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Abstract— Compliance in robot design and control is often
introduced to improve the robot performance in tasks where
interaction with environment or human is required. However
a rigorous method to choose the correct level of compliance
is still not available. In this work we use robust optimization
as a tool to select the optimal compliance value in a robot-
environment interaction scenario under uncertainties. We pro-
pose an approach that can be profitably applied on a variety of
tasks, e.g.manipulation tasks or locomotion tasks. The aim is to
minimize the forces of interaction considering model constraints
and uncertainties. Numerical results show that: i) in case of
perfect knowledge of the environment stiff robots behave better
in terms of force minimization, ii) in case of uncertainties the
optimal stiffness of the robot is lower than the previous case
and optimal solutions provide a faster task accomplishment, iii)
the optimal stiffness decreases as a function of the uncertainty
measure. Experiments are carried out in a realistic set-up in
case of bi-manual object handover.

I. INTRODUCTION

In recent years the robotics research community has sig-
nificantly turned its attention towards Soft Robotics [1] as a
response to the urgent need for robots that can safely interact
with living beings and effectively operate in unstructured
natural, or humanized, environments.

The key idea in soft robots is the introduction of fixed or
adjustable compliant elements in the robot design. Among
the several concepts that has been presented in the literature,
two are the most common: Series Elastic Actuators (SEA) [2]
and Variable Impedance Actuators (VIA) (see [3] for a recent
review). Soft robots show better performances w.r.t. their
rigid counterpart in several aspects. From higher robustness
against unpredictable impacts [4], to faster operations under
safety constraints [5], to the possibility to store and release
energy into the springs (as in [6] and [7]) for energy
efficiency, to finish with the ability to double the peak speed
of a conventional motor (see e.g. [8] and [9]).

The recent results suggest that Soft Robotics provides new
opportunities in the task accomplishment where highly dy-
namic motions and safe interactions are required as in case of
manipulation and locomotion tasks. The physical interaction
is a common event that can be observed in multidisciplinary
fields e.g: robot–humans interaction in medical applications
or industrial co–working frameworks, robot–robot interaction
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Fig. 1. A bi-manual Soft Robot while performing an handover.

for bimanual operations in industrial manufacturing or robot–
environment interactions in the robot workspace.

The planning and control strategies must be designed to
take into account the possible occurrence of both scheduled
and unexpected interactions and uncertainties in the scenario
or model uncertainties. In the literature there are many
examples ([10], [11] to cite a few) claiming that soft is
better when robots must operate in unknown environment,
nevertheless, at the best of our knowledge, a solid formalism
supporting this claim has not yet been provided, nor a method
to choose the proper stiffness value.

This paper presents a method to choose, in scenarios
with uncertainties, the optimal stiffness of the robot to
accomplish a desired task minimizing the interaction forces
(i.e., force exchanged between two entities). This definition
of the problem can then be specialized depending on which
entity interacts with the robot: human-robot interaction,
environment-robot interaction, robot-robot interaction etc.
The goal of this paper is to move forward in the direction of
providing methodology for the determination of the system
compliance in interaction tasks. The Robust Optimization
theory [12] is here used to solve a case study problem
and, based on a careful analysis of results, to provide basic
principles to be adopted in more realistic scenarios. Robust
Optimization (RO) has been widely used in several fields
where the presence of unmodeled uncertainties may greatly
influence the success of the global task/mission (e.g. [13],
[14]). In particular, the importance of optimization robotic
pick and place operations has been recently emphasized



in [15], where RO is treated as an important extension
to classical global optimization. In [16] the authors adopt
the RO in order to compute a dynamically feasible time-
parametrized trajectory for robot manipulators along a fixed
geometric path with contact constraints.

