
Distributed Task-priority Based Control in Area
Coverage & Adaptive Sampling
T.Fabbri ∗†‡, E. Simetti∗§, G.Casalino∗§, L. Pallottino†‡, A. Caiti ∗†‡

∗Interuniversity Center of Integrated Systems for Marine Environment (ISME), Italy
†Dept. of Information Engineering, University of Pisa, Italy
‡ Research Center E. Piaggio, University of Pisa, Italy

§ Dept. Informatics, Bioengineering, Robotics and Systems Engineering, University of Genova, Italy
tommaso.fabbri@for.unipi.it

Abstract—The paper presents the first simulative results and
algorithmic developments of the task-priority based control
applied to a distributed sampling network in an area coverage
or adaptive sampling mission scenario. The proposed approach
allowing the fulfilment of a chain of tasks with decreasing priority
each of which directly related to both operability and safety
aspects of the entire mission. The task-priority control is pre-
sented both in the centralized and decentralized implementations
showing a comparison of performance. Finally simulations of
the area coverage mission scenario are provided showing the
effectiveness of the proposed approach.

I. INTRODUCTION

In the latest decades, the field of multi-robot system has
been object of a widespread research interest resulting in
several advantages in terms of safety, time and cost respect
to the development of a single autonomous system. In the
marine domain, tasks that were considered dangerous, expen-
sive and time consuming when performed by humans can
be brilliantly solved by a team of Autonomous Underwater
Vehicles (AUVs). High value asset defence, patrolling, ex-
ploration, mapping of the seabed represent few of the many
practical applications taking advantage of the deployment of
a distributed network of mobile sensors.

In this work we face the problem of adaptively governing
the motions of a team of AUVs which is employed for per-
forming a distributed sampling mission in order to evaluate an
estimate θ̂(x) of the oceanic field θ(x) over a predefined Area
Of Interest (AOI). In this kind of applications, the selection
of the new set of sampling points at each stage represent a
crucial task: each new set should be located within no yet
explored areas. To avoid useless oversampling the new set
should stay at a suitable distance from previous sampled points
and presenting at the same time a suitable sparse configuration
in order to maintain an a priori established measure of
quality within preassigned bounds. Furthermore, during the
motion towards the selected sampling set, the network nodes
have to maintain their connectivity while also maintaining all
distances among them above a minimal threshold, for avoiding
any risk of collisions within a team or possible obstacles.
Finally, the agents have to move to sample points in order
to incrementally cover the assigned AOI without the arising
of disjoint unexplored zones.

In the recent years, solutions in the field of ocean sampling
have been provided in different ways: in [1], [2], [3] mis-
sion requirements have been translated in suitable potential
functions appropriately combined for the field estimate task
or other kind of mission; in [4] the environmental sampling
mission has been faced through an adaptive planning approach
where the new sampling points are selected via a fuzzy-
like algorithm based on field measurements. Other solutions
have been provided through path planning as in [5] and
more recently, in [6] the authors have proposed a framework
following the sampling on-demanding paradigm.

The idea developed in this paper stems from the work
[7] defining the complex mission as chain of sub-tasks with
decreasing priority, with the objective in mind that the high
priority tasks can not be affected by low priority ones. In
the distributed systems, this idea has already been exten-
sively addressed (in the land domain) in [8], [9] through the
sub-optimal approach defined as Null-Space-based Behaviour
(NSB) where the use of a supervisor for the coordination of
tasks may lead to undesired discontinuities. In this paper to
control the distributed sampling network we propose the Task-
Priority based Control (TPC) integrating inequality control
objectives [10] able to overcome those limitations, maintaining
the structure of a prioritized control.

The paper is organized as follows. Section II describes the
task-priority framework applied to the distributed network of
AUVs focusing on the chain of tasks involved in the mission.
Section III briefly provides a description of the approach
followed to realize a decentralized control scheme. Section IV
presents the exploration policy developed as final as lower
priority task in the framework. Simulations comparing the
centralized and decentralized control scheme and a complete
area coverage mission are presented in Section V. Finally,
Section VI concludes the paper with final considerations and
indications about the future work to be developed.

