signs

As previously shown, the observed information quantified through V1 (squared Frobe-
nius norm of the a posteriori covariance matrix) is greatest for continuous case, while
hybrid case provides better performance than the discrete one. Here, we analyze how
these differences affect the reconstruction pose accuracy. To accomplish this goal, we
consider as an example the case of three noise–free measures (m = 3). For the hybrid
case, only the first measure is continuous (i.e. mc = 1 and md = 2).



DoF
Mean Error [�] Hs vs. H⇤d Max Error [�]

Hs H⇤d p-values Hs H⇤d
TA⌦ 6.7±5.62 4.87±3.57 0.19 23.35 15.93
TR 7.65±5.57 7.54±5.00 0.91 ⇧ 27.46 22.73

TM� 2.81±1.75 2.63±1.90 0.61 ⇧ 7.2 8.78
TI 6.08±4.63 5.42±4.74 0.32 19.6 19.10
IA 10.74±5.6 11.52±5.81 0.32 27.31 28.46

IM� 4.15±3.17 6.91±5.00 0.003 11.66 21.49
IP 14.61±7.93 6.61±6.01 0 31.85 38.07

MM�⌦ 4.59±3.08 4.71±3.19 0.77 11.43 15.72
MP⌦ 13.71±8.07 4.08±2.98 0 ‡ 37.61 13.71
RA 3.12±2.37 3.28±2.45 0.71 9.18 9.37

RM� 4.03±3.07 6.30±4.72 0.01 ‡ 12.94 12.91
RP 16.78±11.07 6.89±3.82 0 ‡ 50.66 16.34
LA 8.97±5.11 9.86±5.45 0.38 ⇧ 20.86 21.48

LM�⌦ 3.82±3.05 4.82±4.30 0.44 11.33 14.26
LP⌦ 14.64±9.68 3.94±2.95 0 48.61 11.03

1 �����������������0
p-values

� indicates a DoF measured with Hs⌦ indicates a DoF measured with H⇤d

Table 4: Average estimation errors and standard devia-
tions for each DoF [�] for the simulated acquisition con-
sidering Hs and H⇤d both with five noisy measures. Maxi-
mum errors are also reported as well as p-values from the
evaluation of DoF estimation errors between Hs and H⇤d . ⇧
indicates Teq test. ‡ indicates Tneq test. When no symbol
appears near the tabulated values, U test is used. Bold
value indicates no statistical difference between the two
methods under analysis at 5% significance level. When
the difference is significative, values are reported with a
10�4 precision. p-values less than 10�4 are considered
equal to zero. Symbol “–” is used for those DoFs which
are measured by both Hs and H⇤d .

with H⇤d are usually inferior to the ones obtained with Hs. The MVE method seems
to give more accurate estimates for certain DoFs (e.g. TA, IA, RA, LA, for Hs and
MP, RA, RM, LP for H⇤d ) with noise than without noise even if in the latter case, the
average absolute pose estimation error is the smallest one. This depends on different
factors: the measured joint angles, the a priori covariance matrix and the amplitude
and the structure of the measurement noise. How these factors interact to determine

Table 4: Average estimation errors and standard deviations for each DoF [◦] for the
simulated acquisition considering Hs and H∗d both with five noisy measures. Maximum
errors are also reported as well as p-values from the evaluation of DoF estimation errors
between Hs and H∗d . � indicates Teq test. ‡ indicates Tneq test. When no symbol appears
near the tabulated values, U test is used. Bold value indicates no statistical difference
between the two methods under analysis at 5% significance level. When the difference
is significative, values are reported with a 10−4 precision. p-values less than 10−4 are
considered equal to zero. Symbol “–” is used for those DoFs which are measured by
both Hs and H∗d .

To enable for a correct comparison, we compute average absolute estimation pose
errors ([◦]) only on estimated DoFs, disregarding each time those joints whose values
are perfectly known since individually measured (i.e. RM, RP for both H∗c,d and H∗d and
TA for H∗d ). Performance obtained with H∗c is always better than the one exhibited by
H∗c,d and H∗d (5.09±1.6 vs. 6.16±1.64 and 6.61±1.89, respectively). Statistical differ-
ence between H∗c and H∗d and between H∗c and H∗c,d is found (p ' 0, U). No statistical
difference is observed between H∗c,d and H∗d (p = 0.19, Teq). Moreover, H∗c exhibits the
smallest maximum error: 9.95 vs. 11.30 and 11.73 for H∗c,d and H∗d , respectively.



