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Abstract— In this paper a quasi-static framework for op-
timally controlling the contact force distribution is experi-
mentally verified with the full-size compliant humanoid robot
Walk-Man. The proposed approach is general enough to cope
with multi-contact scenarios, i.e. robot-environment interactions
occurring on feet and hands, up to the more general case of
whole-body loco-manipulation, in which the robot is in contact
with the environment also with the internal limbs, with a
consequent loss of contact force controllability. Experimental
tests were conducted with the Walk-Man robot (i) standing on
flat terrain, (ii) standing on uneven terrain and (iii) interacting
with the environment with both feet and a hand touching a
vertical wall. Moreover, the influence of unmodeled weight on
the robot, and the combination with a higher priority Cartesian
tasks are shown. Results are presented also in the attached
video.

I. INTRODUCTION

One of the main motivations behind the study and the
development of high performance humanoid robots is their
outstanding potentiality in helping and assisting humans. In
legged robots, the presence of the limbs allows the motion
of the torso to be largely independent from the roughness
of the terrain, improving, in such conditions, their mobility
over wheeled robots. An example of challenging scenarios, in
which humanoid robots have greater potentiality of success,
is in post-disaster environments, where it is necessary to
locomote on inclined surfaces, formed e.g. by collapsed
walls, and/or to overcome steps or large holes.

Post-disaster scenarios also inspired the past Darpa
Robotics Challenge (ed. 2015), where the most advanced
humanoid robots, such as those in [1], [2], [3] just to mention
a few, were called to accomplish tasks such as opening a
door, turning a valve, cutting a wall and climbing a ladder.

In order to locomote and balance in unstructured environ-
ments, methods based on the Zero-Moment Point (ZMP) [4],
also with the appropriate generalization, show their limits, in
particular when the robot needs to exploit multiple contacts,
e.g. using hands to improve their stability, as in Fig.1.

More general approaches consider the conditions realized
on the contact surfaces. Among others, it is worth citing [5],
where the authors present a prioritized dynamic control for
whole-body tasks in multi-contact scenario. In [6] and [7]
the authors use inverse dynamics to minimize the tangential
forces, or, more in general, to minimize the difference with
a predefined contact force distribution.
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Fig. 1. The compliant humanoid robot Walk-Man in a multi-contact
interaction scenario.

Moving from [8], in [9] the authors propose a contact
force optimization with simultaneous posture control. The
approach was later extended in [10], with the introduction
of a model predictive controller for balancing purposes on a
multi-contact scenario.

The approach presented in this paper, tested on the full-
size humanoid robot Walk-Man, derives from quasi-static
analysis and control tools, initially studied for grasping and
manipulation purposes. In [11] and [12], the author discussed
the contact force controllability properties of whole-hand
grasps, introducing also a metric for evaluating the quality
of a contact force distribution. More recently, in [13] and
[14], the authors extended the framework in order to properly
take into account both the underactuation of the system and
the presence of the compliance at different levels. Moreover,
the possibility to consider the contact force preload was
introduced.

In [15], the authors showed how such tools can be prof-
itably used to find the optimal contact force distribution for
compliant humanoid robots in general contact conditions.
More precisely, the proposed method, recalled, extended and
experimentally verified, respectively in Sec.s II-V, Sec. VI
and Sec. VII, differs from other approaches in literature
in many ways. The main differences are the following: (i)
it directly provides the desired contact force distribution,
namely optimal, that is the farthest possible from the contact
limits, i.e. the minimum and maximum normal force and
friction cone constraint, and (ii) it selects the optimal distri-
bution among the set of the contact forces that are actually



controllable. Both characteristics make the proposed method
general enough to manage transparently humanoid robots
standing on flat terrain, uneven terrain, in a multi-contact
situation, i.e. interacting with the environment with feet and
hands, up to the most general situation of whole-body loco-
manipulation [15], [16], [17], in which contacts can occur
both on the end-effector and on the internal limbs, with a
consequent loss of controllability of some force components.

Experimental results obtained with the compliant hu-
manoid robot Walk-Man are shown both in the paper and
in the video footage, for different contact conditions, i.e.
standing on flat terrain, standing on uneven terrain and
interacting with the environment both with the feet (on flat
and on uneven terrain) and with a hand touching a vertical
surface. Furthermore, experimental results investigating the
influence of (i) an unmodeled weight on the robot, (ii)
the combination with a higher priority tasks and (iii) a
combination of the previous conditions are shown.