II. THE TASK-PRIORITY FRAMEWORK

The task priority based control is a formalism allowing the
design of complex control laws able to exploit the kinematic
redundancies in robotic systems [10]. Redundant degrees of
freedom can be exploited for the fulfilment of a number of
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Fig. 1: Distance vector among two nodes composed of two
components in the planar scenario.

functional constraints which give dexterity and versatility to
the robot in terms of interaction with the environment. The task
priority based control enables the execution of the low priority
tasks without affecting the execution of the high priority ones.
In this paper, the task priority based control is applied to a
distributed network of moving agents which can be assimilated
to a robotic kinematic chain (even if of a very particular
nature).

In this implementation the task priority based control
integrates inequality control objectives and task transitions
as described in [7], [10]. As mentioned the robotic system
considered is a network of moving agents like AUVs. During
the motion of the team, the agents are required to maintain
their connectivity while also maintaining security distances
among them for avoiding the risk of collisions within the
team and finally moving towards the specified preferential
exploration direction.

A. The Robotic System

The network of moving agents represents the particular
kinematic chain involved in this paper. The network topology
is described by a graph G = (V,E) composed by a finite set of
nodes V (the agents) and a set of edges E ⊂ V ×V connecting
the pairs of nodes. The agents set V = x1, x2, . . . , xn has
N = |V | elements, while the edge set E = e1, e2, . . . , em
has M = |E| elements which may vary along the mission.
The graph edges are to be interpreted as a flow informa-
tion between the agents of the corresponding edge. In this
context we consider an undirected graph due to bidirectional
communication among the agents. Each agent xi is described
by its planar configuration

[
xix , xiy

]T
i = 1, 2 . . . N . Each

edge ej ∈ E j = 1, 2 . . .M is described by a vector
sij =

[
sijx sijy

]T
which directly connect i and j 6= i within

G. The module σij of vector sij represent the distance between
the nodes of the network. The quantities defined above are
depicted in Figure 1 for the planar dimensional case. The
dynamic evolution of the robotic system analysed in this paper
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Fig. 2: Example of network composed of 4 nodes connected
through 3 edges.

is defined by
σ̇ij = JijẊ (1)

where Jij maps the velocities of each node Ẋ = col(ẋi, i =
0, 1, . . . , N) (for the planar case Ẋ ∈ RN×2) into time
variation of relative distances among the linked nodes (or time
evolution of the length of each edge) . The Equation (1) can
be rewritten in a vectorial form as follows in Equation (2):

σ̇ij =


0 . . . 0

ith︷︸︸︷
sTij
σij

0 . . . 0

jth︷ ︸︸ ︷
−
sTij
σij

0 . . . 0


︸ ︷︷ ︸

Jij



ẋ1
...
ẋi
...
ẋj
...
ẋN




Ẋ

(2)
The Equation (2) is valid for each edge (i, j) ∈ E obtaining
the following compact representation:

Σ̇ = JẊ (3)

where Σ̇ collects the variation rates of the relative distances
σij ∀(i, j) ∈ E and J is the Jacobian of the network of
agents system considered. This Jacobian is characterized by
high sparsity, and the singularities of the matrix J happen
only when two agents are located in the same position. To
have a better view of the proposed description of the system,
we consider as an example a network of nodes composed of
4 agents connected through 3 edges as depicted in Figure 2.
The structure of Equation (3) for this example assumes the
following shape:σ̇12σ̇23

σ̇34

 =


sT
12

σ12
− sT

12

σ12
0 0

0
sT
23

σ23
− sT

23

σ23
0

0 0
sT
34

σ34
− sT

34

σ34



ẋ1
ẋ2
ẋ3
ẋ4

 (4)