The considered problem is first translated into a robust
optimization problem, which, due to the linear property of
the model considered, can be recast into two deterministic
convex optimization problems. Case study of this work is the
handover manipulation task for a bi-manual manipulator as
the one depicted in Fig. 1. An object in an uncertain position,
has to be exchanged between two end effectors and the robot
stiffness has to be set in order to minimize the exchanged
forces. After a careful analysis of the simulative and exper-
imental results the following lessons can be learned:
• If the framework is perfectly known the rigid system

performs best, while in case of uncertainty the optimal
stiffness for executing the interaction task is roughly
proportional to the inverse of the uncertainty.

• in the handover task the optimal stiffness of the two
end-effectors to minimize the interaction forces has to
be in a stiff-soft configuration.

• the usage of a compliant configuration soft-soft of the
end-effectors does not provide optimal solutions neither
in term of execution time nor in term of minimum
exchanged forces.

The results and the method of this work are potentially useful
and will be exploited in several scenarios, by improving:
• the robustness of walking robots in rough terrain where

the compliance of the foot can be adjusted to minimize
the reaction forces due to a not perfect knowledge of
the ground height;

• the interaction in the environment where the uncertainty
is not limited to the position but regards also parameters
of the environment (e.g., stiffness and damping);

• the physical human-robot interaction in which the uncer-
tainty is not limited to model parameters but can include
also the intention of the human agent, with application
in assistive devices.

II. PROBLEM STATEMENT

In this section we consider the dynamics of two manipu-
lators accomplishing the handover task. A linear model is
provided in order to have a treatable problem on which
robust optimization can be applied. Let Ω1 e Ω2 be the
dynamics of two soft manipulators actuated by the Variable
Stiffness Actuators, e.g. Qbmove [17]. The mutual effects
of the manipulators’ interactions can be modeled as external
forces acting on the end effectors (namely e.e. in the paper).
Let n be the number of the actuated joints, npi the number of
the contact points where interaction occurs (i.e. on the e.e).
The dynamics Ω1 (and similarly Ω2) is:

M(q)q̈+N(q, q̇) = h(q−θ ,σ)+B(q̇− θ̇)+∑
npi
i=1 Jiωexti

Iθ̈ +Dθ̇ +h(q−θ ,σ)+B(q̇− θ̇) = τc

where q ∈ Rn is the link position vector, θ ∈ Rn is the
motor position vector, M(q) ∈ Rnxn is the inertia matrix

of the manipulator, N(q, q̇) ∈ Rn is the vector of the cen-
trifugal/Coriolis and gravity contribution and B ∈ Rnxn is
the matrix of the viscous friction in the joints. The matrix
h(q−θ ,σ) represents the non linear elastic characteristic of
the VSAs which depends on the deflection δ = q− θ of
the actuator elastic element and on the stiffness reference
σ . I ∈ Rnxn and D ∈ Rnxn are the actuation inertia and
the damping matrices respectively. ωexti ∈ R6x1 is the i− th
external wrench which acts on the robot in the pi ∈R6x1 point
of contact whose geometric Jacobian matrix is Ji ∈ R6xn.
Finally, τc is the control input. For the handover task we
assume that both systems are in contact with the handled
object during the task execution. Moreover, e.e. are consid-
ered jointed to the object. Let m be the payload mass, ζ̈ its
acceleration and ω the wrench exerted on it, both expressed
in the object inertial frame {L}. The payload dynamics is
mζ̈ = ω where ω = ∑

2
i=1

LGiωi and LGi is the grasp matrix
which maps the exerted manipulator wrench ωi into the
equivalent e.e. wrench ω . Let LJAi be the analytical Jacobian
matrices of the i-th manipulator. The coupled dynamics of
manipulators and payload in the operative space w.r.t L is:(

m+
2

∑
i=1

LMAi

)
ζ̈ =

2

∑
i=1

LNAi ζ̇ +
2

∑
i=1

L
ωAi +

L
ωm (1)

Let MAi , NAi , ωAi = T T
A ωi be the equivalent inertia matrix,

coriolis/gravity contribution and wrench of Ωi respectively
(for i = 1, 2) and T T