II. GEOMETRIC INTERPRETATION OF QUASI-STATIC
APPROACH

A. The Equilibrium Manifold
For space limitations, throughout the paper we will refer

to the notation already introduced in [15], Table I. With the
symbol ϕ ∈ R]ϕ we indicate a vector collecting all the
kinematic variables (joint configuration, floating base config-
uration, etc.) and all the variables involved in the equations
of the static equilibrium of the system (joint torques, contact
forces, etc.). Let use define the equilibrium manifold (EM)
of the system as the set of points ϕ̄ : M(ϕ̄) = 0 ∈ R]M.
Both the dimensions1 ]ϕ and ]M vary depending on the
characteristics of the particular system under investigation.

B. The Tangent Space to the Equilibrium Manifold
Given an equilibrium configuration of the system, a first

order approximation of the EM can be obtained by means
of a Taylor series expansion. Neglecting the contribution of
second and higher order terms, the following condition holds
for the perturbed configuration

M(ϕ̄+ δϕ) ' ∂M

∂ϕ

∣∣∣∣
ϕ̄

δϕ := Φ?δϕ = 0, (1)

which describes the tangent space to the EM.
The matrix Φ? := ∂M

∂ϕ

∣∣∣
ϕ̄
∈ RrΦ×cΦ , where rΦ = ]M and

cΦ = ]ϕ, is the Fundamental Loco-Manipulation Matrix2

(FLMM).

C. Controllable Perturbation of the System
Under the assumption that the FLMM is full row rank, it

is possible to split the whole set of kineto-static variables
ϕ in two subsets: the dependent variables, and the inde-
pendent variables, denoted as ϕd ∈ RrΦ and ϕi ∈ RcΦ−rΦ
respectively. The definitions of dependent and independent
variables should be interpreted in the spirit of coordinate
partitioning methods used in constrained multibody dynam-
ics algorithms, see [18]. With these definitions, eq. (1) can
be rewritten as

[Φ?d Φ?i ]

[
δϕd
δϕi

]
= 0, (2)

1The symbol ] is used here to express the cardinality of a set.
2The name comes from the analogy with the Fundamental Grasp Matrix,

initially introduced for the analysis of grasping problem [14].

where Φ?d ∈ RrΦ×rΦ and Φ?i ∈ RrΦ×cΦ−rΦ . Moreover, under
the same hypothesis, it is possible to choose ϕi and ϕd such
that the matrix Φ?d is invertible. As a consequence, (2) can
be left-multiplied by Φ?d

−1 obtaining

Φδϕ := [I Φi]

[
δϕd
δϕi

]
= 0, (3)

where Φi := Φ?d
−1Φ?i . The new coefficient matrix Φ ∈

RrΦ×cΦ is the canonical form of the Fundamental Loco-
Manipulation Matrx (cFLMM). From (3) it follows that

δϕd = −Φiδϕi. (4)

III. SYSTEM DESCRIPTION

Let us show how the elements composing (2) and (3) can
be computed for the case of a compliant humanoid robot in
a whole-body loco-manipulation task, as sketched in Fig. 2.
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Fig. 2. Reference scenario for compliant humanoid robot in whole-body
loco-manipulation task.

A. Humanoid Robot
Between the absolute frame {A} and the floating base

of the robot {B}, we introduce a virtual kinematic chain
(VKC), able to fully parametrize their mutual configuration.
With the symbols u ∈ R6 and q ∈ R]q we indicate the
joint variables of the VKC and of the robot, respectively.
A vector collecting both the variables will be indicated as
q∗ =

[
uT qT

]T ∈ R6+]q .
On the ith of c contacts, we consider a linear spring whose

extremities are connected to the world {Wi} and to the
robot {Ci} contact frames, respectively. We consider here
that only the three components of linear forces, and no
moments, can be transmitted through the contacts. However,
the generalization poses no difficulties.

Finally, in the center of mass of the kth of l links, we
place the origin of a reference frame {Gk}, with orientation
always parallel to {A}.