The evolution of the relative distances among the connected
agents of sampling network are required as task variables
for the fulfilment of the connection-keeping and collision-
avoidance tasks, described in Section II-B and Section II-C. In



order to move the sampling network towards the preferential
exploration direction a new task variable has to be defined.
As described in Section IV, each set of linked nodes identifies
the preferential exploration direction through an unique point
within the AOI. Defined such point as p ∈ R2, the segment
”linking” the node xi with the associated point p is described
by the vector sip. The module σip of the vector sip represents
the distance between the node and the associated point. The
dynamic evolution of the distance σip is defined as follows

σ̇ip =
sTip
σip

ẋi (5)

The Equation (5) can be rewritten in a vectorial form as
follows:

σ̇ip =


0 . . . 0

ith︷︸︸︷
sTip
σip

0 . . . 0


︸ ︷︷ ︸

Jip


ẋ1
...
ẋi
...
ẋN




Ẋ (6)

Considering a connected graph, the relation defined in Equa-
tion (6) for the whole network considering an unique point p
associated to each node takes the following compact represen-
tation:

Σ̇p = JpẊ (7)

where Σ̇p collects all the relative velocities σ̇ip i =
1, 2, . . . , N , Jp is the new configuration-dependent task Ja-
cobian. 

σ̇1p
σ̇2p
σ̇3p
σ̇4p

 =



sT
1p

σ1p
0 0 0

0
sT
2p

σ2p
0 0

0 0
sT
3p

σ3p
0

0 0 0
sT
3p

σ4p



ẋ1
ẋ2
ẋ3
ẋ4

 (8)

It is worth noting that we have specified an unique p for
the whole sampling network in order to have a common
exploration direction; there could be scenarios in which the
definition of a different points pi i = 1, . . . , N each of
which associated to one agent is required. An example of such
application is presented in Section V.

B. Task I: Connection keeping
The first objective to be fulfilled is the connectivity-keeping

among the agents composing the network. To this end, the
following constraint is defined:

σij < dM (9)

where dM represents the maximum communication range. For
each connecting edge is associated a reference rate ˙̄σ1

ij capable
of driving the associated agents towards to the corresponding
objective. To satisfy the connection keeping among the agents
linked by an edge, the following feedback reference rate is
defined:

˙̄σ1
ij = γ1(d1 − σij) γ1 > 0 d1 < dM (10)

dM
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Fig. 3: Feedback activation function for the connection-
keeping task.

which represents a feedback law that, whenever directly ap-
plied would be capable to drive σij towards an arbitrarily
chosen value d1 inside the interval where the inequality
is satisfied. Based of the framework developed in [10] the
connection-keeping task can be enabled or disabled based
on the fulfilment of the Equation (9). More precisely an
active task is defined as the requirement of tracking at best
reference rate ˙̄σ1

ij in the current operational condition, while an
inactive task is trivially defined as the absence of any tracking
requirement of a reference rate ˙̄σ1

ij . Each feedback reference
rate (defined for all edges (i, j) ∈ E) is therefore associated
with a feedback activation function α1

ij(σij) of sigmoidal type
as depicted in Figure 3. At this stage the problem can be faced
as the evaluation at each time instant the set S1 of agents
velocities Ẋ minimizing the following:

S1 = {Ẋ = arg min
Ẋ

∑
(i,j)∈E

‖α1
ij( ˙̄σ1

ij − JijẊ)‖2} (11)

Keeping into account the definition of the feedback reference
rate ˙̄σ1

ij and the feedback activation function α1
ij , only the

agents not satisfying the Equation (9) are pushed toward
any arbitrary point inside communication range, while if
the task is inactive (i.e. α1

ij = 0) there is no need to to
track the requirement of the reference rate. At this stage, the
Equation (11) is re-expressed in a more compact form:

S1 = {Ẋ = arg min
Ẋ
‖A1( ˙̄Σ1 − JẊ)‖2} (12)

with: {
˙̄Σ1 = col( ˙̄σ1

ij) ∀(i, j) ∈ E
A1 = diag(α1

ij) ∀(i, j) ∈ E
(13)

The Equation (12) represent a modification of a well known
problem in robotic kinematic chains of finding the set of all
joint rates that realizes a given ˙̄x at the best in a least-square
sense as reported in Equation (14).