A be the transformation matrix between
the geometric and analytical jacobians (for more details
see [18]). Let ζ be the mass displacement and ζ̇ , ζ̈ its
derivatives (and hence the e.e. displacement and derivatives
respectively). Finally Lωm is an external wrench applied
on the mass m which models the payload transition from
one e.e. to the other. The aim of this work is to optimize
both manipulators compliance and controls minimizing the
exchanged forces during the handover task in presence of
uncertainties. The resulting optimization problem is non
linear and non convex and it is not reported here for space
limitations. Based on the aforementioned assumptions on the
system during the task execution, it is possible to define
the optimization problem on a linearized model. In order
to optimize both compliance and controls, the optimization
problem is then solved obtaining the optimal controls for a
given constant compliance. The optimal compliance is finally
obtained based on the evaluation of the exchanged forces for
different compliance values.
Let Σ be a generic Multi Input Multi Output Linear Time
Invariant system on which a constant external force acts.
Defining x∈Rns the ns-dimensional state vector, and u∈Rni

the ni-dimensional input control vector, the Σ state space
dynamics is:

ẋ = Ax+Bu+T, F = Hx+Gu ,

where A is the state space matrix, B is the input matrix and T
the external forces vector. Let F be the vector of measurable
interaction forces that is linear in the state and the control,
and it is represented by matrices H and G. Let [t0, t f ] be the



Fig. 2. Scheme of the interacting manipulators. The equivalent linear model
of the end effectors and mass is depicted on the right.

time interval for the task execution, x0 and x f be the initial
and terminal states respectively, [xmin,xmax] be the minimum
and maximum limits of x. Let [umin,umax] be the minimum
and maximum limits of u. In this paper we consider un-
certainties on the initial state of the system representing for
example a partially known position of the object. Indeed,
let X0 be the space of the uncertain initial states. The goal
is to find a control input u(t) that minimizes the interaction
forces, verifying initial and terminal conditions and state and
control constraints. The optimal control problem is hence:

Minimize
u(t)

1
2

∫ t f

t0
F2(t)dt

s.t. ẋ(t) = Ax(t)+Bu(t)+T
x(t0) = x0 ∈ X0

x(t f ) = x f

xmin ≤ x(t)≤ xmax

umin ≤ u(t)≤ umax.

(2)

A scheme of the systems considered for the case study is
depicted in Fig. 2. The object payload m that has to be
transfered from one e.e. to the other can be modeled as a
further external force f acting on one of the manipulators.
Hence, at the terminal instant of the task, to model the
occurred object exchange the force has to be completely
exerted by the other manipulator. The solutions obtained
on the linear model are then applied to nonlinear complex
systems and validated experimentally.

III. PROBLEM SOLUTION

In this section, the optimal control problem is transformed
into an optimization one that is thus extended to take
into account uncertainties in the initial conditions. The so
obtained robust optimization problem is finally decoupled
into two deterministic and convex optimization ones in which
the uncertainty is at its bounds. It will be also shown that,
infeasibility of one of the two deterministic problems implies
the infeasibilty of the robust optimization. On the other hand,
the worst performing deterministic solution (between the
two of them) is the solution also of the robust optimization
problem.

1) Discretization: from Optimal Control to Optimization
Problems: The first step in the solution process is to fol-
low the classical approach of discretizing the continuous
dynamics of the system and transforming the optimal control
problem into an optimization one. The discretized dynamics
is

x(i+1) = Adx(i)+Bdu(i)+Td ,

where the matrices Ad , Bd , and Td are obtained from the
continuous ones via standard discretization methods (e.g.,
Zero-Order-Hold or Tustin). Let Ts be the sample time, N be
the number of the intervals in which the time t = [t0, t f ] is
partitioned and, finally, let i ∈ {0, . . . , N} be the i− th time
interval [ti, ti+1] or, equivalently, the i-th step of the discrete
system evolution. The discretized robust optimization prob-
lem is

min
U

1
2
||FT ||22

subject to AinU ≤ bin

AeqU = beq

uminS≤U ≤ umaxS
∀x0 ∈ X0

(3)

where X0 is the numerable and not empty set of pos-
sible initial states due to uncertainties on one or more
components. In the rest of this section all other variables
in (3) will be computed in terms of the dynamic matri-
ces and interaction forces matrices H and G. The vector
FT = [F(0) F(1) . . . F(N − 1)]T represents the total force
exchanged during task execution, i.e.:

