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Abstract—This paper focuses on the convergence of information in
distributed systems of agents communicating over a network. The
information on which the convergence is sought is not represented by
real numbers, as often in the literature, rather by sets. The dynamics of
the evolution of information across the network is accordingly described
by set–valued iterative maps. While the study of convergence of set–
valued iterative maps is highly complex in general, this paper focuses
on Boolean maps, which are comprised of arbitrary combinations of
unions, intersections, and complements of sets. For these important
class of systems we provide tools to study both global and local
convergence. A distributed geographic information system, leading to
successful information reconstruction from partial and corrupted data,
is used to illustrate the applications of the proposed methods.

I. INTRODUCTION

Recent years have witnessed a constant increase of interests in
applications involving many distributed agents that interact in order
to achieve a common goal. Most of the problems attacked so far in the
literature can be formulated as consensus problems over continuous
domains, where local agents exchange data that consist of scalars
(such as a temperature or the concentration of a chemical) or vectors
(e.g., positions or velocities). Models used differ mainly in the type
of rule each agent uses to combine its own information with the
one received from its neighbors in the communication graph. In the
simplest case, the evolution of the network of agents can be described
by a linear iterative rule

x(t+ 1) = Ax(t) +B u(t) ,

where x = (x1, · · · , xn) ∈ Rn is the system’s state, with the i–
th component xi belonging to the i–th agent, u ∈ Rm is an input
vector, and A is a weight matrix. More precisely, matrix A is designed
so as to comply with available communication topology and ensure
the convergence of the network to a unique decision, i.e. x(∞) →
α1, with α depending on the initial system’s state. Moreover, the
input vector u can be used to model a known bias [1] or even an
unknown disturbance signal [2]. Falling into this linear framework
are most of the key papers on consensus [1], [3], [4]. By using more
general nonlinear dynamical systems, other important schemes for
achieving consensus on more complex functions of state variables
can be accommodated for. For instance, the distributed algorithm
based on the centroidal Voronoi tessellation proposed by [5] allows a
collection of mobile agents to be deployed within a given environment
while maximizing the network’s sensing ability.

However, new emerging issues in the field of distributed control
entail defining consensus algorithms on different representations of
the state of information (see e.g. [6]). As a first example, consider the
problem of averaging a set of initial measures taken by a collection of
distributed sensors with limited communication bandwidth, which can
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be solved via a consensus system where agents’ state information is
represented by symbols obtained through a logarithmic quantizer [7].
As a second example, consider the problem of estimating the value
of a logical decision task depending on binary input events by a set
of agents with limited visibility on the events, e.g. the detection of
malicious users in a networked computer system by interaction of
local observation monitors [8]. A solution to the problem can be
obtained through use of the so–called logical consensus approach,
according to which agents share binary estimates of the events,
combine them according to a suitable logical iterative function, and
finally reach an agreement on their values. An interesting problem
that is related to consensus is that of studying how to disseminate
information through a network where nodes can only elaborate and
share data over finite fields [9].

Furthermore, other applications involve problems of increasing
complexity where the state of information takes value in possi-
bly infinite domains. For instance, consider the problem of clock
synchronization in distributed loosely–coupled systems via message
exchange, where each node has a confidence interval on the true value
of time, although the true value may be outside this interval for some
sources. Marzullo’s algorithm [10], on which the ubiquitous Network
Time Protocol (NTP) [11] is based, is an agreement algorithm which
estimates the smallest interval consistent with the largest number
of sources. The problem of simultaneous localization and mapping
by a set of mobile robotic agents is another example, where the
traditional approach of modeling each agent’s uncertainty on the
positions of visually extracted features as additive or multiplicative
signals is possible but not natural. As it was shown in [12], the
problem can be solved by a consensus approach where agents
exchange data represented by confidence regions containing the
features’ real positions. Finally, the detection of misbehavior in
“societies” of robots comprised of agents that are supposed to obey
to cooperation rules, depending on presence and absence of objects in
their neighborhood, requires that every robot compute a local estimate
of the neighborhood occupancy map of its neighbors and combine it
with others’ estimates via a set–valued consensus algorithm [13].

All these problems, and indeed many others, require that the
information state of a network of n agents is a collection X =
(X1, · · · , Xn)T of elements Xi, belonging to the power set1 P(X)
of a discrete or continuous, finite or infinite set X, which is iteratively
updated according to a set–valued map F = (F1, · · · , Fn)T , with
Fi : P(X)n → P(X), i.e.