SQ̇ = {Q̇ = arg min
q̇
‖ ˙̄x− Jq̇‖2} (14)
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Fig. 4: Feedback activation function for the collision avoidance
task.

As matter of fact, the Equations (13) and (14) differs only
for the weight diagonal matrix A1. Then the solution set S1

follows in terms of the the manifold defined in Equation (15).

S1 = {Ẋ = Ẋ1 +N1ż1}


F1 = A1J

Ẋ1 = F#
1 (A1

˙̄Σ1)

N1 = (I − F#
1 F1)

(15)

With Ẋ1 corresponding to the minimal norm solution to which
any vector of the form N1ż1 ∀ż1 can be added without al-
tering the minimum value of the quadratic form. The operator
�#, appearing on the Equation (15) and in the following of
the paper, represents the regularized pseudo-inverse proposed
in [10] used to the end of managing with continuity the
algorithmic singularities that may happen when the value of
the various activation functions αnij decrease towards zero.

C. Task II: Collision avoidance

The second objective to be fulfilled is the collision avoid-
ance among the agents by forcing all the agents staying each
other above a given safety distance dm. To this end, we
consider the following control objective

σij > dm ∀(i, j) ∈ E (16)

We can proceed in a way strictly similar as before the task of
connection-keeping. In first stage we introduce a new feedback
reference rate as follows:

˙̄σ2
ij = γ2(d2 − σij) γ2 > 0 d2 > dm (17)

Together with a feedback activation function α2
ij(σij) of

sigmoidal type as show in Figure 4. Then by similarly pro-
ceeding as before, we define the following set of solution S1

conditioned by the fulfilment of the connection-keeping task.

S2 = {Ẋ = arg min
Ẋ∈S1

‖A2( ˙̄Σ2 − JẊ)‖2} (18)

with: {
˙̄Σ2 = col( ˙̄σ2

ij) ∀(i, j) ∈ E
A2 = diag(α2

ij) ∀(i, j) ∈ E
(19)

By solving explicitly the minimization problem, the condi-
tioned solution set S1 as linear manifold follows:

S2 = {χ̇ = χ̇2 +N2ż2}
F2 = A2J

F̂2 = F2N1

χ̇2 = (I −N1F̂
#
2 F2)χ̇1 +N1F̂

#
2 A2

˙̄Σ1

N2 = N1(I − F̂#
2 F2)

(20)

By construction S2 ⊆ S1, therefore Equation (20) guarantee
the achievement of the priority-one objective (connection-
keeping) meanwhile doing their best for also achieving the
secondary one (safety distance). The residual additional ar-
bitrary vector N2ż2 can be now used for forcing the agents
transfers toward the desired locations to perform a exploration,
or also a patrolling task.

D. Task III: Move towards the desired exploration direction

The third task to be accomplished by the sampling network
is to move towards the desired exploration direction. The
preferential direction for whole sampling network is identified
by an unique point p within the AOI. Thus, by assuming the
existence of such unique point p, it will be now sufficient to
consider formerly the set of reference feedback laws defined
in Equation (21):

˙̄σ3
ip = −γ3σip γ3 > 0 i = 1 . . . N (21)

Then proceeding as before, we get the following definition for
the associated set S3 of solutions:

S3 = {Ẋ = arg min
Ẋ∈S2

‖( ˙̄Σp − JpẊ)‖2} (22)

with:
˙̄Σ3 = col( ˙̄σ3

ip) i = 1, 2, . . . , N (23)

Through the same algebra as before now leads to the following
updated linear manifold:

S3 = {Ẋ = Ẋ3 +N3ż3}
F̂3 = JpN2

Ẋ3 = (I −N2F̂
#
3 F3)χ̇2 +N2F̂

#
3

˙̄Σp

N3 = N2(I − F̂#
3 F̂3)

(24)

The way the preferential exploration direction is selected is
actually independent from the way the Equation (24) is com-
puted, therefore this approach can be applied within different
contexts. Furthermore, the arbitrary vector N3z3 represents the
one to be used to accomplish other tasks e.g. force the nodes
to move away from previous sampling points.

