
Towards Minimum-Information Adaptive Controllers for Robot Manipulators

Tobia Marcucci1,2, Cosimo Della Santina1, Marco Gabiccini1,2,3, and Antonio Bicchi1,2

Abstract— The aim of this paper is to move a step in the
direction of determining the minimum amount of information
needed to control a robot manipulator within the framework
of adaptive control. Recent innovations in the state of the art
show how global asymptotic trajectory tracking can be achieved
despite the presence of uncertainties in the kinematic and dy-
namic models of the robot. However, a clear distinction between
which parameters can be included among the uncertainties,
and which parameters can not, has not been drawn yet. Since
most of the adaptive control algorithms are built on linearly
parameterized models, we propose to reformulate the problem
as finding a procedure to determine whether and how a given
dynamical system can be linearly parameterized with respect
to a specific set of parameters.

Within this framework, we show how the trajectory tracking
problem of a manipulator can be accomplished with the only
knowledge of the number of joints of the manipulator. As
an illustrative example, we present the end-effector trajectory
tracking control of a robot initialized with the kinematic model
of a different robot.

I. INTRODUCTION

Originally, adaptive control had been applied to robotic
manipulators in order to cope with dynamic uncertainties
that appears linearly in the equations of motion [1], [2],
[3]. To this classical problem, adaptive control provided
a strong response guaranteeing global asymptotic stability
of the controlled system, regardless the magnitude of the
uncertainties. More recently, several solutions have been
proposed to the task-space trajectory tracking problem with
linearly parameterizable dynamic and kinematic uncertainties
[4], [5] and readily improved to take into account further
uncertainties, such as actuator dynamics [6]. Also in these
cases, global asymptotic stability has been guaranteed. Moti-
vated by these results, we ask ourselves what are the limits of
these controllers and how far they can be pushed or, in other
words, what is the minimum amount of information needed
to design an adaptive controller for a robot manipulator.

As in the case of robotics, the great majority of adaptive
control theory has been developed for plant models in which
the unknowns parameters appear linearly [7], [8]. In light
of this, we found reasonable to reformulate the problem
as finding a procedure to determine whether and how a
given dynamical system can be linearly parameterized, i.e.
described by a model that consists in the product of a
regressor matrix, function of the state variables and the

1Research Center “Enrico Piaggio”, University of Pisa, Largo Lucio
Lazzarino 1, 56122 Pisa, Italy.

2Department of Advanced Robotics, Istituto Italiano di Tecnologia, via
Morego 30, 16163 Genoa, Italy.

3Dipartimento di Ingegneria Civile e Industriale, University of Pisa,
Largo Lucio Lazzarino 1, 56122 Pisa, Italy.

Email: tobia.marcucci@ing.unipi.it.

q, e q̇

Fig. 1. The only information about the robot structure necessary for the
operation of the proposed controller is the number of joints.

known parameters, and a nonlinear vector function of the
unknown parameters.

The set of parameters with respect to which the dynamic
equations of a robot can be linearly parameterized is well
known [9]. Furthermore, many procedures tailored to derive
such linear models have been proposed [10], [11], [12].
Nonetheless, we were not able to find exhaustive discussions
for other kinds of uncertainties, e.g. kinematic ones. In fact,
when such parametrizations are needed (e.g. [4], [5]), linear
models are typically derived case-by-case. Moreover, in these
situations even the dynamic regressor can not be derived
through classical algorithms, since kinematic parameters
have to be factorized also at the dynamic level. All these
issues limit the applicability of these control algorithms
to small scale systems with small number of uncertain
parameters.