DoF Mean Error [�] p-values Max Error [�]
H⇤c H⇤c,d H⇤d H⇤c vs. H⇤d H⇤c vs. H⇤c,d H⇤c,d vs. H⇤d H⇤c H⇤c,d H⇤d

TA� 4.44±4.85 4.60±4.48 0 0 0.69 0 17.19 15.83 0
TR 5.64±3.96 5.79±3.86 7.28±4.68 0.08 0.84⇧ 0.13 17.11 16.65 18.86
TM 2.69±1.89 2.40±1.90 2.07±1.88 0.04 0.34 0.35 8.61 8.77 10.39
TI 3.72±2.80 4.02±3.03 4.36±3.34 0.28⇧ 0.70 0.73 13.95 12.83 14.18
IA 12.04±6.00 12.13±6.23 12.05±6.40 0.83 1 0.87 29.32 30.24 30.56
IM 4.43±4.09 6.84±5.64 9.81±7.35 0 0.02 0.05 16.79 21.01 25.22
IP 4.39±4.64 5.17±6.63 5.09±6.53 0.77 0.64 0.98 30.81 45.43 44.63

MM 3.68±2.70 7.36±4.92 8.76±5.40 0 0 0.07 11.04 21.40 23.34
MP 3.66±2.57 4.63±2.87 4.54±2.94 0.1⇧ 0.07⇧ 0.87⇧ 14.26 10.80 10.88
RA 3.40±2.41 3.42±2.56 3.49±2.54 0.91 0.96 0.91 9.44 10.00 9.88

RM�⌦ 5.41±2.58 0 0 0 0 – 11.85 0 0
RP�⌦ 4.62±3.76 0 0 0 0 – 16.29 0 0

LA 10.12±4.41 12.26±4.59 10.96±6.52 0.43‡ 0.01⇧ 0.24‡ 19.74 20.89 25.85
LM 3.84±2.96 5.26±3.44 4.79±4.72 0.55 0.01 0.07 10.76 18.10 19.64
LP 3.79±3.02 6.18±4.32 6.09±4.24 0.004 0.003 0.88 13.53 17.29 16.94

1 �������������������0p-values� indicates a DoF measured with H⇤d⌦ indicates a DoF measured with the discrete part of H⇤c,d .

Table 5: Average estimation errors and standard deviations for each DoF [�] for
the simulated estimation considering H⇤c , H⇤c,d and H⇤d , with three noise-free mea-
sures. Maximum errors are also reported as well as p-values from the evaluation
of DoF estimation errors between the continuous, hybrid and discrete design. ⇧
indicates Teq test. ‡ indicates Tneq test. When no symbol appears near the tabulated
values, U test is used. Bold value indicates no statistical difference between the
two methods under analysis at 5% significance level. When the difference is sig-
nificative, values are reported with a 10�4 precision. p–values less than 10�4 are
considered equal to zero. Symbol “–” is used for those DoFs which are measured
by both H⇤d and the discrete part of H⇤c,d .

8 Conclusions
In this paper, optimal design of sensing glove has been proposed on the basis of the
minimization of the a posteriori covariance matrix as it results from the estimation
procedure described in [Bianchi et al., 2012]. Optimal solution are described for the
continuous, discrete and hybrid case.

In the continuous sensing measurement matrix case, basically corresponding
to distributed sensing devices, optimal measures are individuated by principal com-
ponents of the a priori covariance matrix, thus suggesting the importance of postural
synergies not only for hand control.

The reconstruction performance obtained by combining the estimation technique
proposed in [Bianchi et al., 2012] and the optimal design proposed in this paper is sig-
nificantly improved if compared with non–optimal measure case. Therefore, [Bianchi et al., 2012]
and this paper provide a complete procedure to enhance the performance and for a more
effective development of sensorization systems for robotic hands and active touch sens-
ing systems. These techniques can be useful in a wide range of applications, ranging

Table 5: Average estimation errors and standard deviations for each DoF [◦] for the
simulated estimation considering H∗c , H∗c,d and H∗d , with three noise-free measures.
Maximum errors are also reported as well as p-values from the evaluation of DoF esti-
mation errors between the continuous, hybrid and discrete design. � indicates Teq test.
‡ indicates Tneq test. When no symbol appears near the tabulated values, U test is used.
Bold value indicates no statistical difference between the two methods under analysis
at 5% significance level. When the difference is significative, values are reported with
a 10−4 precision. p–values less than 10−4 are considered equal to zero. Symbol “–” is
used for those DoFs which are measured by both H∗d and the discrete part of H∗c,d .

In table 5 average absolute estimation errors with their corresponding standard de-
viations for each DoF are reported. For the estimated DoFs, performance with H∗c is
always better or not statistically different from the one referred to H∗c,d or H∗d . Only for
TM joint performance with H∗d is better than H∗c even if p–value is close to the signif-
icance level. Finally, no statistical difference is observed between H∗c,d and H∗d . Same
considerations still work for maximum estimation errors.

