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S
oft robots (SRs) represent one of the most 
significant recent evolutions in robotics. 
Designed to embody safe and natural behaviors, 
they rely on compliant physical structures 
purposefully designed to embody desirable and 

sometimes variable impedance characteristics. This article 
discusses the problem of controlling SRs. We start by 
observing that most of the standard methods of robotic 
control—e.g., high-gain robust control, feedback 
linearization, backstepping, and active impedance 
control—effectively fight against or even completely 
cancel the physical dynamics of the system, replacing 
them with a desired model. This defeats the purpose of 
introducing physical compliance. After all, what is the 
point of building soft actuators if we then make them stiff 
by control?

An alternative to such approaches can be conceived by 
observing humans, who can obtain good motion accuracy 
and repeatability while maintaining the intrinsic softness of 
their bodies. In this article, we show that an anticipative 
model of human motor control, using a feedforward action 
combined with low-gain feedback, can be used to achieve 
human-like behavior. We present an implementation of such 
an idea that uses iterative learning control. Finally, we present 
the experimental results of the application of such learned 
anticipative control to a physically compliant robot. The con-
trol application achieves the desired behavior much better 
than a classical feedback controller used for comparison. 

Quest for Good SR Performance
The term SR refers to a robotic system that exhibits compliant 
interactions with the external world. SRs are often designed to 
embody natural behaviors, such as smooth movements, ener-
gy efficiency, resilience, and safety. Often, the design of an SR 
is inspired by natural human or animal models. The 
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 development of this new generation of robots explicitly tar-
gets two main problems: 1) guaranteeing optimized perfor-
mance and increased effectiveness in the accomplishment of 
tasks, e.g., very dynamic tasks, and 2) enabling a safe interac-
tion with the environment and with coexisting humans. The 
formal framework for the solution of the latter problem was 
notoriously established by Hogan in [15]. To achieve these 
goals, it is crucial that the robot exhibit a high degree of com-
pliance, elasticity, and damping—i.e., a suitable mechanical 
impedance. This can be achieved actively, e.g., through torque 
control at the joint level, or passively, i.e., via the physical char-
acteristics of the robot’s component materials. The latter 
approach has attracted growing attention in recent years for a 
number of advantages it offers. Examples are serial elastic 
actuators (SEAs) [34] and variable-stiffness actuators (VSAs) 
[40]. Another large class of SRs comprises those that incorpo-
rate continuously deformable mechanical structures, such as 
trunks or tentacles (for an extensive review of these systems, 
see, e.g., [22]).

From a control point of view, much effort has been 
devoted to developing SR control strategies to guarantee 
optimized performance. For instance, in [1] a numerical 
framework for simultaneous optimization of torque and 
stiffness incorporating real-world constraints is proposed. 
In [11], the problem of optimizing motion and stiffness to 
maximize the impact of a VSA-actuated hammer is analyti-
cally addressed and experimentally demonstrated. As previ-
ously mentioned, physically compliant elements are 
deliberately introduced in SR designs to achieve desirable 
behaviors. This approach can often be regarded as so-called 
intelligence embodying in robots’ physical structure. Alter-
natively, it can be described as providing a degree of mor-
phological computation [33].

When it comes to compliant control systems, however, it 
turns out that achieving performance is not at all easier. This 
fact is intuitive for such measures of performance as posi-
tional accuracy, which is the reason industrial robots have 
traditionally been built for maximum rigidity. It is also true 
for other tasks, however, including conventional force con-
trol, as illustrated with great simplicity by the classic results 
in, e.g., [9]. To achieve acceptable SR performance, 
approaches involving higher control authority (e.g., high-
gain robust control) and/or more sophisticated control tech-
niques (such as feedback linearization, backstepping, and 
active impedance control) could be used. However, in this 
article we show how these approaches deeply affect the 
behavior of the robot, replacing their natural dynamics with 
a different desired model that makes them stiffer. 