F(i) = H x(i)+Gu(i−1) , (4)

with the state evolution given by

x(i) = Ri U(i−1:0)+ai , (5)

where Ri =
[
Bd AdBd A2

dBd . . .Ai−1
d Bd

]
∈ Rns×i is the

controllability matrix at the i-th step, U(i−1:0) =[
u(i−1)T u(i−2)T . . . u(0)T

]T ∈ Ri×ni is the control
vector from the initial to the i − 1-th time step and

ai = Ai
dx0 +

i−1
∑
j=0

A j
dTd ∈ Rns×1 for i ≥ 1. Finally, S is a

suitable selection matrix to bound the whole control vector
U = U(N−1:0). Replacing (5) in (4), we obtain that the
vector FT is an affine function of both U and x0, i.e.,
FT =CU + H̄d, where:

C =


E0
E1
...

EN−1

 ∈ RN×N , H̄ =

 H 0
. . .

0 H

 ∈ RN×ns×N

Ei =
[
01×(N−i) | G+H Ri(:,1) | H Ri(:,2 : i−1)

]
∈ Rni×N

d =


I

Ad
A2

d
...

AN−1
d


︸ ︷︷ ︸

dA

x0 +



0
Td

AdTd +Td
...

N−2
∑

j=0
A j

dTd


︸ ︷︷ ︸

dT

= dAx0 +dT ∈ Rns×N×1 ,

and Ri(:,1) is the first column of the controllability matrix
at the i-th step, while Ri(:,2 : i− 1) are the remaining i−
1 columns. The equality constraints of the problem (3) are
given by the final condition x(N) = x f , i.e.:

x f = RNU +aN → RNU = x f −aN → AeqU = beq



On the other hand, the inequality constraints are conse-
quences of the bounds on the state and on the control
variables that depends on the particular model and the task
characteristics. For this reason, inequality constraints will be
explicitly computed in the next Section for the particular task
scenario considered in this paper.

2) From Robust Optimization to Deterministic Problem:
Consider the case of bounded uncertainties on the whole
initial state x0 or on one of its components. Without loss
of generality and for the sake of clarity we suppose that
uncertainty acts only on the j-th component x0, j, i.e., we have
that |x0, j| ≤ ε . Hence, in case of uncertainties, the whole
initial state vector x0 lays in X0 = {x0 : |x0, j| ≤ ε}. The total
force vector FT can be made explicitly dependent on the
uncertain variable x0, j as follows:

FT =CU + H̄(d̃ +hx0, j) ,

with: d̃ = dA/ j x
∗
0 +dT and h = dA j ,

(6)

where x∗0 is the initial state vector with the j− th component
null, i.e. x∗0,k = x0 for k 6= j and x∗0, j = 0. dA j is the j− th
column of the matrix dA, while dA/ j consists of the remaining
N− 1 columns of dA. The functional in (6) is affine in the
uncertain parameter x0, j (which belongs to a convex set);
thus, applying classical results of the robust optimization
theory [12], the worst case index cost for problem (3) leads
to the minmax problem:

min
U

max
|x0, j |≤ε

1
2
||CU + H̄d̃ + H̄hx0, j||22

s.t. AinU ≤ bin(x0, j)

AeqU = beq(x0, j)

uminS≤U ≤ umaxS .