III. DECENTRALIZED TASK-PRIORITY FRAMEWORK

The Task-priority framework recalled in Section II adopts
a centralized point of view, where at central level the new
reference velocities for each agent are computed based on the
complete knowledge of the state of each node composing the
network. In this centralized assumption arises the requirement



of an unsustainable full-duplex communication among the
nodes composing the network. In our previous work [7] to
overcome this limitation we proposed a preliminary planning
phase then followed by a open-loop execution phase with each
vehicle reacting independently from the others in the case of
local marine current which may drive the node far from its own
pre-planned trajectory or in worst cases towards obstacles or
other nodes.

An alternative solution (if any) would be that of trying to
exploit the sparsity exhibited by the various matrices involved
in the motion control part. Unfortunately enough, however,
such sparsity does not allow a direct downgrading toward a
decentralized solution. The demonstration of such statement
is out of the scope of this paper and will be provided along
future works.

The solution provided by this work consists on running
the task-priority framework locally on each node based on
the information available from its set of neighbours. In other
words, the task-priority is run on each of the N nodes com-
posing the network, each of which having a partial knowledge
of the entire network. Considering the example illustrated in
Figure 2, the task-priority is run on the 4 nodes, where the
node x1 sees the network composed by itself and its neighbour
x2; x2 sees a network composed of two edges linking with x1
and x3 and so on for the other agents x3 and x4. Simulations
provided Section V proves the effectiveness of the solution
proposed in different scenarios.

IV. EXPLORATION METHODOLOGY

The lowest-priority task described in Section II-D, defining
the control method to shift the sampling network towards the
preferential exploration direction, requires as input a point pt
within the AOI to which each agent will proceed. In a context
of area-coverage or environmental adaptive sampling the se-
lection of such point must belong to areas not yet explored or
characterized by high uncertainty requiring therefore a more
accurate sampling. Considering an environmental sampling
scenario, where to each sampling point is associated a circle
centred on the corresponding sample coordinates in which the
error field is below a predefined precision threshold, a method
for the selection of the point pt is described in our previous
work [7]: the board of each circle on which each agent is cen-
tred can be characterized by one more arcs that can be intended
as a ”door open” towards not yet explored areas. Therefore,
reporting the formulation provided in [7], the criteria to be
adopted for the selection of such doors for each agent consists
on selecting among all the perimetral points xL ∈ L of the
AOI such that the vectors (xL − xi) i = 1, . . . , N do not
intersect any of the circles associated to the previous sampling
points. Then, from the subset of the perimeter point sL̂, pt ∈ L̂
is the point characterized by the maximum distance from the
sampling network as stated in Equation (25) as follows:

pt = arg max
p∈L̂

[
min

i=1,...,N
||p− xi||

]
(25)

meaning that we must find the point of the perimeter L charac-
terized by the maximum distance from the sampling network
and from which the departing rays can light each each agent
xi without intersecting any of the previous sampling circles.
An example of the proposed exploration policy is depicted

x3
x1

x2

L̂

pt

Fig. 5: Example of the proposed methodology for the selec-
tion of the preferential exploration direction defined by the
perimetral point pt (selected from the subset of the perimetral
points L̂ depicted in red).