An Elementary Example
Consider one of the simplest soft mechanisms, consisting of 
an elastic element connecting a link of mass m to an actuator 
(Figure 1). Assume for simplicity that the actuator is accu-
rately controlled, so that its reference position i  can be 
assumed to be the actual input to the series elastic connection. 
The dynamic model for the link motion q(t) is thus simply

 ,mq q kq k distb i x+ + = +p o  (1)

where b  and k  are the physical damping and stiffness of the 
elastic element, respectively, while the force distx  represents 
nonmodeled dynamics and external disturbances. To com-
pensate for distx  and regulate the link position q, a basic con-
trol law is ,K q K qp di =- - o  from which directly comes the 
closed-loop dynamics 

 ( ) ( ) .mq k K q k K q1 1d p distb
b

x+ + + + =p o  (2)

As is to be expected from elementary control consider-
ations, the performance of this regulator for promptness 
and disturbance rejection (both at steady state and in H3  
norm) monotonically increases with gain K p  (Figure 2). 
However, from (2), it is also clear that with this feedback 
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Figure 1. An elementary model of an SEA used to illustrate how 
feedback alters designed softness. In an open loop, the interface 
with the environment has the same stiffness k as the physical 
spring. Closed-loop control with proportional feedback action 

,KP  however, is tantamount to introducing a second spring of 
stiffness kKP  in parallel.
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Figure 2. With the growth of the proportional feedback 
action ,KP  the controlled SEA system improves its regulation 
performance but also increases its stiffness and energy transfer. 
Data are obtained with m = 1 kg, , ,Ns m N mk1 1b = =^ ^h h  
and .K 0 sd =
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action the natural stiffness and damping are amplified by 
factors K1 p+  and ,/k K1 db+  respectively (compare Fig-
ure 2). In other words, regulation (and tracking) perfor-
mance is obtained in feedback at the price of stiffening the 
SR. In the following section, we generalize the idea 
illustrated in this elementary example for a nonlinear 
mechanical system, controlled through a generic nonlinear 
controller.

Feedback Control of SRs
Here, we consider the effect of a generic feedback control 
action on the stiffness of an SR. We first consider algebraic 
state feedback methods, which include, e.g., proportional-
derivative control, linear quadratic regulator (LQR), comput-
ed torque, active impedance control, feedback linearization, 
and Lyapunov control. For a general overview of the applica-
tion to robots of many of these control methods, refer to [36]. 
Applications of these techniques to SRs are discussed in, e.g., 
[32] and [38].

It is intuitively clear that many of these control techniques 
strongly modify the mechanical stiffness, since most of them 
operate a cancellation of the system dynamics. However, we 
provide a more detailed analytic argument. Consider a gener-
ic Lagrangian mechanical system, with the simplifying 
assumptions that the motor dynamics are negligible and that 
the spring characteristics depend on the deflection (i.e., the 
difference between the actual position q and the reference 
position i) and possibly on an additional parameter, denoted 
here as ,v  to represent, e.g., the command used in VSAs to set 
joint stiffness.

Let ( , )T q i v-  denote the vector collecting the torques 
due to compliant elements at different joints. Considering that 
stiffness, in a general nonlinear elastic system, can be defined 
only locally, we take stiffness to be the derivative of torque 
with regard to the Lagrangian variables, i.e., / .T q2 2  To for-
malize the idea of minimizing the physical compliance altera-
tion is to require that the stiffness value in closed loop 
remains in a d-neighborhood of the value in the open loop all 
along the nominal system trajectories, i.e., when the deflec-
tion is null ,q i=  as follows: 

( , ) ( ( , , , , ), )
,q

T q
q

T q q q t r
q

q q2

2

2

2
#

i v } v v
d
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-
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where ( , , , , )q q t r} vo  is a generic algebraic controller, qr  is a 
fixed point of }  (i.e., ( )q q} =r r ), and the matrix 2-norm is 
used. Note that the considered control can comprehend, 
e.g., any combination of feedback (thanks to the ,q qo  
dependence) and feedforward (thanks to the , ,t rv  depen-
dence). Notice also that the same holds for a more general a 
torque characteristic of type ( , ) ( ),T q r G qv- +  with G q^ h 
being a generic function of ,q  e.g., describing gravity effects 
on stiffness [16]. Furthermore, impedance can be consid-
ered instead of stiffness by adding the derivatives with 
regard to , .q qo p

The following sufficient condition to fulfill (3) can be 
derived as
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where ( / )q2 2}  is the proportional component of the control 
action, and ( / ( , ))T q 02 2 v  is the natural stiffness along system 
trajectories, playing the role of a normalization constant.