(7)

It is worth noting that the right hand side elements of
inequality and equality constraints, bin(x0, j) and beq(x0, j),
do linearly depend on the uncertain variable x0, j as it will
be shown later in the paper. Hence, due to the convexity
properties of the optimization problem, if one of the two sub-
problems (7) with x0, j =±ε is unfeasible so it is the robust
optimization problem in (3). Conversely, if the subproblems
are both feasible, then the problem in (3) is feasible for any
|x0, j| ≤ ε . Moreover, if the minmax problem (7) is feasible,
since the performance index is convex w.r.t. the bounded
maximization variable x0, j, it can be recast in the following
form:

max{ψ(ε), ψ(−ε)} ,

ψ(x0, j) = min
U

1
2
||CU + H̄d̃ + H̄hx0, j||22

s.t. AinU ≤ bin(x0, j)

AeqU = beq(x0, j)

umin1≤U ≤ umax1 .

(8)

Concluding, it is worth noting that the Optimal Control
problem under uncertainties in (2) can be tackled by solving
the deterministic convex optimization problem (8) for the
two boundary values of the uncertainty. Although general, in
next sections the aforementioned approach is then formalized
for the particular case under study, i.e. the handover task.

Moreover, an evaluation of the effects of different system
compliances on the total force exchange will be proposed.

IV. HANDOVER TASK

As case study we analyze an handover task in which an
object, at an uncertain position determined through, e.g.,
vision, has to be passed from one e.e. to the other. In [19]
the human-human handover has been extensively studied
(neglecting uncertainties), and several performance indexes
have been tested to evaluate the task. Conclusions are that the
load transfer rate (force per time unit) can be used as quality
index of the handover task. The same index will thus be used
to evaluate the performance also in case of uncertainties. A
planar linear model of the task can be obtained considering
the logical scheme depicted in Fig. 3. Hence, the handover
dynamics equation is:

mq̈ =− f − (q−θl)kl− (q−θr)kr−dl(q̇− θ̇l)−dr(q̇− θ̇r) .
(9)

Let θl and θr be the equilibrium (or reference) positions
of the end-effectors in contact with the object of mass m,
whose position is denoted by q. Let the stiffness ki and
the damping di be the viscoelastic characteristic of the end-
effectors. Finally, f is the actual constant force that must be
transferred from an end-effector to the other and represents
the load to be handed over.

Fig. 3. The two carts and mass planar model. Each cart is in contact with
the mass through a spring-damper system (the subscripts r and l stand for
right and left, respectively). A constant force (in red) is assumed acting over
the whole system representing the load to be transfered.

Defining the vector state x = [q q̇ θl θr]
T ∈ R4×1 and the

control input vector u =
[
θ̇l θ̇l

]T ∈ R2×1, the state space
dynamics becomes:

ẋ =


0 1 0 0

− (kl+kr)
m − (dl+dr)

m
kl
m

kr
m

0 0 0 0
0 0 0 0


︸ ︷︷ ︸

A

x+


0 0
dl
m

dr
m

1 0
0 1


︸ ︷︷ ︸

B

u+


0
− f

m
0
0


︸ ︷︷ ︸

T

.

The interaction forces, that the end effectors exert on the
object, are given by the equation:

F =

[
kl dl −kl 0
kr dr 0 −kr

]
︸ ︷︷ ︸

H

x+
[
−dl 0

0 −dr

]
︸ ︷︷ ︸

G

u.

The uncertain initial state is x0 =
[
q0 0 f

kl
0
]T

that represents
an uncertainty in the initial position of the e.e. (cart in the
scheme) that handles the load. The terminal state requires
that the load is eventually supported by the approaching



e.e. and it can be represented as x f =
[
0 0 0 f

kr

]T
. During

the evolution, constraint on the position of the mass m and
bounds on the control inputs are taken into account to prevent
unrealistic motions. Hence, considering the subproblem (8),
the inequality constraints are consequences of the bounds on
the state and on the control variables. Indeed, the displace-
ment of the mass can be limited imposing:

qmin ≤ eT
1 x(i)≤ qmax, with e1 = [1 0 0 0]T ∀i = 0, . . . , N−1.

where qmin and qmax are the minimum and maximum values
of q respectively. In matrix form:

eT
1 P0
...

eT
1 PN−1

−eT
1 P0
...