With the symbol ξ ∈ R]ξ, with ]ξ = 3c+ 3l, we indicate
a vector collecting all the linear velocities of the frames
{Ci} and {Gk} expressed in local coordinates. With these
definitions we can write

ξ = J∗q̇∗ :=
[
STh Jh

] [u̇
q̇

]
, (5)

where J∗ ∈ R]ξ×]q∗ is the complete Jacobian of the robot,
including the VKC, Sh ∈ R6×]ξ is the stance matrix, and
Jh ∈ R]ξ×]q is the humanoid Jacobian matrix. It is worth



noting that the above definitions recall those introduced
in [19]. The velocities of the contact frames and of the CoM
frames can be pointed out writing[

ξc
ξg

]
=

[
STc Jc
STg Jg

] [
u̇
q̇

]
, (6)

with evident definition of the symbols.
By kineto-static duality arguments, from (5) we can obtain

the equilibrium condition for the whole robot, including the
VKC, as

τ∗ = J∗Tλ, (7)
where λ ∈ R3c+3l is a vector collecting all the contact
forces, fc ∈ R3c, and the gravitational forces acting on the
CoM of each robot link, collected in the vector mg ∈ R3l.
Formally, this can be written as λ =

[
fTc −mT

g

]T
, where

signs are introduced so that forces exerted by the robot on
the environment are positive.

In (7), the symbol τ∗ ∈ R(]q+6) indicates a vector
collecting the virtual torques applied to the joints of the
VKC, indicated as w ∈ R6, and the robot joint torques,
τ ∈ R]q . It is worth noting that the vector w can be
considered as a parametrization of an external wrench acting
on the floating base of the robot.

By differentiation, considering that there is no variation
of the gravitational forces in local frames, from (7) we can
obtain the quasi-static form of the equilibrium of the robot.
With reference to the matrices introduced in (6), we obtain

δw = Scδfc + Usδu+Qsδq, (8)

δτ = JTc δfc + Ujδu+Qjδq, (9)

where Us = ∂Shλ
∂u

∣∣
ϕ̄
∈ R6×6, Qs = ∂Shλ

∂q

∣∣∣
ϕ̄
∈ R6×]q , Uj =

∂JT
h λ
∂u

∣∣∣
ϕ̄
∈R]q×6 and Qj =

∂JT
h λ
∂q

∣∣∣
ϕ̄
∈R]q×]q . As explained,

the set of eq.s (8) and (9) provides a description of the quasi-
static equilibrium of the robot.

B. Compliant Joints

In order to safely absorb impacts, modern humanoid robots
are often designed with a certain amount of physical com-
pliance. This feature can be modeled introducing the joint
stiffness matrix Kq ∈ R]q×]q , collecting all the joint stiffness
values, and the motor position vector, qr ∈ R]q . With these
definitions, the quasi-static form for the equilibrium of the
elastic joints can be written as

δτ = Kq(δqr − δq). (10)

C. Constitutive Equation of the Contact

Indicating with pcwc a vector collecting all the position
of the frames {Ci} with respect to {Wi}, with coordinates
in {Ci}, and considering the virtual spring at the contacts,
the force vector can be computed as fc = Kcp

c
wc, where

Kc ∈ R3c×3c is the contact stiffness matrix. By differ-
entiation, with reference to the expression for the contact
frame displacements in (6), the contact force variation can
be written as

δfc = Kc(S
T
c δu+ Jcδq). (11)

IV. QUASI-STATIC CONTROL OF THE SYSTEM

The set of eqs. (8), (9), (10) and (11) can be casted in the
form (1), whose blocks take the form

Φ?=

 If 0 −KcS
T
c −KcJc 0 0

−JTc Iτ −Uj −Qj 0 0
−Sc 0 −Us −Qs Iw 0

0 Iτ 0 Kq 0 −Kq

, (12)

δϕ =
[
δfTc δτT δuT δqT δwT δqTr

]T
. (13)

Under the assumption that the first square block of (12)
is full rank3, it is possible to choose the external wrench
variation and the joint reference displacement as the inde-
pendent variables. Left multiplying the system by Φ?d

−1, we
finally obtain (3), from which we can extract the relationship
between the kth dependent variable and the independent ones
in the form

δϕdk = −Wdkδw −Rdkδqr. (14)

If no external disturbance is acting on the robot (δw = 0),
from (14), it follows that the contact force variation can be
expressed as

δfc = −Rfδqr := Ey, (15)

where E ∈ R]f×ρRf , with ρRf
= rank(Rf ), represents a

basis for the controllable contact forces, and y ∈ RρRf is a
suitable coefficient vector.