In this paper we derive sufficient conditions for the ex-
istence of a linear parametrization of a given system with
respect to a set of parameters. We also describe a general
purpose procedure that, given the algorithm used to compute
the model of the system, returns such parametrization. The
procedure leverages upon some basic properties of Linearly
Parameterizable (LP) functions, that we briefly introduce and
discuss. Starting from these ideas we develop a trajectory
tracking controller for serial manipulators completely inde-
pendent from the structure of the robot, by showing how
not only all the Denavit-Hartenberg (DH) parameters [9], but
also the joint types (i.e. Revolute (R) or Prismatic (P)) can be
linearly parameterized (see Figure 1). We consider here the
kinematic case, leaving the extension to the dynamic case to
future works. (Note that, from a theoretical point of view, the
dynamic extension directly derives from the here proposed

algorithm, and the adaptive controllers discussed above.)
The paper is organized as follows. In Section II LP

functions are introduced, whereas in Section III the proposed
procedure is described. In Section IV we apply this technique
to design a minimum-information controller for the kine-
matic trajectory tracking problem. After the presentation of
a toy example, the effectiveness of the algorithm is tested in
simulation on a fully-actuated manipulator with 3 Degrees of
Freedom (DoFs). In Section V conclusions and future works
are illustrated.

II. LINEARLY PARAMETRIZABLE FUNCTIONS

In this section we summarize and formalize some elemen-
tary concepts about LP functions that are at the core of the
algorithm presented in the following section.

Definition 1 (Linearly Parametrizable (LP) function). Let us
consider a scalar function f(x, p) : Rnx×Rnp → R. If there
exist two vector-valued functions fx(x) : Rnx → Rmf and
fp(p) : Rnp → Rmf such that

f(x, p) = f>x (x)fp(p), (1)

we say that f(x, p) is a LP function with factors fx(x),
fp(p).

In case f(x, p) ∈ Rnf is a vector function, we call it LP
if all of its elements fi(x, p), i = 1, . . . , nf are LP and (1)
is generalized as

f(x, p) = F>x (x)fp(p),

with Fx : Rnx → Rmf × Rnf . Starting from the factors
fi,x(x), fi,p(p) of fi(x, p), we can for example derive Fx(x)
and fp(p) as

Fx(x) =diag(f1,x(x), . . . , fnf ,x(x)),

fp(p) =f1,p(p)⊕ · · · ⊕ fnf ,p(p) =
nf⊕
i=1

fi,p(p),

where ⊕ denotes the vertical concatenation operator.
Some helpful closure properties of LP scalar functions [13]

can be formalized as follows, where the symbol ⊗ denotes
the Kronecker product and id(·) the identity operator.

Property 1 (Closure under sum of LP functions). Given two
LP functions g(x, p) and h(x, p), their sum

f(x, p) = g(x, p) + h(x, p)

is a LP function with factors

fx(x) = gx(x)⊕ hx(x), fp(p) = gp(p)⊕ hp(p).

Proof. The thesis follows immediately from he definition of
matrix product.

Property 2 (Closure under multiplication of LP functions).
Given two LP functions g(x, p) and h(x, p), their product

f(x, p) = g(x, p) · h(x, p)

is a LP function with factors

fx(x) = gx(x)⊗ hx(x), fp(p) = gp(p)⊗ hp(p).

Proof. By some manipulations we obtain

f(x, p) =

mg∑
i=1

gx,i(x)gp,i(p)(hx(x)
>hp(p))

=

mg∑
i=1

(gx,i(x)hx(x))
>(gp,i(p)hp(p))

=

(
mg⊕
i=1

gx,i(x)hx(x)

)>(mg⊕
i=1

gp,i(p)hp(p)

)
=(gx(x)⊗ hx(x))>(gp(p)⊗ hp(p)),

hence the thesis.

Property 3 (Closure under differentiation of LP functions).
Given a LP function h(x, p), its derivatives

f(x, p) = Dxi(h(x, p)), g(x, p) = Dpi(h(x, p))

are LP functions with factors

fx(x) = Dxi(hx(x)), fp(p) = id(hp(p)),

gx(x) = id(hx(x)), gp(p) = Dpi(hp(p)).

Proof. The thesis follows immediately from product rule of
derivatives.

The closure of LP vector functions with respect to matrix
sum, matrix multiplication, and matrix differentiation follows
immediately from Properties 1–3.

The practical meaning of LP functions is clear interpreting
x as the state vector of a dynamic system, p as the vector
gathering all the unknown coefficients, fx(x) as the linear
regressor and fp(p) as the parameter vector.

In this work, we limit our analysis to the operations
necessary to model mechanical systems, however following
conclusions are drawn considering generic operators. For this
reason, we define O as the set containing all the operators
with respect to which LP functions are closed.