Inequality (4) means that, to preserve the natural softness 
characteristic, the proportional component of the feedback 
has to be sufficiently small, or even null if we request no stiff-
ness alteration ( ., ).0i.e d =

Condition (4) can be generalized to the class of nonlinear 
dynamical controller, considering a feedback action 

( , , , , , ),q q t r pi } v= o  where p is the state of the dynamic part, 
evolving according to ( , , , , , ) .p q q t r pvP=o o  Similar consider-
ations as those above yield the condition
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p

q
T 0

q q

1

2
2

2
2
2

2

2
2#

} }
d v+

/

-

r
 (5)

where dependence of }  and p  is omitted for the sake  
of readability. Therefore, the dynamic feedback of the 
Lagrangian variables q also alters the mechanical stiffness of  
the system.

To clarify the contribution of the term ,/p qi2 2  we refer to 
control systems with linear dynamics. It is worth noticing that 
such a class of controllers includes many typically used in 
robotic control practice, such as proportional integrative 
derivative controller, n-control, and nonlinear output track-
ing [28]. Since these controllers are integrable in closed form, 
the term can be expressed explicitly, obtaining

 ( ) ,q
p

e B q
u td( )

i

t A t

i02

2

2
2 x

= x-#  (6)

where A is the dynamic matrix of the control system, B is its 
input matrix, and [ , , , , ]u q q t rv= o  is the controller input.

Therefore, in the dynamic case, the resulting closed-loop 
stiffness becomes time varying. Note that ( ) /u qi2 2x  is a vec-
tor with all elements equal to zero, except for the one corre-
sponding to .qi  It follows that /p qi2 2  is the unitary step 
response of the control system.

To summarize, we have shown that there is a funda-
mental link between feedback gain, tracking perfor-
mance, and stiffness variation that applies to all feedback 
controllers.

Control with Limited Feedback
The results derived in the previous section illustrate that to 
obtain good tracking performance, feedback control imposes 
de facto a reduction in the compliance of the controlled 
mechanism. This contrasts with observations of human 
motor control. Indeed, the musculoskeletal structure of 
humans and most vertebrates is composed of considerably 
softer materials than most current robots. Humans do alter 
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the stiffness of their body parts through cocontraction of 
groups of antagonistic muscles. However, we use this sparing-
ly, mainly when we expect unpredictable external forces to 
disturb our equilibrium [25]. It has also been observed that 
humans use higher stiffness in the learning phases of a new 
motor task [30], while with training we reduce cocontraction 
to a bare minimum.

Another interesting fact is that humans are able to rapidly 
learn new motor control patterns in changing environmental 
conditions, requiring different stiffness settings. This has 
been elucidated in a series of important papers (see, e.g., [21], 
[23], and [24]) that have shown how subjects adapt their 
motor control scheme to counter disturbing forces within 
only a few trials.

The observations of human motor control summarized 
here have prompted a wide interest in models that explain 
how humans are able to achieve very good accuracy without 
sacrificing the natural softness of their musculoskeletal sys-
tem. A vast literature, reviewed, e.g., in [41], converges on the 
thesis that human motor performance is achieved through 
the interaction of two main components: one that is reactive 
and the other anticipatory. The reactive control component 
involves the use at different levels in the nervous  system of 
sensory inputs to update ongoing motor commands, which in 
control language can be referred as feedback action. The antic-
ipatory component exploits the ability to predict the conse-
quences of motor events, based on sensorimotor memory and 
internal models [21], to select in advance which motor com-
mand will lead to accomplishing a given task under the fore-
seeable conditions. The existence and roles of anticipatory 
and reactive control have been highlighted in many different 
motor control tasks, including grasping and manipulation 
([10], [18], [19], dynamic vision [13], ball catching [26], and 
locomotion [39].

In automatic control terminology, anticipatory and reac-
tive control components translate directly to feedforward and 
feedback actions, respectively. While traditionally more 
attention has been focused on feedback control, feedforward 
policies have also been studied, in particular in the field of 
optimal control. In recent years, the availability of computa-
tional power to rapidly recompute optimal feedforward plans 
in correspondence with sensed changes of state has enabled 
the application of model predictive control techniques [27]. 
The fundamental performance limitations of feedback con-
trol in the presence of noisy channels have been thoroughly 
studied in [29]. Feedforward control has become an impor-
tant tool to address problems in networked control with 
bandwidth limitations (compare [14]) and with packet-
switching induced delays [12] as well as in applications 
where sensing is difficult, as in micro- and nanoscale posi-
tioning (see, e.g., [6]).

