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Abstract— In this work, to guarantee the Pisa/IIT SoftHand’s
grasp robustness against slippage, three reflex control modes,
namely Current, Pose and Impedance, are implemented and
experimentally evaluated. Towards this objective, ThimbleSense
fingertip sensors are designed and integrated into the thumb
and middle fingers of the SoftHand for real-time detection and
control of the slippage. Current reflex regulates the restoring
grasp forces of the hand by modulating the motor’s current
profile according to an update law. Pose and Impedance reflex
modes instead replicate this behaviour by implementing an
impedance control scheme. The difference between the two
latter is that the stiffness gain in Impedance reflex mode is
being varied in addition to the hand pose, as a function of
the slippage on the fingertips. Experimental setup also includes
a seven degrees-of-freedom robotic arm to realize consistent
trajectories (e.g. lifting) among three control modes for the sake
of comparison. Different test objects are considered to evaluate
the efficacy of the proposed reflex modes in our experimental
setup. Results suggest that task-appropriate restoring forces
can be achieved using Impedance reflex due to its capability
in demonstrating instantaneous and rather smooth reflexive
behaviour during slippage. Preliminary experiments on five
healthy human subjects provide evidence on the similarity of the
control concepts exploited by the humans and the one realized
by the Impedance reflex, highlighting its potential in prosthetic
applications.

I. INTRODUCTION

The central nervous system of human steadily regulates
the grip forces exerted by the hand in order to avoid slippage
of the object out of the grasp with a safety margin of 10−
40% [1]. At the very beginning of the grasp, gripping force is
generated depending on the estimation of the load and altered
based on the feedback provided by the hand receptors. Such
behaviour is dominated by the spinal cord and recognized as
reflex control.

The most basic way to achieve a similar performance
in prosthetic or robotic hands is to exert high level grip
forces to prevent slippage of the grasped object. This method,
however, poses some difficulties while dealing with fragile
or deformable objects. As a consequence, toward the twofold
purpose of improving the grasp robustness against slippage
and avoiding the generation of unnecessarily high interaction
forces, some robotic/prosthetic hands replicate a human-like
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Fig. 1: a) ThimbleSense addon for the Pisa/IIT SoftHand, and b)
two ThimbleSenses attached to the thumb and middle fingers of the
Pisa/IIT SoftHand. The hand is mounted on the end-effector of the
KUKA lightweight robotic arm.

reflexive behaviour and regulate grip forces once a slippage
is detected [2], [3].

Slip detection has been realized with the aid of various
techniques, e.g. vibration, optical tracking, pressure, and
force vector control [4]–[8]. Based on the studies in neuro-
physiology, humans perceive slide of objects with the oc-
currence of firing activity generated in Pacinian corpuscles,
which are nerve endings in the skin, sensitive to high
frequency vibrations [9]. In the light of this information,
some researchers focused on the vibration based techniques
to prevent object slippage during the grasp. Cutkosky et
al. proposed a method for incipient slippage detection by
sensing vibrations generated by the spread of slip zone inside
the contact area while the tangential force increases [4]. A
couple of accelerometers were placed near and on top of
the contact region to detect vibrations due to the slippage
and noise, respectively. As a commercial example, BioTac
fingertip sensors that are capable of sensing force, vibration
and temperature, detect slippage by means of vibration.
Results of this study suggest that the high-frequency spectral
power from 30-200 Hz can be a reliable indicator of sliding
[10]. Even though vibration based techniques are commonly
used to warn the system for incipient slippage, they are not
very robust in the presence of disturbances; in particular,



unexpected changes during loading or manipulation phases,
may produce undesired vibrations that can compromise the
efficacy of the slip detection [4].

Optical sensing has also been employed in closed loop
control systems to regulate the grasping force of hand
prostheses by detecting the amount of object slippage. For
instance, authors in [5] utilized an optical tracking sensor
together with an i-Limb prosthetic hand [3]. Experimental
results showed the efficacy of the optical tracking sensor
while reducing the slippage of the cylindrical object under
different loading conditions. Due to its size, the sensor was
placed on the palm of the hand prosthesis; in such a system
the slip detection feature can only be used if the objects to
be grasp are big enough and therefore can be grasped by
the fingers while remaining in the visual field of the sensor.
Besides, it is known that such a system does not work well
for glossy and smooth surfaces.