III. LINEAR PARAMETRIZATION OF
ALGORITHMICALLY-COMPUTED FUNCTIONS

Given a generic function f(x, p), the factorization process
might be very demanding from a computational point of
view; moreover, in some cases, it is not even obvious to
determine whether a function f(x, p) is LP. In this section
we show how, for the special class of Algorithmically-
Computed Functions (ACFs) (defined below), these issues
can be addressed in an systematic manner.

A. Existence of a LP Model

Let us denote with F an algorithm that composes a set of
input functions gi(x, p) ∈ R, i = 1, . . . , ng , through a set of
operators opj : Rnj → R, j = 1, . . . , no, with nj arity of
the jth operator. We call the output function of the algorithm
ACF and we represent it as1

F(g1(x, p), . . . , gng (x, p); op1, . . . , opno).
1For a more formal representation of algorithms, the reader can refer to

[14].

TABLE I
OPERATORS AND INDUCED OPERATORS FROM PROPERTIES 1–3

Scalar function Regressor vector Parameter vector
operator (op) operator (opx) operator (opp)

+ ⊕ ⊕
· ⊗ ⊗

Dxi Dxi id
Dpi id Dpi

Property 4 (Sufficient condition for the existence of a linear
parametrization). A scalar function f(x, p) is LP if it is the
output of an algorithm F whose input functions gi(x, p) are
LP ∀i and whose operators opj ∈ O ∀j.

In all the situations where an algorithm is used to derive
the model of a system, Property 4 allows to determine if this
model can be factorized in a linear regressor and a vector of
parameters only by checking the inputs and the operators of
the algorithm.

B. Computation of a LP Model

Properties 1–3 show that, for each one of the three
operations analysed, there are two induced operators that can
be applied to the factors of the operand functions to obtain
the factors of the result (Table I summarizes these relations).

We generalize this concept by calling opx, opp the opera-
tors defined between regressor vectors and parameter vectors,
respectively, that are induced by the generic operator op ∈ O.
Furthermore, let us denote with Oind ⊆ O the set of all the
operators op that produce such induction. We have that, given
a set of operators op1, . . . , opno ∈ Oind, their composition
(op1 ◦ · · · ◦ opno) ∈ Oind induces the operators (op1x ◦
· · · ◦opnox) and (op1p ◦ · · · ◦opnop), defined between regressor
vectors and parameter vectors, respectively. On the basis of
on this observation, if Property 4 holds, the computation of
the factors fx(x) and fp(p) can be accomplished with the
procedure illustrated in Algorithm 1.

The following example demonstrates Algorithm 1 in case
of a very simple ACF.

Example 1. Consider the ACF

f(x, p) = Dxi(g(x, p) · h(x, p) + g(x, p)),

where g(x, p) = gx(x)
>gp(p) and h(x, p) = hx(x)

>hp(p).
From Properties 1–3, all the operators employed to compute
f(x, p) belong to Oind. Since both the input functions are
LP, from Property 4, we conclude that f(x, p) is LP. Thus
we can apply Algorithm 1 with the induced operators listed
in Table I, deriving

fx(x) =Dxi((gx(x)⊗ hx(x))⊕ gx(x)),
fp(p) =id((gp(p)⊗ hp(p))⊕ gp(p)).

From a practical view point, Algorithm 1 can be imple-
mented on a computer very easily: it is only necessary to
overload the operators of the original algorithm in accor-
dance with Table I, so that the operations they perform are
functions of the data type of the inputs.

Algorithm 1: Computation of LP Model
Result: fx(x), fp(p)
if Property 4 holds then

for j = 1, . . . , no do
if opj ∈ Oind then

compute opjx, opjp
else

procedure not applicable
end

end
for i = 1, . . . , ng do

compute gix(x), g
i
p(p)

end
return

fx(x) = F(g1x(x), . . . , gngx (x); op1x, . . . , op
no
x)

fp(p) = F(g1p(p), . . . , gngp (p); op1p, . . . , op
no
p)

else
procedure not applicable

end

IV. ADAPTIVE KINEMATIC CONTROLLER FOR
TRAJECTORY TRACKING

Starting from the general methodology proposed in the
previous section, we consider here the End-Effector (EE)
trajectory tracking problem for a robotic manipulator.