V. OPTIMAL CONTACT FORCE DISTRIBUTION

In order to choose a proper contact force distribution
between the set of the controllable ones, described by the
matrix E in (15), let us consider the contact force limits.
More in details, for the ith contact point, the constraints
imposing the maximum and minimum normal force, and
the compatibility with the friction cone can be compactly
described by the following inequalities

σi,j = αi,j‖fci‖+ βi,jf
T
cini + γi,j ≤ 0, (16)

where j = {max,min, frict}. In Table I, the values of the
coefficients are summarized for the different cases.

Choosing an arbitrarily small positive quantity ε, such that
the approximation σi,j ≤ −ε is acceptable for (16), for the ith
contact point and for the jth contact constraint, we introduce
the function

Vi,j =

{
(2σ2

i,j)
−1 if σi,j<−ε,

a σ2
i,j + b σi,j + c otherwise. (17)

By imposing continuity conditions, we can find a = 3
2ε4 ,

b = 4
ε3 , c = 3

ε2 .
αi,j βi,j γi,j

frict αi > 0 -1 0
min 0 -1 fmini
max 0 1 −fmaxi

TABLE I
Coefficient values for contact constraints in (16); αi,j is related with the

friction coefficient µi,j by αi,j = 1
/√

1 + µ2i,j .

3This can be demonstrated in simple cases and it was also numerically
verified in many other cases, without finding exception. This bring to
consider this assumption reasonable at least for the usual cases of interest.
Moreover, the assumption can be easily verified with an online check of the
rank during the application.



With the previous definitions and observing that, by means
of (15), the elements σi,j are functions of the coefficient
vector y, the scalar function

V =
∑

i,j
Vi,j (18)

can be associated to a contact force variation and, considering
the initial forces, to a new contact force distribution.

We can also note that, by construction, lower values of
V correspond to a contact force distribution that is globally
more distant to the contact limits.

Avoiding a detailed discussion, for which the interested
reader is referred to [15], we just recall here the result that
the function V (y) in (18) is strictly convex. In consequence
of that and of the previous observation, we can conclude that
the minimum of V corresponds to the optimal contact force
distribution, along the metrics defined by (16), in terms of
global distance to the contact limits. Therefore, the optimal
contact force variation can be computed as

δf opt
c = Eyopt : yopt = argmin (V (y)) . (19)

From (15) , the corresponding joint reference displacement
to be applied results in

δqopt
r = −R†fδf

opt
c . (20)

VI. PRIORITIZED REALIZATION OF KINETO-STATIC
TASKS

For later use, with the symbol PN(A) we indicate a
projector in the nullspace of A, which can be computed as
PN(A) =

(
I −A†A

)
.

Let us consider the case in which a second task to
accomplish is specified in Cartesian space, i.e. in terms of
posture of an end-effector (e.e.) frame {Ej}, Fig. 2. From
the differential kinematics, for the e.e. displacement we can
easily obtain

δCe =
[
STe Je

] [δu
δq

]
. (21)

However, eq. (21) is not expressed in terms of independent
variables of the system, thus it can not be directly combined
with (15). To face this situation, we can consider (14),
evaluated for the case of the floating frame and the robot
joint displacements. If no external disturbance is acting on
the robot, respectively we obtain δu = −Ruδqr and δq =
−Rqδqr. Substituting these in (21) we obtain

δCe = −
[
STe Ru + JeRq

]
δqr := −Reδqr. (22)

With this formulation, eq.s (22) and (15) can be properly
combined for achieving the relative tasks with the desired
order of priority. For example, giving maximum priority to
the force realization task we can write

δqdes
r = −R†fδf

des
c − PN(Rf )R

†
eδC

des.
e (23)

Conversely, if the kinematic task on the e.e. has higher
priority, the solution can be computed in the form

δqdes
r = −R†eδCdes

e − PN(Re)R
†
fδf

des
c . (24)