−eT
1 PN−1


︸ ︷︷ ︸

Ain∈RN×2N

U ≤



qmax− eT
1 a0

...
qmax− eT

1 aN−1

eT
1 a0−qmin

...
eT

1 aN−1−qmin


︸ ︷︷ ︸

bin∈RN×1

,

with Pi = [0 |Ri], 0 ∈ Rns×2(N−i) and ns = 4. As anticipated,
in case of uncertainties on the object’s initial position we
have that |q0| ≤ ε , hence the whole initial state vector x0 ∈
X0 =

{[
q0 0 f

kl
0
]T

: |q0| ≤ ε

}
. The total force vector FT can

be made explicitly dependent on q0 as follows:

FT =CU + H̄(d̃ +hq0) ,

with: d̃ = dA/1

 0
0
f
kl
0

+dT and h = dA1 .
(10)

V. SIMULATION RESULTS

In this section we provide a detailed discussion on the
simulation results obtained by solving the problem (8) of
system in Fig. 3 for different stiffness values and different
terminal time.

Numerical values used for the simulations have been
obtained based on the experimental set-up used for the
experiments (see Fig. 7). In particular, the mass is 1 [Kg],
sample time Ts is 0.02 [s] and the external force f is 10 [N].
Problem (8) has been solved with elastic constants values
within [10,500] [N/m], and a damping constant of 0.1 [Ns/m]
for both carts. Furthermore, the constraint on the maximum
displacement of the mass is symmetrically set to 0.1 [m],
with the bound ε on q0 equal to 0.04 [m] and the maximum
velocity of each cart is fixed to 1 [m/s].

In Fig. 4, the minimum N to find a solution of the opti-
mization problem under uncertainties is reported for stiffness
values in the range (10,500) [N/m]. Based on the simulation
results, when at least one spring is very compliant (less than
50 [N/m]), the system requires many control steps (N > 50)
to accomplish the handover task in presence of uncertainties.
On the other hand, if the purpose is to minimize N to
accomplish the task, the optimal choice of having a low
stiffness (190.53 [N/m]) the approaching e.e. and a high

stiffness (500 [N/m]) for the e.e. holding the mass. A further
analysis has been performed by solving the optimal control
problem fixing the terminal time large enough to ensure
the problem feasibility for the entire stiffness range. The
goal of the simulations analysis is to highlight the evolution
of the optimal stiffness of the system in function of the
uncertainties. In Fig. 5 the cost functional value ||Ftot ||2 is
depicted for a range of elastic constants for the nominal case
and a case with uncertainty: ε = 0 [m] and ε = 0.04 [m].
Referring to Fig. 5(a), if the initial position of the mass is
accurately known (i.e. the uncertainty is zero ε = 0 [m]), the
forces acting on the carts are minimized when each spring is
maximally stiff (both kl and kr are set to 500 [N/m]). Refer-
ring to Fig. 5(b), in case of maximum 0.04 m uncertainty on
the initial position, the minimum internal forces are obtained
with a more compliant approaching e.e. (kl = 242.11 [N/m]
and kr = 500 [N/m]). Figures 6(a) and 6(b), show the trend of
the optimal compliance set and the performance index values
w.r.t. the level of uncertainty, respectively. Obtained results
confirm that whenever uncertainty on q0 increases, the cor-
responding optimal cost ||Ftot ||2 increases so as the optimal
compliance of the left spring (i.e., stiffness decreases).