A. End-Effector Velocity as a LP Function

In this section we apply LP functions to show that the
linear and angular velocities of the EE of a robot manipulator,
as well as any other point of it, are LP with respect to a given
set of geometric parameters. Even if this property is widely
used in the context of adaptive control [4], [5], [6], we were
not able to find any proof of it. In addition, we show how,
assuming the robot joints to be either R or P, the EE velocity
is also LP with respect to each joint type.

The robot manipulator is assumed to be parameterized
with DH convention [9], with parameters di, ai, θi, αi,
i = 1, . . . , nq; the transformation matrix from the ith frame
to the (i− 1)th is then

Ai−1i =


cθi −sθicαi sθisαi aicθi
sθi cθicαi −cθisαi aisθi
0 sαi cαi di
0 0 0 1

 ∈ SE(3),

where SE(3) is the special Euclidean group of dimension 3.
Furthermore, we define a binary parameter useful to describe
in a unique form the transformations related to P and R joints

ri =

{
0 if the ith joint is P
1 if the ith joint is R

.

DH parameters can be now expressed as

θi = θ0,i + riqi, di = d0,i + qi − riqi,

where qi is the ith element of the generalized coordinate
vector q ∈ Rnq , whereas θ0,i and d0,i represent the joint
offsets for qi = 0.

Collecting in a vector p ∈ Rnp all the geometric param-
eters introduced so far, the EE position x(q, p) ∈ R3 and
the rotation matrix R(q, p) ∈ SO(3) of the EE (with SO(3)
denoting the special orthogonal group of dimension 3) can
be obtained as[

R(q, p) x(q, p)
01×3 1

]
=

nq∏
i=1

Ai−1i ,

where each Ai−1i has to be right-multiplied to the previous.
Up to this point, we can obtain the linear and angular
velocities of the EE as follows

ẋ(q, q̇, p) =Dq(x(q, p))q̇,

S(ω(q, q̇, p)) =

(
nq∑
i=1

Dqi(R(q, p))q̇i

)
R>(q, p),

where S(·) is the skew-symmetric operator. The linear
function of the joint velocities ξ(q, q̇, p) = ẋ(q, q̇, p) ⊕
ω(q, q̇, p) = J(q, p)q̇ is called twist of the EE, with J(q, p) ∈
R6×nq geometric Jacobian matrix.

Since LP functions are closed with respect to all the
operators employed to compute ξ(q, q̇, p) (namely: sum,
multiplication, and differentiation), in order to state that
ξ(q, q̇, p) is LP we only have to check that the elements
of Ai−1i are LP for all i. Taking, as an example, the term
Ai−1i,11, we have

Ai−1i,11 = cθ0,icriqi − sθ0,isriqi ,

from which it would seem that the parameter ri is not linearly
factorizable (since its product with qi is the argument of a
trigonometric function). Nonetheless, we can exploit the fact
that ri is a binary variable noticing that

ri ∈ {0, 1} ⇒

{
sriqi ≡ risqi
criqi ≡ 1− ri + ricqi

. (2)

A linear parametrization of Ai−1i,11 can be readily found as

Ai−1i,11 =
[
cqi sqi 1

]  ricθ0,i
−risθ0,i

cθ0,i(1− ri)

 .
This proves that Ai−1i,11 is LP. Analogous considerations can
be made for all the other elements of Ai−1i , proving that
ξ(q, q̇, p) is a linearly parameterizable as

ξ(q, q̇, p) = Y (q, q̇)π(p),

where Y (q, q̇) ∈ R6×nπ is a kinematic regressor matrix and
π(p) ∈ Rnπ is a nonlinear function of the parameters. The
computation of both Y (q, q̇) and π(p) is made very simple
by the overloading procedure illustrated in Section III.

Remark 1. Except for particular cases, the function π(p) is
a one-to-many map, so that original parameters p can not
be determined even when π(p) converges to its real value.