In [3] and [4], Roger Brockett proposed an interesting 
formulation of an optimal control problem that attempts to 
model how to merge feedforward and feedback compo-
nents to achieve a minimum attention control (MAC). 
Indicating with ( , )u x t  the control function dependence 

from the current state x  and time ,t  an attention function is 
proposed as 

 ( ) ,x
u

t
u t x1 d d

0

2 2

Rn 2
2

2
2

h a a= - +
3##

with a  a relative weight of the feedforward component /u t2 2  
with respect to the feedback component / .u x2 2  To this for-
mulation, a boundary constraint that ( , )u x t  stabilizes the sys-
tem along the desired trajectory has to be added. A numerical 
solution of the MAC problem for a robotic ball-catching 
example is described in [17]. While the general MAC prob-
lem is very complex and a comprehensive solution has yet to 
be found, it does suggest a model of how a progressively bet-
ter learned feedforward/anticipative action can relieve the 
need of a strong feedback/reactive action to achieve fast and 
accurate movements.

Leveraging such insights to overcome the limitations 
described in the “Feedback Control of SRs” section, we 
consider control of SRs combining relatively mild feed-
back gains with a suitable feedforward action. According 
to the latter section’s results, specifically (4), the anticipa-
tory components of }  depend on , ,t rv  but not on ,q  so 
that / .q 0i i2 2 /}  Hence, feedforward control does not 
alter the natural robot softness.

Clearly, the usefulness of feedforward actions depends on the 
availability of a good model of the system, including the robot 
and its environment (see, e.g., [7]). Because such a model is rare-
ly available in practice, alternative techniques for developing 
good anticipatory control are needed. A natural approach that is 
viable in some applications is to proceed by trials, i.e., by succes-
sive approximations of increasing  quality—in other words, by 
learning the controller using  performance as a reward.

The machine-learning approach to feedforward design, 
which is attracting considerable attention in the literature 
(see, e.g., [35] for an extensive review), can be summarized  
as an attempt at reconstructing complete models of the 
robotic  system by collecting and regressing large amounts  
of data. A  somewhat different approach comes from the  
above-mentioned human observations. The human nervous 
system appears to be able to learn the feedforward action 
needed to control an unknown dynamic system along a tra-
jectory through several repetitions of the same tracking task 
[37].  Figure 3 represents a classical experiment in which the 
subject is asked to reach some points in the workspace. Then 
a force field is introduced. Initially, trajectories are strongly 
deformed by the field, but after repetitions of the same move-
ment, the performance obtained before the introduction of 
the force field can again be achieved.

In [8], Emken et al. present a model of this learning pro-
cess by repetition of the same action, derived from a statistical 
model of error evolution over iterations:

 ,f ei i i1
i i a= ++  (7)

where ,f a  are two constants, and : [ , )t t Ri
f

m
0 "i  and 

: [ , )e t t Ri
f

m
0 "  are the whole control action and error 
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 evolution, respectively, at the ith iteration. In this way, an 
input sequence is iteratively found such that the output of the 
system is as close as possible to a desired output. Iterative 
Learning Control [2] (ILC) permits embedding this rule in a 

general theory. ILC exploits the error evolution of the whole 
interval [ , )t t f0  of a previous iteration to update a feedfor-
ward command, according to the law

 ( ) ( ),Q R ei i i1
i i= ++  (8)

where the function ( )R ei  identifies the ILC algorithm, and 
( )Q i
i  is a function that maps the old control in the new one 

(typically a smoothing function). It is interesting to note that 
there is evidence (e.g., reported in [20]) that in humans feed-
back motor correction plays a crucial role in motor learning. 
Hence, a more general algorithm able to merge all these con-
tributions should be considered. Leveraging this observation, 
we can take advantage of the ILC literature rewriting the 
 control law (8), as in the so-called current-iteration ILC [2],

 ( ) ( , ),Q R e ei i i i1 1
i i= ++ +  (9)

where the presence of ei 1+  permits incorporating the feed-
back action in the same framework. In this manner, ILC can 
be used to design an appropriate algorithm that permits 
learning the feedforward action in a human-like manner.