VI. EXPERIMENTAL TESTS

In the following we describe the experimental setup and tests
we have performed to validate the simulative results.

a) Experimental Setup: The experimental setup, de-
picted in Fig. 7 is composed of two planar 3–DoFs robotic
arms (numbers 10 and 11 in the figure) actuated by
variable stiffness actuators (Qbmove Maker Pro and Ad-
vanced [17], [20]). Each arm has a Pisa/IIT SoftHand [21]
as end-effector (n.12 and n.13). The object (n.4) for the
handover is mounted on a low-friction linear guide (n.7) and
it is provided with two handles with Phidgets Micro Load
Cells (n.5 and n.3), with supported load range 0− 20[Kg],
for measuring the contact forces, and a custom position
sensor (n.6) based on the Austrian Microsystem AS5040 that
retrieves the position of the object. Two electronic boards
(n.8 and n.9) are used for the acquisition of the force and
position data. The external force f is realized through a
proper 0.5 [Kg] mass (n.2) connected to the object via a
wire-pulley (n.1) system.

b) Experimental Tests: In the experimental tests we
reproduced the handover task with three different configu-
rations of the e.e. Cartesian stiffness set of left and right
handles respectively: stiff–stiff, soft–soft and the optimal
stiff–soft one. The handover operation has been implemented
as follows. At the beginning the right hand grasps the
right handle while supporting the external load. In order
to reproduce the effects of the uncertainties the left arm is
used to push (without grasping) the left handle generating an
internal force between handles. Indeed, in the model depicted
in Fig. 3, initial state uncertainty provides a variation in
the initial value of the contact forces F . As soon as the
left hand grasps the handle, the optimal references are
commanded to the manipulators performing the handover.
The simulations provide position and stiffness references for



(a) 3D plot of stiffnesses w.r.t. numbers of steps N (b) Zoom on the plane of stiffnesses kl and kr

Fig. 4. The plots depict the number of steps N needed to optimally accomplish the handover task. The minimum time required in order to obtain a
physical solution that minimize the internal forces F is N = 5 control steps and it corresponds to the pair of optimal stiffness (190.53,500) [N/m].

(a) Optimal stiffnesses for N = 52 in case of ε = 0 m (b) Optimal stiffnesses for N = 52 in case of ε =
0.04 m

Fig. 5. Optimal value of the cost functional ||Ftot ||2 is reported for all possible combinations of the elastic constants within [10,500] [N/m] for a fixed
number of N = 52. The blue point denotes the minimum value of the function. When everything is known (Fig. 5(a)), kl = kr = kmax = 500 are the optimal
values of the system stiffnesses. On the other hand, in case of uncertainties (Fig. 5(b)), the optimal is obtained for a stiffness (kl ) of the approaching cart
lower than the stiffness (kr) of the cart holding the load.

(a) Optimal compliance of left cart as a function of
the uncertainty

(b) Optimal cost function values

Fig. 6. In 6(a) the evolution of the optimal compliance of the approaching cart 1/kl of the system for ε ∈ [0 m, 0.05 m] with a fixed low compliance
1/500 N/m of the other cart is shown. The corresponding optimal cost value is reported in 6(b).

the experiments. In particular, θi(t) are used as references
for the Cartesian equilibrium positions of the arms. On the
other hand, the stiffnesses kL and kR are used as Cartesian
stiffness references at the end-effectors. Such stiffnesses must
first be translated into joints’ stiffness. In the following, the
procedure to map the desired Cartesian stiffness matrix into
joint one is described. Given J(q) the Jacobian matrix of
a manipulator in configuration q and the Cartesian stiffness

matrix KC, the joint stiffness matrix KJ is:

KJ = J(q)T KCJ(q)+
∂J(q)T

∂q
KC∆x ,

where ∆x is the Cartesian displacement between the desired
and the actual position. Given a desired Cartesian stiffness
matrix K̂C, following the approach proposed in [22], a
diagonal joint stiffness matrix KJ can be determined by



Fig. 7. The experimental setup for the handover task.

solving the optimization problem

min
KJ
‖K̄C(q,KJ)− K̂C‖G

F , (11)

where ‖A‖G
F := {∑n

i, j gi, j|ai, j|2}
1
2 is the weighted Frobenius

norm of ‖A‖ w.r.t. a matrix of positive scalars G, and
K̄C(q,KJ) = (J(q)T KCJ(q))−1 is the Cartesian stiffness when
the Cartesian displacement ∆x is negligible. During the
system evolution the joint stiffness is kept constant. We hence
select the constant joint stiffness that solve the problem (11)
along the whole trajectory. As reported in [1], the solution to
the problem (11) for a single configuration can be obtained
by solving a linear algebraic system of equations. Hence, the
joint stiffness along the trajectory has been computed solving
a least-square problem.