B. Adaptive Control Law

In this section we derive the trajectory tracking adaptive
controller we use in the simulations of Section IV-D. The
results drawn here can be seen as a kinematic version of the
controller presented in [4].

Let us denote with xd(t) the desired trajectory of the
EE and with π̂(t) the time-varying estimate of the constant
geometric parameters π. The position error of the EE (sup-
posed to be available as a feedback signal) and the parameter
estimation error are consequently defined as e = xd−x and
π̃ = π − π̂. We have

ė = ẋd − YPπ = ẋd − ĴP q̇ − YP π̃, (3)

where YP (q, q̇) is the block of the kinematic regressor
related to the linear velocity (position regressor) and, sim-
ilarly, ĴP (q, π̂) is the estimated position Jacobian, with
ĴP (q, π̂)q̇ = YP (q, q̇)π̂. Notice that the product YP π̃ repre-
sents the error in the estimation of the end effector velocity,
denoted as ˜̇x.

Let us consider the kinematic control law and the param-
eter update law

q̇(q, e, π̂, t) =Ĵ−1P (ẋd +Ke), (4)
˙̂π(q, e, π̂, t) =−QY >P e, (5)

where ĴP is assumed to be invertible, whereas K and Q are
symmetric positive definite gain matrices. Closing the loop
with (4), the error dynamics (3) becomes

ė =−Ke− YP π̃. (6)

From (6) and (5) it can be seen that e = ˜̇x = 0 is a
positively invariant set for the controlled system. To prove the
stability of this set, we consider the Lyapunov-like function
candidate

V =
1

2
e>e+

1

2
π̃>Q−1π̃. (7)

Differentiating twice (7) with respect to time along the
trajectories (4)–(5) we obtain

V̇ = −e>Ke, V̈ = 2e>K2e+ 2e>KYP π̃. (8)

We are now in the position to conclude for the stability of
the controlled system.

Theorem 1. Let us assume the approximated Jacobian
matrix ĴP to be invertible and the structure of the robot to
be such that the boundedness of x implies the boundedness
of ĴP , for a finite π̂. The control law (4) and the parameter
update law (5) for the kinematic model (3) and the parameter
dynamics (5) result in global asymptotic convergence of the
position error (i.e. limt→∞ e = 0).

Proof. Since V is lower bounded and V̇ ≤ 0, e and π̃ are
bounded vectors. Being xd a finite signal, x is bounded and,
by hypothesis, so is ĴP . It follows that Ĵ−1P is bounded and,
since ẋd is limited, from (4), so is q̇. We can now conclude
for the boundedness of YP and, from (8), of V̈ . Since V̈ is
finite and V̇ is uniformly continuous, Barabalat’s lemma can

be used to conclude that limt→∞ V̇ = 0 and the thesis with
it.

Remark 2. The convergence of the parameter estimation
error π̃ can not be guaranteed. The only conclusion that
can be drawn is that, in the set where e = 0, the error in
the estimation of the EE velocity ˜̇x = YP π̃ has to be equal
to zero.

C. Toy example

In order to clarify the behavior of the proposed controller,
we apply it to a toy example: a 2D single-joint robot that
tracks a desired position xd(t) = 0.5 cos(1 rad

s t) m in the
horizontal axis. The only unknown parameter is the joint
type r. In this trivial case, all the ingredients necessary to
synthesize the controller can be shown explicitly.

The horizontal position of the manipulator, exploiting (2),
is parameterized as

x = (1− r)(q + d0) + rd0cq

where d0 = 1 m is the length offset, whereas the angle
offset with respect to the horizontal axis is supposed to be
θ0 = 0 rad. Coherently with this parametrization, it results
that if r = 0 (P joint) we have x = d0+ q, whereas if r = 1
(R joint) we have x = d0cq .

Computing the horizontal velocity of the EE, we derive

JP (q, r) = 1− r(1 + d0sq),

YP (q, q̇) =
[
q̇ −q̇(1 + d0sq)

]
,

with π =
[
1 r

]>
. Since the first entry in π is constant,

we estimate only its second component considering π̂ =[
1 r̂

]>
, with r̂ estimate of the joint type. The error in the

estimation of the EE velocity is ˜̇x = YP π̃ = −q̇(1+ d0sq)r̃,
with r̃ = r− r̂, which shows that, in this particular case, the
convergence of ˜̇x to zero implies the convergence of r̂ to r.