Other avenues of research seek for appropriate reflexive
strategies once the slippage is detected. In particular, Mouri
et al. proposed a human-like reflexive control strategy while
grasping objects with unknown shapes. In this study, to
control the 16 DoF anthropomorphic hand, the grasp was
divided in two sub-phases: grasping and withholding. During
the grasping phase, the hand was controlled with a velocity
control if no contact was detected, and force control in the
presence of a contact. During the withholding phase, force
control was used and the Euclidean norm of the contact
point velocity was added to the desired contact force to
avoid slippage [11]. Authors in [12] use a prototype optical
three axis tactile sensor for the analysis and detection of the
normal and tangential forces in a two-finger robotic grasp.
The rigid fingers’ re-pushing velocity is controlled based on
the object’s classified stiffness to stabilize the grasp. In [2]
an underactuated and myoelectric (EMG) controlled hand
prosthesis equipped with the position and force sensors is
exploited to realize successful grasps for different weight
of objects with various grasp types (e.g. power and pinch
grasp). To achieve this, three different control strategies
based on the shared autonomy between the low-level and
high-level (user intention) control were proposed. Results
suggest that the incorporation of the human intention into
the control loop increases the success rate of the grasping
action. Alternatively, a research group [13] explored a useful
relation between the reflexive responses of humans in various
conditions and features of the measured EMG signals in
order to functionalize hand prostheses against unexpected
disturbances. The proposed technique, however, requires
feature extraction analysis and decision algorithm to detect
the grasp reflex time, which introduce more computational
load to the system.

In this work, as a primary step towards the accomplish-
ment of a reliable grasp in an underactuated anthropomorphic
robotic/prosthetic hand, different reflex control strategies
are implemented and experimentally evaluated. Given the
adaptive and synergy-driven hand functionalities, the design
of the hand reflex controller is inspired by the observations in
human grasping experiments described in section II. In our
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Fig. 2: Two ThimbeSenses are worn by the human while grasping
the test object. The tangential (blue, solid) and normal (red, dotted)
forces at the contact point of the thumb, and the summed EMG
values of the FDS and EDC muscles of a typical experiment for
two repetitions of a complete sequence (grasping, lifting and putting
down the experimental object) are illustrated in the top and bottom
plots, respectively.

setup (see Fig. 1), due to the limited space in the fingertip
area, small and lightweight tactile sensors were required for
real-time detection of the object slippage. To achieve this, a
force-torque sensor based tactile sensory system is designed
and integrated into the fingertips of the robotic hand for the
estimation of the tangential and normal forces and torques
at the corresponding point of contact.

II. BIOMECHANICAL CONTROL PRINCIPLES IN
GRASPING: A PRELIMINARY STUDY

Prior to the design of the robotic hand’s reflex controller,
a series of preliminary human grasping experiments were
carried out to understand the underlying biomechanical prin-
ciples that result in stable and reliable grasping of various
objects1. Such principles can potentially be a source of
inspiration to achieve an appropriate mechanical interface
between the fingertips of the robotic hand and the object.

In our setup, human subjects wore two ThimbleSense
tactile sensors on the index and thumb fingertips for real-time
measurements of the grasping forces during the experiments
(see Fig. 2). ThimbleSense [16] is a sensorized system
that provides full-fledged measurement of force (normal
and tangential at the contact point) and torque components,
together with the location of contacts, and can be placed on
fingertips for analysis of unconstrained grasping tasks. This
is obtained by assembling a Force/Torque sensor (ATI Nano

1It is worth mentioning that even though several research groups investi-
gated the feasibility of achieving a similar human-like grasping performance
in robotic hands, only few studies consider the contribution of the mecha-
nical impedance of the fingers in grasp robustness to disturbances such as
slippage (e.g. see [14], [15]).



17) between an inner and an outer shell separated by a gap.
Due to the rigid coupling between the sensor’s outer shell
and the human finger, meaningful information can still be
transmitted to the fingertip receptors.