in Figure 5: the cloud of the previous sampling points (blue
dashed circles) makes the set L̂ includes the north perimetral
points (in red); pt is selected through the Equation (25)
defining therefore the preferential exploration direction for the
whole sampling network. During the exploration mission the
sampling network can reach a state in which the set of points
L̂ = ∅ e.g. the agents have reached a configuration close to the
perimeter with many of the previous sampling points closing
the way out from the current configuration. In such situation
the use of the proposed exploration policy has to be stopped
(Equation (25)) and switch to a forced block transfer of the
network towards zones that will allow to restart the designed
exploration policy. The forced block transfer can be translated
into a method of selection of the point pt allowing to maintain
unchanged the chain of tasks and provide only a new input to
the lower-priority task. Defined as Sp the set of all previous
sampling locations reached by the agents along the mission,
the new point pf is the location in the AOI whose distance
from any other measurement point is the largest as defined in
Equation (26).

pf = arg max
p∈AOI

[
min
x∈Sp

||p− x||
]

(26)

The new preferential exploration direction could force the sam-
pling network toward areas located beyond already sampled
ones requiring the crossing of them without collecting data, for
then restarting the policy previously defined in Equation (25)
Figure 6 presents an example of the case in which the set
of perimetral points L̂ is equal to the empty set: in such
situation the new preferential direction selected through the



Fig. 6: Example of the proposed methodology for the selec-
tion of the preferential exploration direction defined by the
perimetral point pf in the case the L̂ = ∅ .

Equation (26) drives the sampling network towards areas as far
away as possible from the previous sampling points (depicted
in blue dashed circles). During the motion may happen that
the sampling network crosses already sampled areas (without
collecting data on them).

V. SIMULATIVE RESULTS

The algorithm testing in simulative scenarios is now re-
ported. In this paper we do not focus on the reconstruction
of the an environmental field but on the performance analysis
of the algorithm in terms of fulfilment of the chain of tasks
defined. To make it easier the evaluation of the algorithm
performance, we consider that all the agents moves at constant
depth when transit from one sampling station to another,
and the data acquisition happens only when the agents have
reached the new sampling station. The sampling agents are
able to reach the maximum speed of 2.5 m/s and each vehicle
is equipped with acoustic modem allowing the communication
within the network if the distance between two agents is
less than dM = 100 m. In these simulations, no external
disturbances are present.

?? presents a comparison of the trajectories followed by
each agent to reach a desired spatial configuration defined
through a set of waypoint pi i = 1, . . . , N each of which
associated to a sampling agent; the distances among all agents
composing the sampling network and the velocity of each
agent, both in the centralized and decentralized task-priority
control. Even if the predefined sampling points assigned
to each agent (the black square markers in Figure 7a and
Figure 7d) are located at a distance greater than the maximum
communication range, the agents are able to reach a stable
configuration with the agents located on the frontier of the
communication range as illustrated with the dashed circles in
Figures 7a and 7d. Furthermore, both in the centralized and
the decentralized task-priority framework the agents moving

towards the preassigned sampling points respect the safety dis-
tance dm = 40 m. As specified in Section II, the task-priority
control always fulfil the highest-priority tasks (connection-
keeping and collision avoidance); one the other hand, the
lower priority tasks are executed only in the subspace where
they do not conflict with the ones at higher priority, as in
this example where reaching the specified spatial configuration
represents the lower priority task. For this reason, considering
the particular scenario of ??, the frontier of the communica-
tion range of each agent represent the best trade off among
the possible solutions. The simulations shown in Figure 7
demonstrate the fulfilment of collision-avoidance task in both
the centralized and decentralized task-priority control when
the required spatial configuration is composed of sampling
points located at a distance lower than the safety distance
dm = 40 m (shown through the dashed circles). Even in
the decentralized configuration, where the task-priority control
is executed locally on each agent based on the information
gathered from the set of neighbours, the agents are able to
fulfil the chain of tasks defined.

As shown in these simulations, the control strategy proposed
is able to fulfil the chain of tasks defined. In the previous sim-
ulations we have considered a set of waypoint pi i = 1, . . . , N
each of which associated to an agent to prove the fulfilment
of the two high-priority tasks: the connection-keeping and
collision avoidance tasks. Furthermore, the centralized and
decentralized approaches do not present too much differences
in the provided simulations, suggesting a more deeper analysis
of the structure of the control approach. By now, focusing on
the area coverage or environmental sampling mission scenario,
to make easier the evaluation of the proposed exploration
methodology we consider a sampling radius constant along
the mission and the availability of a designed centre of the
network able to compute the preferential exploration direction
based on the data collected by the sampling network.