The control law (4) and the parameter update law (5) are

q̇(q, e, r̂, t) =
ẋd +Ke

1− r̂(1 + d0sq)
,

˙̂r(q, e, r̂, t) =Q
ẋd +Ke

1− r̂(1 + d0sq)
(1 + d0sq)e.

In Figure 2 we present the results of a simulation per-
formed supposing the real robot to have a revolute joint. The
estimate parameter r̂ is initialized at 0, pretending that the
controlled robot has a prismatic joint. Consistently, the initial
configuration is q(0) = −0.5 m, which is the configuration
such that the EE of the P robot is in the position xd(0). The
control gains are K = 0.1 and Q = 10. The tracking error
decreases to 0 in about 60 s, and the estimation of the joint
type converges in approximatively 40 s.

D. Simulation of a 3-DoF Manipulator

In this section we test the controller proposed in Sec-
tion IV-B on a much more challenging problem: a 3-DoF
3D fully-actuated robot with all the DH parameters and the
joint types unknown. The only information available is the
number of joints of the manipulator.

0 20 40 60 80
Time (s)

0

0.1

0.2

0.3

0.4

0.5

E
E

p
os

it
io

n
er

ro
r
(m

)

0 20 40 60 80
Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

E
st

im
at

ed
p
ar

am
et

er

Fig. 2. Position error of the end-effector and estimated parameter as
functions of time.

The EE is required to track the desired position xd(t) =[
0 1 0.5 + 0.05 sin(2 rad

s t)
]>

m. The application of Al-
gorithm 1 results in a kinematic model with nπ = 76.
The estimates π̂(t) of these parameters are initialized with
arbitrary values, in particular, the ones of a PRP manipulator
(Figure 3) with given link lengths and joint offsets (Table II).
The initial configuration, q(0) =

[
0.5 0 0.5

]>
rad, is

such that the EE of the PRP robot is in the position xd(0).
We choose the real robot to be a RRR manipulator (Figure 3)
with the DH parameters listed in Table II. The controller
gains are K = 6I3 and Q = 0.005Inπ .

Figure 4 shows the position error of the EE as a function
of time. Although the initial configuration is such that the EE
is in a completely wrong position, the desired trajectory is
reached in less then 10 s. Figure 5 shows the joint velocities,
and Figure 6 depicts the error in the estimation of the
velocity of the EE or, equivalently, the projection of the
parameter error through the regressor matrix. In conclusion,
Figure 7 represents the parameter estimation error (|π̃i|,
i = 1, . . . , nπ) at the initial time (i.e. the absolute value of
the difference between the parameters of the RRR maipulator
and the PRP one) and at t = 10 s. It can be noticed that the

Fig. 3. RRR manipulator (real robot) and PRP manipulator (initialization
of the kinematic model).

TABLE II
DH TABLES OF THE RRR MANIPULATOR AND THE PRP MANIPULATOR

RRR manipulator PRP manipulator
Joint d0,i ai θ0,i αi d0,i ai θ0,i αi
num. (m) (m) (rad) (rad) (m) (m) (rad) (rad)

1 1 0 π
2

π
2

0 0 0 0
2 0 1 0 0 0 0 0 −π

2
3 0 1 0 0 0.5 0 0 0

0 1 2 3 4 5 6 7 8 9 10
Time (s)

-2

-1.5

-1

-0.5

0

0.5

1
E
E

p
os

it
io

n
er

ro
r
(m

)

e1(t)
e2(t)
e3(t)

Fig. 4. Position error of the end-effector as a function of time.

0 1 2 3 4 5 6 7 8 9 10
Time (s)

-10

-5

0

5

10

15

20

J
oi

n
t
ve

lo
ci
ti
es

(r
ad

/s
)

_q1(t)
_q2(t)
_q3(t)

Fig. 5. Joint velocities as functions of time.

estimated parameters remains almost unchanged.