Due to the known geometry of the external support, it is
possible to obtain the position of the contact centroid of the
loading force, through the intrinsic tactile sensing algorithm
defined by Bicchi et al. in [17]. More in general, given a
surface S with an outward normal defined everywhere, and a
distribution of compressive tractions applied on it, the contact
centroid is defined as a point c such that a wrench exists
and consists of a force directed into S applied to c and a
pure torque about the contact normal. The intrinsic tactile
sensing algorithm can be used to identify the contact centroid
on a general surface, as long as it can be represented by a
NURB (Non Uniform Rational B-Splines) parametrization:
an application was provided in the Tactile Toolbox [18].

An object (Fig. 4, most left), which is consisted of
three wooden blocks that are interconnected by strings, was
designed to emulate sudden grasp force variations induced by
the gravitational loading while lifting. Realization of a robust
and reliable grasp while picking such an object requires that
the grasping forces are appropriately regulated. In addition,
similar objects with different surface properties (Fig. 4, three
objects on the right) were taken into account to investigate
the role of surface texture (friction properties) in grasp force
modulations.

Five naive subjects participated in our experiments. Each
subject was asked to pick the object naturally and place
it back ten times, using only the thumb and index finger
to perform the grasp. To minimize the effect of learning,
objects were sorted in a random order. During the experimen-
ts, two surface electromyography (EMG) sensors collected
the muscle activities of a dominant finger flexor/extensor
antagonistic pair (FDS: Flexor Digitorum Superficialis and
EDC: Extensor Digitorum Communis). Corresponding EMG
signals were then processed (full rectified, filtered and
normalized) for further analysis.

Typical results of the experiment with the interconnected
three wooden blocks are illustrated in Fig 2. The tangential
(blue, solid) and normal (red, dotted) forces at the contact
point of the thumb, and the summed EMG values of the FDS
and EDC muscles for two repetitions of a complete sequence
(grasping, lifting and putting down the object) are illustrated
in the top and the bottom plots, respectively. As observed in
the plots, once a change in the gravitational loading of the
object is detected, the normal forces are effectively regulated
to achieve a reliable grasp2. Such interaction forces ensure
the task execution and its robustness against disturbances
(e.g. object slippage) that might be caused by sudden mass
variations.

2As expected, when lifting the three objects that had the same weight
and shape but different surface type, the normal force exerted was highly
correlated with the surface type; in particular, the highest normal forces
were exerted when lifting the object that had lowest surface friction and
vice versa. In accordance with [1], it was found that the safety margin in
the regulation of the normal forces was kept between 16% and 42%.
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Fig. 3: Example of tangential forces and summed EMG values of
the FDS and EDC muscles are plotted for the five subjects. These
values are recorded during the grasp of the interconnected wooden
blocks.

On the other hand, an increase in the FDS and EDC
EMG signal amplitudes can be observed in correspondence
of the lifting phase (see a similar trend for all subjects
in Fig. 3). It is well-known that the increased activity of
the antagonistic pair accounts for an increase in the grasp
stiffness. Since the limb stiffness and pose can be regulated
in a decoupled way in humans [19], simultaneous increase
of the interaction forces as a consequence to the stiffening of
the human fingers suggest that the virtual pose (equilibrium
position, which is not measurable) of the finger is moved into
the object. This is because, considering a simple and static
formulation of the fingertip impedance, i.e. Fn = kn∆xn, with
Fn, kn and ∆xn being the normal component of the fingertip
force, stiffness and displacement, if the error between the
virtual and the actual fingertip pose remains zero, Fn will
not increase regardless of the change in kn.

The above observations suggest that the implementation
of a similar principle in a robotic or prosthetic hand to
simultaneously and instantly regulate the virtual pose and
the rigidity (stiffness) of the grasp can lead to a human-
like grasping performance that ensures the grasp robustness
against disturbances such as slippage.