VII. EXPERIMENTAL RESULTS WITH WALK-MAN ROBOT

A. The Walk-Man Robot
The method presented above was tested on the Walk-Man

robot, a full-size compliant humanoid robot developed jointly
by the Italian Institute of Technology and the University of
Pisa. The robot participated to the 2015 edition of the Darpa
Robotic Challenge (DRC), completing the car driving task
and the door opening task, before coming to a halt caused
by battery issues. An image of the robot is shown in Fig.
1. The humanoid is approximately 1.9m tall, from the foot
sole to the head top. In the configuration used during the
tests of this paper, the total weight of the Walk-Man robot
was approximately 120kg. The robot has a total of 33 DoF,
6 for each leg, 7 for each arm, 3 for the torso, 2 for the
neck, 2 for the closure of the Pisa/IIT SoftHands [20]. The
control PC is based on a i7 Quad-Core processor running at
variable frequency in the range 1.7−2.8GHz. The control loop
period used was 50ms. The stiffness at the joints have the
values kq =10000Nm/rad for the high-power joints, located
in the legs and in the torso, kq = 1000−6000Nm/rad for
the medium-power joints, located in the first 4 joints of the
arms, kq = 500Nm/rad, for the low-power joints, the last 3
joints of the arms. More details on the hardware design of
the robot can be found in [21].

Considering the rubber covering the contact surfaces on
the feet and on the hands the contact stiffness was set to kc=
106N/m. For each link of the robot (foot or hand) in contact
with the environment 4 contact forces were considered. The
actual components of the contact forces were computed at
every loop by means of the pseudoinverse of the proper grasp
matrix, mapping the contact forces on the corresponding
frame of 6−axis force/torque sensor, located in the foot
sole and in the wrist. To the obtained measures, a low-pass
filter was applied by means of a windowing function with
dimension of 15 samples. The application of (20) was made
by means of the damped pseudoinverse, with damping factor
d2 = 107.

Indicating with µl the friction coefficient on the left foot
and with µr the friction coefficient on the right foot, in order
to compute the function V in (18), three different friction
conditions were considered: (i) µl=µr=1, (ii) µl=1, µr=
0.2 and (iii) µl = 0.2, µr = 1. The corresponding optimal
contact force distribution was computed offline, using a sim-
plified model, similar to the one used in [15] for numerical
tests, adapted in the kineto-static parameters for the case of
the Walk-Man Robot. The resulting optimal contact force
distribution can be approximated as equal distribution of the
weight on the two feet, for the case (i), and 85% of the
weight on the foot with lower friction, 15% of the weight
on the foot with higher friction, for the cases (ii) and (iii).

B. Experimental Results
Flat Terrain: In the first experiment the Walk-Man robot

initially stands on flat terrain, as in Fig. 3(a).
Fig.s 3(b), 3(c), 3(d) show the final configuration achieved

by the robot following the optimal contact force distribu-
tion, computed for the friction conditions (i), (ii) and (iii),
respectively. The corresponding error evolutions are shown
in Fig. 4. On the y axis the error ef = ‖δfc‖, i.e. the norm
of the difference between the actual and the desired contact
force distribution, is shown. Note that, when only feet are in
contact, δfc ∈ R24. On the x axis the number of the samples
is represented. Samples are taken every 50ms.



(a) Initial Configuration (b) µl =1, µr =1 (c) µl =1, µr =0.2 (d) µl =0.2, µr =1

Fig. 3. Experimental tests on flat terrain. Friction values used are specified in subcaptions. In Panel(a) the initial configuration of the robot is shown.
Panels (b)-(d) show the final configuration of the robot achieved in the test for meeting the optimal contact forces.

(a) Error evolution relative to Fig. 3(b) (b) Error evolution relative to Fig. 3(c) (c) Error evolution relative to Fig. 3(d)

Fig. 4. Error evolution graph relative to the experiments in Fig. 3. Error ef = ‖δfdes
c ‖; samples taken every 50ms.

Uneven Terrain: The same friction conditions were con-
sidered also on uneven terrain, represented in Fig. 5. The
inclination of the surfaces with respect to the horizontal plane
are of 15◦ for both the feet. In the initial configuration, Fig.
6(a), the robot feet are not at the same level, and the lateral
edges of the right and of the left foot are not parallel.