To illustrate the application of the ILC framework to an 
SR, we use in the following a combination of current-state 
ILC and LQR feedback. The control law [of type (9)] is

 ( ) ,Q K e K ei i i i1 1
off oni i= + ++ +  (10)

where ,ei i
i  are the control action and the error at the i-th  

iteration. (·)Q  is a suitable average mean filter, and ,Koff  Kon

are two linear gains. Figure 4 shows the block diagram of the 
algorithm. For this control law, (4) becomes

 ( , ) .K q
T 0

1
on 2

2# d v
-

 (11)

Hence, it is always possible to choose Kon  such that (4) is sat-
isfied. Here Kon  is the result of an LQR and Koff  is such that 
the condition in [31] is fulfilled. Further technicalities con-
cerning the particular choice of ,Koff  Kon  will be discussed in 
future works.

Experimental Results
In the following, we report an experimental example that 
aims to show the concepts previously mentioned: 1) alteration 
of mechanical stiffness due to high-gain feedback and 2) the 
effectiveness of the control law (10) in stiffness conservation 
(i.e., in presenting an anticipatory behavior).

In this experiment, we used the setup in Figure 5. The 
experiments were performed using Qbmove Maker Pro 
[5] actuators as a test bed. These are modular, variable-
stiffness servos based on an agonist–antagonist mecha-
nism. Using this modular system, we built a VSA revolute 
revolute planar arm. First, we used a purely high-gain 
proportional integral integral (PII) feedback control to 
track the trajectory, while the natural stiffness was set to 
be low. Then we ran the ILC algorithm to teach the robot 

Figure 5. The experimental setup: a two-degrees of freedom 
(DoF) horizontal VSA arm built using Qbmove Maker Pro servo 
motors and a bar as an environmental constraint. 

An Unknown
Force Field Is

Imposed

Trajectory Repetition

Figure 3. A representation of a typical human motor-control 
experiment. A subject is able to reach a series of points in space 
with a hand (trajectories in the left box). When a force field is 
imposed, e.g., through a haptic interface, the trajectories are 
deformed (right box). After repeating the reaching trials many 
times, the subject is able to restore the initial behavior.

r
–

ei+1 θ i+1
Konei+1

θ ie i

Memory

Robot

Koffe
i + θ i

q i+1 q i+1.

Figure 4. A block scheme of the considered algorithm with 
the main quantities noted. The reference is r, q qandi i1 1+ +o  are 
the system state, and e eandi i 1+  are the tracking errors at the 
previous and the current iterations, respectively. The control 
inputs at the previous and the current iterations are , ,i i 1i i +  
respectively. The memory block stores the error and the control 
action from the previous iteration of the task.
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to follow the desired trajectory on the horizontal plane, 
with both low and high constant stiffness. 0

i  was chosen 
through the inversion of a simplified model of the SR. 
Finally, in all three cases, we placed a brass bar next to the 
robot in such a way that impact with it was unavoidable. 
The goal was to track the trajectory while maintaining the 
natural behavior of the robot in different configurations. 
I.e., we expected that the robot would push over the bar if 
the joints were stiff, and would gently comply with its 
presence if the joints were soft.

Figure 6 presents the integral of the 2-norm of the tracking 
error (normalized by the terminal time) at each iteration, in 
experiments without impacts. The accuracy of the pure high-
gain feedback control scheme on the soft configuration is also 
reported for comparison. The iterative learning law (10) is 
applied to the robot in its high and low physical stiffness con-
figurations. The results show an increasingly better tracking 
by the learning controller, with an accuracy of the SR that 
converges toward that achieved with the stiff robot, while 
both eventually overcome the accuracy of the high-gain feed-
back. Photographic sequences illustrating the execution of the 
final (150th) iteration of the ILC on the stiff robot, the ILC on 
the SR, and the high-gain PII on the SR are reported in  
(a)–(c) of Figures 7, 8, and 9, respectively.

Figures 7–9 (d)–(f) show the effect of an impact with 
the brass bar under the same  conditions. When the 
mechanical stiffness of the robot is set to high, the robot 
knocks the bar down [Figure 7(d)–(f )] as it continues on to 
track the reference trajectory, as expected. When the 
mechanical stiffness is low, but the high-gain PII control-
ler is used, the bar is also pushed over [Figure 8(d)–(f )]. 
However, as shown in Figure 9(d)–(f), the ILC controller 
makes it so that the robot preserves its natural compliance 
and has a very moderate impact with the bar. Figure 10 
provides a more precise description of these behaviors in 
terms of the actual trajectories followed by the first and 
second robot joints before and after the impact.