III. ROBOTIC IMPLEMENTATION

A. Experimental Setup

As previously mentioned, the main purpose of this study
is to implement an appropriate and instantaneous grasp force
regulation control law for the Pisa/IIT SoftHand [20] (Fig.
1. b). The goal of the SoftHand was to design and build
a robotic hand that is highly functional yet simple and
robust. This was achieved by combining the soft synergies
approach with underactuation. The former uses human hand
grasping synergies as a reference position for a virtual hand.
The virtual hand position or stiffness profile connecting the
virtual and real hands can thus be varied to control the



interaction forces between the hand and the environment.
The latter employs fewer actuators than available degrees of
freedom, thus lowering cost, weight, and complexity of the
device. Underactuation also imparts a degree of adaptability
to the hand, thus the combination of these techniques was
termed “adaptive synergies”. Additionally, to make the hand
more robust and safer in human-robot interaction scenarios,
the hand was designed with soft robotics principles in mind:
the fingers can be bent, twisted, struck, etc., and will deform
out of the way and then return to their original conformation,
protecting both the hand and the environment from damage
in the event of a collision. The SoftHand is anthropomorphic
and contains a single motor. This motor pulls a tendon that
winds through the fingers and thumb to simultaneously flex
and abduct the fingers. Several studies have been performed
to illustrate adaptive capabilities of the SoftHand together
with a teleimpedance controller for grasping various objects
with different elastic properties (e.g. see [21]). The hand unit
and power driver of the SoftHand is a custom control board
with the TivaTM TM4C123GH6PZ microcontroller (Texas
Instruments). Motor current measurement is performed by
a high side current sensing device (LT61081 by linear
technologies) and appropriate signal conditioning integrated
in the motor power driver module.

The setup incorporates a seven degrees-of-freedom KUKA
lightweight robot, with DLR’s Fast Research Interface. KU-
KA is programmed in Cartesian impedance control mode
with relatively stiff components (with 1.5k N

m translational
and 100 Nm

rad rotational) to avoid possible deviations from
the desired Cartesian trajectories due to the unknown gra-
vitational loading of the grasped objects. The SoftHand is
mounted on the end-effector of KUKA using a custom made
adaptor. Two ThimbleSense sensory units are integrated into
the middle and thumb fingertips of the SoftHand, using an
add-on on distal phalanxes to connect with the F/T sensor,
thus obtaining contact point, force and torque measurements
in the local finger reference frame (see Fig. 1). The placement
of the ThimbleSense on the two fingertips will most likely
provide the required data for the object slippage detection
and control due to the SoftHand’s grasping pattern. The
data acquisition and synchronization between KUKA, Sof-
tHand controllers and the ThimbleSense processing units are
developed in C++.

Predefined Cartesian position trajectories were designed
for the KUKA to move the SoftHand close to the target
objects (Approach) and lift them (Lift-off) to a height of
15 cm above the initial location. This consideration was
to produce consistent and repeatable Approach and Lift-off
trajectories while comparing different reflex control modes.
In some experiments, the KUKA robot was programmed
to move the SoftHand in such a way that a ThimbleSense
slides on the surface (along both translational and rotational
directions) to identify the corresponding friction coefficient,
prior to the Grasp (where the SoftHand’s current controller is
active, see section III-B) and Lift-off phases. Various objects
with different surface properties (see Fig. 4) were utilized
in our experiments to evaluate the grasp robustness against
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Fig. 4: Objects used in grasping experiments. Most left object emu-
lates unexpected mass variations by interconnecting three blocks of
wood using strings. The three objects on the right have different
friction properties while being similar in shape and weight.

slippage.

B. Control Architecture

Observations in human grasping experiments provide
enough evidence on the necessity for the implementation
of an instantaneous and appropriate grasp forces regulation
mechanism to obtain a similar reflex behaviour in a robo-
tic/prosthetic hand. A straightforward approach towards the
achievement of this goal is direct control of the grasping
forces by controlling the SoftHand’s motor current profile.
Alternatively, inspired by the human motor behaviour, inte-
raction forces can be modulated by stiffening the hand and/or
moving the virtual pose of the fingers into the object.