Fig. 5. Uneven terrain used for tests. The surfaces are inclined of 15◦

with respect to a horizontal plane.

The experimental results, in terms of final configuration of
the robot and of error evolution, are represented in Fig.s 6(b)-
(d) and in Fig. 7, respectively. By direct comparison of Fig.
4 and 7, we can note that the main difference between the
performance obtained on flat and on uneven terrain is in the
response time, slower in the case of uneven terrain. However,
it results also that there is a limited difference between the
steady-state errors in the two cases. Numerically, for the case
(i) the minimum error is emin

f =75N on flat terrain and emin
f =

73N on uneven terrain (' 3N/force component); for the case
(ii) emin

f = 117N on flat terrain and emin
f = 212N on uneven

terrain; for the case (iii) emin
f = 101N on flat terrain and

emin
f =166N on uneven terrain. We can also note that, where

the difference is much relevant, as in case (ii), greater is also
the difference in the derivative of the error, suggesting that,
on uneven terrain, the minimum error is not achieved yet at
the end of the test. In all the cases, the steady-state error
seams to be compatible with errors in the model and in the

measurements.
Influence of Other Contributions: In order to investigate

the influence of other actions on the error evolution, the
experiments on flat and uneven terrain were repeated con-
sidering the friction condition (iii). In the first test, Panel (a)
of Fig.s 8 and 10, an unmodeled mass of 2kg was introduced,
in correspondence of the right wrist. From direct comparison
of the error evolution in Fig. 9(a) and Fig. 11(a) with their
counterpart without additional weight in Fig. 4(c) and Fig.
7(c), we can observe that the unmodeled weight contribute in
making the convergence slower toward the minimum error.
After 500 samples (30 sec.s) the error is emin

f = 137N,
against the emin

f = 131N, without the weight. Similarly, on
uneven terrain, after 500 samples in this case the error is
emin
f = 235N, against emin

f = 201N in the corresponding
experiments without the unmodeled weight.

In the cases represented in Fig.s 8(b) and 10(b) the
desired joint reference displacement resulting from (20),
were projected in the nullspace, by means of (24), of the
Jacobian obtained as the stack of the right hand and of the
right foot Jacobian. In consequence of this, both the right
hand and the right foot do not move in the Cartesian space
during the test. If for the right hand this consequence can
be directly observed, it is interesting to note that imposing
no motion to the right foot forbids small movements, able to
deform the contact rubber, difficult to see in usual condition,
whose effect actually contributes to the minimization of the
error. This can be observed comparing Fig. 9(b) and Fig.
11(b) with Fig. 4(c) and Fig. 7(c), respectively.

Finally, in the tests represented in 8(c) and 10(c), both the
unmodeled weight and the nullspace projection were used.
From the graphs of the errors, presented in Fig. 9(c) and
in 10(c), it appears that both contribute to the decay of the
performances.

Multiple contacts: In Fig.s 12 and 13, two photo se-
quences are presented, showing the Walk-Man robot preserv-



(a) Initial Configuration (b) µl =1, µr =1 (c) µl =1, µr =0.2 (d) µl =0.2, µr =1

Fig. 6. Experimental tests on uneven terrain. Friction values are specified in subcaptions. Panels (b)-(d) show the final configuration of the robot for
meeting the optimal contact forces. Panels (b)-(d) show the final configuration of the robot achieved in the test for meeting the optimal contact forces.

(a) Error evolution relative to Fig. 6(b) (b) Error evolution relative to in Fig. 6(c) (c) Error evolution relative to Fig. 6(d)

Fig. 7. Error evolution relative to Fig. 6. Error ef = ‖δfdes
c ‖; samples taken every 50ms.

(a) Unmodeled Weight (b) Nullspace Projection (c) Unmodeled Weight +
Nullspace Projection

Fig. 8. In these tests the friction coefficient are set to µl=0.2, µr=1. In Fig. 8(a) the test was performed adding a 2kg unmodeled weight on the right
wrist. In Fig. 8(b) the joint reference variation resulting from (20) was projected in the nullspace of the Jacobian of the right hand and of the right foot
by means of (24). In the experiment in Fig. 8(c) both the unmodeled weight and the nullspace projection were introduced.