Finally, in Figures 11 and 12 we show the total amount 
of feedforward and feedback exerted by the algorithm to 
control the system. The relative weight of the total control 
attention is gradually shifted from the feedback to the feed-
forward components during the learning phase of the ILC 
scheme. The motivation for this behavior is twofold: on one 
side, the feedforward action, which is initialized with a low 
value, is progressively more authoritative. Perhaps more 
important, the feedback action is less and less needed over 
time, as the improving results of learning result in fewer 
and fewer errors to compensate for (as shown in Figure 6).

Conclusions
In this work, we discussed a fundamental contradiction in 
the feedback control of SRs, i.e., to obtain good accuracy 
high gain is needed, which in turn destroys the purposely 
introduced softness. If feedback control alone is applied to 
an SR, it may thus alter its natural behavior to something 
different that what was chosen in the design. We also 
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Figure 6. The time integral of the experimental error at each 
iteration, normalized by the terminal time. The results refer to 
the low- and high-stiffness cases with the ILC algorithm and to 
the soft case with the PII. FB: feedback.

(a) (b) (c)

(d) (e) (f)

Figure 7. The evolution resulting from the application of the 
ILC algorithm with high stiffness: robot positions (without an 
obstacle) at (a) ,t 0 s=  (b) ,t 1 s=  and (c) ,t 2 s=  and (with 
an obstacle) at (d) ,t 0 s=  (e) ,t 1 s=  and (f) .t 2 s=  With an 
obstacle present, the robot drops the bar. 

(a) (b) (c)

(d) (e) (f)

Figure 8. The evolution resulting from the application of high 
gain feedback with low stiffness: robot positions (without an 
obstacle) at (a) ,t 0 s=  (b) ,t 1 s=  and (c) ,t 2 s=  and (with 
an obstacle) at (d) ,t 0 s=  (e) ,t 1 s=  and (f) .t 2 s=  With an 
obstacle present, the robot drops the bar, as in the stiff case.
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derived conditions to maintain such stiffness alteration 
under a given threshold. Then we discussed possible 
approaches to face the introduced problem. Leveraging the 
human example, we proposed using a suitable combina-
tion of low-gain feedback and feedforward, focusing on 
ILC. Finally, we discussed experiments to prove both the 
negative effects of high-gain feedback control and the 
effectiveness of ILC. Interestingly, a gradual shift of control 
authority from the feedback to the feedforward compo-
nent was observed.
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Figure 10. The trajectory followed by a two-DoF horizontal robot 
in the presence of an obstacle. Panel (a) and panel (b) show, 
respectively, the trajectories followed by the first and the second 
joint of the robot. The impact occurs at 0.94 s for the ILC case and 
at 1.12 s for the high-gain feedback case. For the high-stiffness 
configuration with the ILC algorithm (ILC Stiff in the legend), 
the robot drops the bar at 1.3 s and continues to follow the 
desired trajectory. For the low-stiffness configuration with high-
gain feedback action (FB Soft in the legend), the feedback alters 
the mechanical stiffness, and the robot acts again in a stiff way, 
dropping the bar. For the low-stiffness configuration with the 
ILC algorithm (ILC Soft in the legend), the robot maintains its 
mechanical behavior and adapts to the external environment.
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Figure 9. The evolution resulting from the application of the ILC 
algorithm with low stiffness: robot positions (without an obstacle) 
at (a) ,t 0 s=  (b) ,t 1s=  and (c) ,t 2 s=  and (with an obstacle) 
at (d) ,t 0 s=  (e) ,t 1s=  and (f) .t 2 s=  With an obstacle present, 
the robot adapts to the external environment (i.e., the mechanical 
stiffness is preserved by the proposed anticipatory control). 
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Figure 12. A 2-norm of the feedback actions exerted by the 
proposed controller at each iteration, normalized by the terminal 
time for low and high stiffness.
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Figure 11. A 2-norm of the feedforward (FF) actions exerted 
by the proposed controller at each iteration, normalized by the 
terminal time for low and high stiffness. rms: root-mean-square. 
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