To explore the practical use of the above control concepts
in our experimental setup, three reflex control modes, na-
mely Current, Pose and Impedance are implemented and
experimentally evaluated. In all three control modes, the
grasping action (Grasp phase) is achieved by applying a feed-
forward term (IFF , see Fig. 5) to the current controller of the
SoftHand to move the hand fingers along the first human
hand synergy reference. The underlying adaptive synergy
concept of the SoftHand along with the implemented current
controller provide flexibility in the grasp pattern and facilitate
molding around the unknown object with a soft desired gra-
sping force. This also ensures the establishment of a reliable
contact between the ThimbleSenses’ outer shells and the
object’s surface for reliable measurements of the tangential
(Ft ) and normal (Fn) forces and torques (τ) at the point of
contact. This feature becomes even more advantageous when
the SoftHand fingertip is sliding on the object’s surface (Slide
phase) for the estimation of the friction coefficient.

1) Detection: The procedure for the estimation of the
static and dynamic values of the translational (µT ) and
rotational (µR ) friction coefficients between two surfaces is
long-recognized and fairly well-understood [8], [22]–[24].
As mentioned above, in our setup, this is achieved by sliding
a fingertip ThimbleSense on the surface of the object using
Cartesian KUKA trajectories. The peak values of ‖Ft‖

‖Fn‖ and
‖τ‖
‖Fn‖ within the first 600 milliseconds of the Slide phase
are detected and assumed as the object’s translational and
rotational friction coefficient, respectively.

Once the coefficients are known, the slippage detection
can be achieved by monitoring the fingertip ThimbleSenses’
data. For instance, in [25], a linear approximation of the
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Fig. 5: Block diagrams of the three reflex control modes: a) Current reflex control, and b) Pose (excluding the dashed line) and Impedance
(including the dashed line) reflex control. A feed-forward hand disturbance model is developed for enhanced tracking accuracy of the
hand impedance controller (both Pose and Impedance modes) in low values of the K gain.

relationship between the forces and torques in a non-slippery
contact is proposed as follows3

‖Ft‖
µTo

+
‖τ‖
µRo

≤ ‖Fn‖, (1)

with the index o referring to the static value of the friction
coefficient, and ‖.‖ denoting a vector norm. Accordingly,
we define a slippage measure index for the thumb (S1) and
middle (S3) fingers using acquired and processed fingertip
data

S1,3 =
‖Ft1,3‖

µTo

+
‖τ1,3‖

µRo

−‖Fn1,3‖. (2)

Positive values of either one of slippage measures (S1 or S3)
correspond to the occurrence of the slippage. If both values
are positive (or negative, when the grasp is firm), the worst
case measure Sw is considered in the update laws of the
implemented reflex control modes

Sw = max{S1,S3,0}. (3)

2) Control: First reflex control mode (Fig. 5. a) imple-
ments a current control loop and updates the desired current
as a function of the slippage measure index

∆Id = cF Sw, (4)

in addition to the feed-forward term, IFF , described above.
The coefficient cF is experimentally identified by taking into
account the desired reflex speed. The advantage of using such
an update law is that the reflex strength is regulated based
on the slippage condition which is reflected by the Sw.

On the other hand, Pose and Impedance reflex control
modes implement an impedance controller with an inner
current control loop (see Fig. 5. b). The stiffness gain (K)
in the Pose mode is considered a constant value while being
regulated in Impedance mode once the object slippage is

3For a more complete discussion on the consideration of the contact area
in rotational friction refer to [8].

detected. In both modes, to enable a precise and accurate
tracking of the hand trajectories in low values of the K
gain, a feed-forward disturbance model of the hand is defined
and experimentally identified. To achieve this, we write the
equation of motor dynamics4

Jnq̈ = KtnIre f − τDM, (5)

with q̈, Ktn, and Ire f denoting the motor angular acceleration,
torque constant, and motor current, respectively. Jn = Jm +
Jh
N2 represents the total inertia (motor inertia plus hand and
fingertip sensors’ inertia reflected to the motor side).