Conclusions we can drawn are that, even if the values for V1 (see figure 6) differ
not so much for the three cases, the continuous measurement matrix provides the best
pose reconstruction performance. Of course, the trade–off between performance, cost
and ease to design should be taken into account to determine whether and how well a
particular design suits a particular application.



8 Conclusions
In this paper, optimal design of sensing glove has been proposed on the basis of the
minimization of the a posteriori covariance matrix as it results from the estimation
procedure described in [Bianchi et al., 2012b]. Optimal solution are described for the
continuous, discrete and hybrid case.

In the continuous measurement matrix case, basically corresponding to distributed
sensing devices, optimal measures are individuated by principal components of the a
priori covariance matrix, thus suggesting the importance of postural synergies not only
for hand control.

The reconstruction performance obtained by combining the estimation technique
proposed in [Bianchi et al., 2012b] and the optimal design proposed in this paper is sig-
nificantly improved if compared with non–optimal measure case. Therefore, [Bianchi et al., 2012b]
and this paper provide a complete procedure to enhance the performance and for a more
effective development of sensorization systems for robotic hands and active touch sens-
ing systems. These techniques can be useful in a wide range of applications, ranging
from virtual reality to tele-robotics and rehabilitation. Moreover, by optimizing the
number and location of sensors the production costs can be further reduced without
loss of performance, thus increasing device diffusion.

Further work will be dedicated to the physical implementation of the here proposed
optimal designs as well as defining optimal calibration strategies.
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A Appendix
This appendix is devoted to the derivation of the gradient equation given in proposi-
tion 1.

Proof of Proposition 1 The Frobenius norm of a matrix A ∈ IRn×n is given as

‖A‖F =
√

tr(AT A) =

√
n

∑
i=1

σ2
i ,

and hence,
‖Po−PoHT (HPoHT +R)−1HPo‖2

F = tr(PT
p Pp) (19)



where Pp = Po − PoHT (HPoHT + R)−1HPo. To find the gradient flow, we need to
compute

∂ tr(PT
p Pp)

∂H
= tr

(
∂ (PT

p Pp)

∂H

)
= tr

(
∂PT

p

∂H
Pp +PT

p
∂Pp

∂H

)
=

= tr

(
∂PT

p

∂H
Pp

)
+ tr

(
PT

p
∂Pp

∂H

)
= 2tr

(
PT

p
∂Pp

∂H

)
, (20)

as ∂ (XY) = (∂X)Y+X(∂Y) and tr(AT ) = tr(A). Moreover, from differentiation rules
of expressions w.r.t. a matrix X, we have ∂X−1 =−X−1(∂X)X−1 and hence, assuming
Σ(H) = (HPoHT +R)−1, we obtain

∂Pp

∂H
=−Po

[
(∂H)T

Σ(H)H +HT
(

∂Σ(H)

∂H
H +Σ(H)∂ H

)]
Po =

=−Po
[
(∂H)T

Σ(H)H−HT (
Σ(H)

(
∂HPoHT+

+HPo(∂H)T )
Σ(H)H +Σ(H)∂H

)]
Po . (21)

Substituting (21) in (20) and by using a well note trace property (tr(A+B) = tr(A)+
tr(B)) we obtain

∂ tr(PT
p Pp)

∂H
= 2

[
− tr(PT

p Po(∂H)T
Σ(H)HPo)+ tr(PT

p PoHT
Σ(H)∂HPoHT

Σ(H)HPo)+

+ tr(PT
p PoHT

Σ(H)HPo(∂H)T
Σ(H)HPo)− tr(PT

p PoHT
Σ(H)∂HPo)

]
.

(22)

As tr(AB) = tr(BA), we obtain

∂ tr(PT
p Pp)

∂H
= 2

[
− tr((∂H)T

Σ(H)HPoPT
p Po)+ tr(PoHT
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(23)

and as tr(AT ) = tr(A) we have

∂ tr(PT
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= 2
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− tr(PT
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∂H)+ tr(PoHT

Σ(H)HPoPT
p PoHT

Σ(H)∂H)+

+ tr(PT
o HT

Σ(H)T HPT
o PpPT

o HT
Σ(H)T

∂H)− tr(PoPT
p PoHT

Σ(H)∂H)
]
,

(24)

whence,

∂ tr(PT
p Pp)
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= 2
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Matrices Pp, Po and Σ(H) are symmetric, and hence, for this particular case we obtain

∂ tr(PT
p Pp)

∂H
=−4

[
P2

p PoHT
Σ(H)

]T
, (26)

with Σ(H) = (HPoHT +R)−1.