V. CONCLUSIONS AND FUTURE PROSPECTS

In this paper we analyzed the problem of determining the
minimum amount of information necessary to control a robot
manipulator within the framework of adaptive control. We
demonstrated that the kinematic trajectory tracking problem
can be accomplished only knowing the number of joints of
the manipulator, validating the algorithm in simulation on a
3-DoF robot.

The adaptive control law we propose is based on the
customarily-used Barbalat’s lemma; object of future works
is the exploitation of tools tailored for the stability analysis
of nonautonomous systems which may lead to stronger
conclusions under milder assumptions. We also aim to extend
this result to the dynamic control of manipulators and to
implement this technique on real robots.

REFERENCES

[1] J. J. Craig, P. Hsu, and S. S. Sastry, “Adaptive control of mechanical
manipulators,” The International Journal of Robotics Research, vol. 6,
no. 2, pp. 16–28, 1987.

[2] J.-J. E. Slotine and W. Li, “On the adaptive control of robot manip-
ulators,” The international journal of robotics research, vol. 6, no. 3,
pp. 49–59, 1987.

[3] R. Ortega and M. W. Spong, “Adaptive motion control of rigid robots:
A tutorial,” Automatica, vol. 25, no. 6, pp. 877–888, 1989.

[4] C.-C. Cheah, C. Liu, and J.-J. E. Slotine, “Approximate jacobian
adaptive control for robot manipulators,” in Proceedings of the
IEEE International Conference on Robotics and Automation, vol. 3,
pp. 3075–3080, IEEE, 2004.

0 1 2 3 4 5 6 7 8 9 10
Time (s)

-30

-20

-10

0

10

20

E
E

ve
lo

ci
ty

es
ti
m

at
io

n
er

ro
r
(m

/s
)

~_x1(t)
~_x2(t)
~_x3(t)

Fig. 6. Estimation error of the end-effector velocity as a function of time.

Fig. 7. Parameter estimation error at intial and final time of the simulation.

[5] D. Braganza, W. E. Dixon, D. M. Dawson, and B. Xian, “Tracking
control for robot manipulators with kinematic and dynamic uncer-
tainty,” in Proceedings of the 44th IEEE Conference on Decision and
Control, pp. 5293–5297, IEEE, 2005.

[6] C.-C. Cheah, C. Liu, and J.-J. E. Slotine, “Adaptive jacobian tracking
control of robots with uncertainties in kinematic, dynamic and actuator
models,” IEEE transactions on automatic control, vol. 51, no. 6,
pp. 1024–1029, 2006.

[7] K. J. Åström and B. Wittenmark, Adaptive control. Courier Corpora-
tion, 2013.

[8] M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic, Nonlinear and
adaptive control design. Wiley, 1995.

[9] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: mod-
elling, planning and control. Springer Science & Business Media,
2010.

[10] M. Gautier and W. Khalil, “Direct calculation of minimum set of
inertial parameters of serial robots,” IEEE Transactions on robotics
and Automation, vol. 6, no. 3, pp. 368–373, 1990.

[11] W.-S. Lu and Q.-H. Meng, “Regressor formulation of robot dynamics:
computation and applications,” IEEE transactions on robotics and
automation, vol. 9, no. 3, pp. 323–333, 1993.

[12] G. Garofalo, C. Ott, and A. Albu-Schäffer, “On the closed form
computation of the dynamic matrices and their differentiations,” in
2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 2364–2359, IEEE, 2013.

[13] M. Bridges, D. M. Dawson, and C. Abdallah, “Control of rigid-link,
flexible-joint robots: a survey of backstepping approaches,” Journal of
Robotic Systems, vol. 12, no. 3, pp. 199–216, 1995.

[14] J. C. Mitchell, Foundations for programming languages, vol. 1. MIT
press Cambridge, 1996.

	Introduction
	Linearly Parametrizable Functions
	Linear Parametrization of Algorithmically-Computed Functions
	Existence of a LP Model
	Computation of a LP Model

	Adaptive Kinematic Controller for Trajectory Tracking
	End-Effector Velocity as a LP Function
	Adaptive Control Law
	Toy example
	Simulation of a 3-DoF Manipulator

	Conclusions and Future Prospects
	References