(a) Error evolution relative to Fig. 8(a) (b) Error relative to Fig. 8(b) (c) Error evolution relative to Fig. 8(c)

Fig. 9. Error evolution relative to Fig. 8. Error ef = ‖δfdes
c ‖; samples taken every 50ms.

ing the stance condition while changing the contact points:
from standing on the feet, to keeping the equilibrium with
one foot on the ground and one hand touching a vertical
surface. In the first case, Fig. 12, the floor is flat, in the
second one, Fig. 13, the feet are located on an uneven terrain
composed by two inclined surfaces, represented in Fig. 5.

In both the cases, initially (Panels (a) and (b)) the hand of

the robot is not in contact with the environment. When the
robot comes in touch with the wall (Panels (c)), the operator
starts the contact force optimization module. In these cases,
the desired contact forces were imposed to be equal to the
85% of the weight on the left foot, in direction normal to the
ground, zero force for all the components of the right foot,
and the 15% of the weight as reaction force on the right hand,



(a) Unmodeled Weight (b) Nullspace Projection (c) Unmodeled Weight + Nullspace
Projection

Fig. 10. In these tests the friction coefficient are set to µl=0.2, µr=1. In Fig. 8(a) the test was performed adding a 2kg unmodeled weight on the right
wrist. In Fig. 8(b) the joint reference variation resulting from (20) was projected in the nullspace of the Jacobian of the right hand and of the right foot
by means of (24). In the experiment in Fig. 8(c) both the unmodeled weight and the nullspace projection were introduced.

(a) Error evolution relative to Fig. 10(a) (b) Error evolution relative to Fig. 10(b) (c) Error evolution relative to Fig. 10(c)

Fig. 11. Error evolution graph relative to the experiments in Fig. 10. Error ef = ‖δfdes
c ‖; samples taken every 50ms.

in direction normal to the wall. All the desired tangential
forces are set to zero. Note that, in this case, the desired
contact force distribution can not be achieved, since they do
not correspond to any equilibrium condition of the robot.
For each contact surface, similarly to the previous cases, 4
contact forces were considered, for a total of 36 components
of force.

When the normal reaction on the right foot decreases
sufficiently (approximately less than the 10% of the weight)
the operator switches control mode (Panels (c) and (d) of
Fig.s 12 and 13), applying a whole-body inverse kinematics
algorithm, based on the pseudoinverse of proper Jacobian
matrices, asking to satisfy the tasks of lifting up the right
foot, and of keeping the configuration of the left foot, of the
hands and of the CoM of the robot.

The error evolutions of the contact forces, registered when
the contact force optimization module is running, are shown
in Fig.s 14(a) and 14(b), respectively for the tests in Fig.s 12
and 13.

The relatively high values of the error at the final stage
(when the contact force optimization module is arrested) are
caused by the fact that: (i) not all the force components can
be actually achieved, (ii) the switch is made just considering
the conditions on the right foot, not on the other contacts.
However, it is worth noting that, despite that the desired force
vector cannot be achieved, the application of the proposed
method still shows a robust behavior, imposing in any case
a negative time derivative of the error.

VIII. CONCLUSIONS

In this paper we presented a quasi-static framework for
the analysis and control of compliant humanoid robot under
general multi-contact conditions, able to cope also with

whole-body loco-manipulation tasks. A geometrical interpre-
tation of the method was presented before discussing the
system of equations more in detail. Then, the dependent and
independent variables of the system were defined, together
with a systematic method for exploiting them, able to pro-
vide a basis for the controllable movements of the robot,
as well as for the controllable contact forces. A convex
function was used to find the optimal controllable contact
force distribution, in terms of distance from the contact
limits. Experimental tests were conducted with the Walk-
Man robot in different contact conditions and considering
different friction values. The proposed method was tested
with the robot (i) standing on flat terrain, (ii) standing on
uneven terrain and (iii) interacting with the environment
both with the feet and with one hand, in contact with a
vertical wall. Moreover, the influence of (additional) errors
in the model was tested introducing an unmodeled weight
on the robot. The prioritized combination with a Cartesian
task was finally verified both with and without the additional
unmodeled weight, as also reported in the attached video.
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