In our setup, due to the low velocity profiles of the hand
closure and the relatively high gear ratio, the reflected inertia
of the hand, Jh

N2 , is neglected. The disturbance torque, τDM ,
is assumed to be formed by three components: the elastic
torque generated by the hand tendons during closure (τte), the
gravitational effect (τgrav), and the frictional torque caused
by the friction in the hand joints and pulleys (τ f ),

τDM = τte + τ f + τgrav. (6)

Given the lightweight design of the SoftHand-
ThimbleSense setup, we can safely neglect τgrav. τte
is modelled as a function of the motor shaft rotation angle.
In addition, the viscous and Coulomb friction of the hand is
modelled using an antisymmetric piecewise-linear function
of the motor speed and tendon tension

τ f (q̇) =
{

D1q̇+ns1Kte(q−qo) q̇ > 0
D2q̇−ns2Kte(q−qo) q̇ < 0, (7)

with Di, nsi , Kte, and qo representing the viscous damping
and Coulomb friction coefficients, the reflected hand tendon
stiffness, and motor angular position at rest (hand open),

4In this paper, all the variables and equations are described on the motor
side. Therefore, a gearbox ratio of N = 84 must be taken into account for
the presentation of the variables after the gearbox.
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Fig. 6: Snapshots of the object lifting task with varying mass (A-E) and the applied external disturbance (F).

respectively. By integrating the above formulas we obtain

τDM =

{
(1+ns1)Kte(q−qo)+D1q̇ q̇ > 0
(1−ns2)Kte(q−qo)+D2q̇ q̇ < 0. (8)

Supposing that the hand has not come in contact with
the object to be grasped (therefore external forces are zero),
the hand model torque (τDM) can be computed from the
motor current and its motion response. Such calculation
would require motor current and acceleration sensing with
the latter being sensitive to noise if computed from position
differentiation. To avoid this, we implement a robust torque
observation technique for a reliable estimation of the hand
model torque, as follows

τ̂DM = KtnIre f − Jnq̈

τ̂DM(s)' λ

s+λ
(KtnIre f − Jnsq̇)

' λ

s+λ
(KtnIre f +λJnq̇)−λJnq̇,

(9)

with s being the Laplace operator and λ representing the fil-
ter cut-off frequency which defines the disturbance rejection
capability [26]. The major design criterion is to choose λ

low enough to result in a robust system, while considering
the introduced filtering delay.

To identify the parameters of the hand model (equation 8),
the hand controller was driven with fixed and low velocity
(quasi-static) reference trajectories from the fully open to
fully closed position. This process was repeated in the reverse
direction as well, to account for the antisymmetric and
velocity dependent properties of the friction model during
opening and closure. Next, the resultant current, position,
and velocity profiles were used to estimate the components
of equation (8), by means of conventional least squares
identification algorithm. The identification process led to

two feed-forward, velocity dependent estimates of the hand
disturbance model, τ̂DM .

Experimental evaluation of the identified hand model was
performed by investigating the tracking accuracy of the hand
controller with low values of the K gain. Consideration of
the feed-forward term, for instance, led to %35 reduction of
the mean absolute error (MAE) value while tracking a sine
wave trajectory with the gain being set to K = 5 Nm

rad
5.

During Lift-off and once an slippage is detected, Pose
reflex mode’s update law regulates the SoftHand’s grasp
force by updating the hand closure reference

∆qd = cPSw. (10)

Whereas in Impedance reflex mode, hand closure trajectory
and the stiffness gain are both adjusted as functions of the
slippage measure6

∆qd = cISw

∆K = c̄ISw.
(11)

IV. RESULTS

Even though a straightforward implementation of the grasp
force regulation mechanism can result in a simpler and more
compact representation of reflex feedback, it is well-known
that such a control loop lacks robustness since force (current)
measurements are subject to noise and drift. In particular,
when an instantaneous force reflex is required in response to
the object slippage, such noise can cause oscillations in the
motor current and generate a non-smooth interaction force,
as a consequence7. This behaviour can be observed in Fig.

5For a detailed analysis of the hand disturbance model, please see [27].
6Coefficients cP, cI , and c̄I are experimentally identified based o the

desired reflex speed.
7Filtering of the motor current can resolve the problem up to some extent,

however, this will introduce delays in the control loop which affects reflexive
capabilities of the controller.
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Fig. 8: Experimental results of the Pose (red, dashed) and Impe-
dance (blue, solid) reflex modes for picking a test object. Different
phases of the task are labelled by characters A to E which
correspond to the snapshots of the experiment in Fig. 6.