Figure 8 shows a sequence of snapshots at different time-
stamp of the trajectories followed by a sampling network
composed of three agents during the exploration over a circular
area of 250 m of radius. The perimetral markers indicates the
preferential exploration directions: black when the point pt
is selected through Equation (25); red when the set L̂ = ∅
and the Equation (26) is used. Furthermore, the solid line
style represents the intervals in which the sampling network
travels towards the black markers and the dashed line style
represents the intervals in which the network travels towards
red markers. Finally, the triangle and circle markers represent
the starting and end positions respectively for the considered
snapshot. As can be seen from the series of mission snapshots,
the sampling network moves through the selected ”corridor”
towards the estimated point pt until it reaches a state where the
set L̂ = ∅ as depicted in Figure 8a: the sampling network has
reached a configuration close to the perimeter (south band of
the area), and the exploration policy depicted in Figure 5 has to
be stopped. At this stage, the forced block transfer is executed,
moving the sampling network towards the red marker on the
north side of the area identified through the Equation (26).
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(b) Distanza relative dei nodi della rete
di campionamento nell’approccio central-
izzato.
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(c) Velocità dei nodi della rete di campi-
onamento nell’approccio centrallizzato.
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(d) Traiettorie dei nodi della rete di campi-
onamento nell’approccio decentralizzato.
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(e) Distanza relative dei nodi della rete di
campionamento nell’approccio decentral-
izzato.
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(f) Velocità dei nodi della rete di campi-
onamento nell’approccio decentrallizzato.

During the shift towards the new preferential direction of
exploration, the sampling network is forced towards areas
located beyond already sampled ones requiring the crossing
of them without collecting data; this behaviour is depicted
with dashed line style in Figure 8. During the whole mission
the network of agents is able to cover almost the whole area,
leaving some spots not covered. Analysis of the mission time
required for covering the whole area represent topic of future
works.

VI. CONCLUSIONS

This paper has presented the first simulative results of the
task-priority based control applied to distributed sampling
network involved in an area coverage or adaptive sampling
mission scenario. Simulations demonstrate that the definition
of a chain of tasks and their linked priorities allow the
fulfilment of the mission guaranteeing operability and safety
aspects of the entire sampling system, both from a centralized
and decentralized point of view. Future works will be focus
on a deeper formalization of the decentralized approach which
will be validated by relevant simulations activities modelling
constraints characterizing the underwater environment (e.g.
communication frequency . . . ).
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(a) Traiettorie dei nodi della rete di cam-
pionamento nell’approccio centralizzato.
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(b) Distanza relative dei nodi della rete
di campionamento nell’approccio central-
izzato.
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(c) Velocità dei nodi della rete di campi-
onamento nell’approccio centrallizzato.
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(d) Traiettorie dei nodi della rete di campi-
onamento nell’approccio decentralizzato.
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(e) Distanza relative dei nodi della rete di
campionamento nell’approccio decentral-
izzato.
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(f) Velocità dei nodi della rete di campi-
onamento nell’approccio decentrallizzato.

Fig. 7: Simulations of the centralized (Figures 7a to 7c) and decentralized (Figures 7d to 7f) task-priority control where the
sampling network is required to reach a predefined spatial configuration shown through black square markers. Along the
simulation the agents are able to maintain the safety limit above the dm = 40 m even if the desired sampling point are placed
at distance less than the safety limit.
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Fig. 8: Simulation of the exploration task over a circular area with radius of 250 meters depicted through different snapshots at
different time-stamp. The black perimetral markers indicate the points pt selected through the Equation (25), the red markers
indicates the points pf selected through the Equation (26). The dashed line style represents the intervals in which the sampling
network travels towards the red markers, the solid line style represents the intervals in which the network travels towards black
markers.