VII. EXPERIMENTAL RESULTS

A comparison between three configurations, using dif-
ferent stiffness set, to perform the handover task are at
the basis of experimental validation of the theoretical and
simulation results obtained in the previous sections. The
forces generated on the hands and the object displacement
experimentally measured have been qualitatively compared
with those produced in the simulations.

In order to ensure that the two hands perform the task in
a more similar fashion to that of the carts in the physical
model of Fig. 3 and due to the limits on the linear guide, the
constraints on the maximum mass displacement are replaced
by the constraints on the displacement of the two hands
(fixed to 0.12 [m]). Furthermore, the maximum velocity of
the end-effectors is set to 0.15 [m/s] and the uncertainty
ε to 0.02 [m]. With this set-up, the numerical solution of
the optimization problem shows that the pair of stiffnesses
that allows to accomplish the task minimizing the contact
forces is kl = 153.16 [N/m], kr = 500 [N/m]. The trend
of the forces obtained from the simulation results shows
a good match with the acquired experimental data (see
Fig. 8(a), 9(a), 10(a)): at the beginning of each experiment,
due to the uncertainty effects, the right hand is subject to
a force greater than the external one. When the task is
completed, i.e. the load is completely transferred from the
right to the left hand, the latter only needs to counteract the
applied force.

The computed optimal stiffness set allows to limit the
forces acting on the hands with respect to the Stiff/Stiff case

that presents a peak of approximately 12 [N]. Moreover, the
time required to accomplish the task is always smaller than
the other cases: about 0.4 [s], instead of 0.9 [s] and 0.7 [s]
for the Soft/Soft and Stiff/Stiff case respectively.

The comparison of the object position measurements with
the simulative trend shows some differences. Note that the
oscillatory behavior expected in simulation is not measured
by the sensors for the Stiff/Stiff case (see Fig. 10(b)). In
the Soft/Soft case (see Fig. 9(b)) experimental data show
that the object displacement at the end of the task is not
zero as expected. In authors’ opinion these are effects of
the not modeled static friction of the system that in the stiff
case damps the oscillations while in the soft case acts as
a disturbance causing a steady-state error. These effects are
visible also in the optimal case (see Fig. 8(b)).

VIII. CONCLUSIONS

The main contribution of this paper is the proof, through
robust optimization, that under uncertainties it exists an
optimal compliance choice that can improve the interaction
performances as sustained by the related literature. A solu-
tion for the handover task, in terms of cartesian stiffness
and reference signals, is theoretically and experimentally
provided. It has been shown that the robust optimal control
problem, under specific assumptions, can be recast into two
deterministic linear programming problems. The optimal
solutions have been provided varying the stiffness of the
interacting entities of the case study in order to find the
stiffness set which allow the minimization of the exchanged
forces. Results show that in case of perfect knowledge of
the framework, the optimal manipulator stiffness is high. On
the other hand, in case of uncertainties a more compliant
behavior has to be set. In particular the manipulator which
holds the load to be exchanged has a higher value of stiffness
than the approaching one: the optimal stiffness solution is
hence stiff/soft. Moreover, an analogous optimal stiffness
solution is obtained if the minimization of the number
of steps necessary to accomplish the task is considered.
The application of the non optimal stiffness configuration,
e.g. stiff/stiff and soft/soft, does not provide neither the
minimization of the exchanged forces nor the minimization
of the number of steps to obtain a feasible solution. It is
worth to note that results show a relationship between the
uncertainty in the scenario and the optimal stiffness of the
approaching manipulator, i.e. the more uncertain the scenario
is, the more compliant the manipulator has to be. Simulation
results have been validated experimentally and a qualitative
comparison of the obtained forces has been provided w.r.t.
the simulation cases.
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