7, in which the SoftHand was picking up the test object with
varying mass (Fig. 4, most left).

Fig. 6 (A-E) illustrates the snapshots of an experiment in
which the Pose and the Impedance reflex control modes were
applied while lifting the same object. Both modes demon-
strated robustness against slippage, however, Pose generated
higher normal forces compared to the case in which both
position and stiffness gains were gradually modulated in
response to the object slippage (see Fig. 8)8.

Fig. 9 shows typical results of a similar experiment where
the Impedance reflex mode is operating on the SoftHand
control board to realize a robust grasp against varying load
(blocks A-E) and external disturbance (block F which corre-
spond to Fig. 6-F). As depicted in the plots, the virtual grasp
pose and stiffness parameter are appropriately regulated to
realize a firm grasp while avoiding non-smooth or unne-

8To provide a simple explanation, consider that the Impedance reflex
mode is implemented in such a way to achieve a minimum-required grasping
force profile in response to the worst case object slippage S∗w, by generating
stiffness δk and position δq increments. The interaction force increment
therefore will approximately be δF ≈ (k+δk)(δq). Now imagine that the
Pose controller’s gain is pre-set to k+δk. To achieve a similar interaction
force, cP must be chosen in such a way that ∆qd = δq. Now if the slippage
index becomes smaller, for instance S∗w

b , Impedance and Pose will generate
(k+ δk

b )( δq
b ), and (k+δk)( δq

b ), respectively. This example illustrates that
Pose interaction forces will be higher than Impedance, unless the update
gains are non-constant.
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Fig. 9: Experimental results of the Impedance reflex during Lift-
off (varying mass (A-E) and external disturbance (F)). Impedance
reflex mode regulated the grasp forces by updating the grasping
pose (q) and stiffness (K) so that disturbances (mass variations or
external) do not cause slippage.

cessary high interaction forces (a video of the experiment
is available at [28]). This behaviour is consistent with the
observations in our human grasping experiments (see Fig.
2) which suggest that the grasp pose and stiffness are
synchronously regulated in humans to establish a reliable
contact between the object and the fingers. Implementation
of a similar control principle in prosthetic applications of the
SoftHand will result in intuitive regulation of the stiffness
gain and pose references, and if necessary, will be finely
tuned by the reflex controller.

To further evaluate the efficacy of the proposed Impedance
reflex controller, objects which only differ in surface pro-
perties (three most-right objects in Fig. 4) were considered
in our experimental trials. First, friction coefficients of the
objects were estimated in the Slide phase and exploited by
the Impedance reflex controller. Consequently, the objects
were grasped using the feed-forward term (IFF ) and lifted
to a constant height. IFF was set to be just enough to
pick the object with the sandpaper surface. As a result, the
Impedance reflex did not generate unnecessary additional
forces to stabilise this object during Lift-off (Fig. 10, red
plots). On the other hand, task-efficient restoring forces were
applied to avoid slippage while picking the objects with
wood (blue plots) and tape (green plots) surfaces.

V. CONCLUSIONS

In this work, with the aim to establish a reliable contact
between the SoftHand and the object during grasping, three
reflex control modes were implemented and experimentally
compared. Proposed controllers regulated the restoring grasp
forces by updating the motor current profile (Current), grasp
pose (Pose) and stiffness (Impedance) once the slippage is
detected. Real-time detection and control of the slippage was
established by defining an index measure using two fingertip
ThimbleSense data. Results suggested that the Impedance
reflex mode generated instantaneous and human-like reflexi-
ve response to avoid the slippage, highlighting its potential
for prosthetic applications of the SoftHand-ThimbleSense
setup. Future research will explore the robustness and the
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Fig. 10: Typical results of an experiment in which objects with
different surface properties (transparent tape (green), wood (blue),
and sandpaper (red)) are grasped and lifted. Impedance reflex
controller effectively regulated the grasp posture (middle plot) and
stiffness (bottom plot), in response to the slippage measure (upper
plot).

stability of the proposed reflex controller for grasping highly
deformable objects.
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