X(t+ 1) = F (X(t)) . (1)

The evolution of such set–valued iterative systems can be extremely
rich and complex in the general case. Consider e.g. the three relatively
simple set–valued systems described in Fig. 1, where agents exchange
and update their states Xi ⊆ Q, with Q = [0, 1] × [0, 1]. The
figure shows that, starting from the same initial conditions, set–valued
iterative maps can display very different and interesting behaviors,
ranging from chaotic sequences to cycles and equilibria with or

1Recall that given a set X, the power set P(X) is the set of all subsets of
X, including the empty set and X itself.
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Figure 1. Simulation runs of three systems with n = 3 agents running different set–valued maps to update their states. From left to right, starting from the
same initial conditions, the three systems have a chaotic behavior, enter into a cycles, and reach an equilibrium point, respectively. In the formulas the terms
C(Xi) is the complement of Xi, Thk (Xi) is a translation of Xi by the vector (h, k)T (mod 1), and the coefficients are a1 = 2, b1 = 7, a2 = 66, b2 = 12,
a3 = 1, b3 = 99, a4 = 77, b4 = 11, a5 = 56, b5 = 154.

without consensus. Although the study of these systems appears to
be a formidable task in its full generality, in many applications of
practical interest the set of rules used in the iterative map are limited
to specific classes, which render analysis more tractable. Of particular
relevance are certainly maps involving only Boolean operations, such
as the set union ∪, the intersection ∩, and the complement C(·).
Fortunately, it is possible to provide a reasonably simple study and
characterization of such systems.

The main intent of the paper is to show that information con-
vergence in every instance of a Boolean iterative system can be
studied in fundamentally the same way. This is achieved by extending
the notions of convergence, local convergence, and contraction,
already given in the binary domain [14], [15], to algebras of sets,
taken with the union, intersection, and complement operations. The
work presented here builds upon earlier results by the authors [16],
where global convergence of Set–Valued Boolean Dynamic Sys-
tems (SVBDS)2 was studied, and it provides also results on local
convergence in terms of properties of binary matrices for which
analysis [14], [15] and synthesis [8] results are available. These new
results are mainly, but not only, contained in the following theorems:
Theorem 4.1 of Section IV, Lemma 5.1, Theorem 5.2, Theorem 5.3,
and Theorem 5.4 of Section V. By doing this, we believe that the
present work is a step toward the definition of a unified framework for
the convergence analysis of systems involving iterative maps based

2The term “set–valued” is associated also with maps going from X to its
power set P(X) (see e.g. [17]); however we adopt it here to indicate that the
system is described by maps going from sets to sets.

on Boolean algebras, and for the design of Boolean iterative systems
producing consensus in such domains.

The paper is organized as follows. Section II recalls the definition
of a Boolean algebra and summarizes known results on the conver-
gence of maps defined over the simplest Boolean algebra, i.e. the
one involving a binary domain. These results are extended in the
following sections. Section III studies the global behavior of SVBDS.
By using the binary encoding of a SVBDS that is presented in
Section IV, conditions ensuring the global convergence of a SVBDS
and local attractiveness of its equilibria are presented in Section V.
In Section VI, the presented theory is applied to a problem of robust
estimation of geographic information.

II. BOOLEAN DYNAMIC SYSTEMS

In this section and in the remainder of the paper, we focus on a
class of dynamic systems, namely Boolean Dynamic Systems (BDS),
to define which we need to recall the following well–known notion
(see e.g. [18]):

Definition 2.1: A Boolean Algebra is a sextuple (B̃,∧,∨,¬, 0, 1),
consisting of a domain set B̃, equipped with two binary operations
∧ (called “meet” or “and”) and ∨ (called “join” or “or”), a unary
operation ¬ (called “complement” or “not”), and two elements 0
(null) and 1 (unity) belonging to B̃, s.t. the following axioms hold,
for all elements a, b, c ∈ B̃:

1) a∨ (b∨c) = (a∨b)∨c, a∧ (b∧c) = (a∧b)∧c (associativity);
2) a ∨ b = b ∨ a, a ∧ b = b ∧ a (commutativity);
3) a ∨ (a ∧ b) = a, a ∧ (a ∨ b) = a (absorption);
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4) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c), a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
(distributivity);

5) a ∨ ¬ a = 1, a ∧ ¬ a = 0 (complementarity). �
From the first three pairs of axioms above, it follows that, for any

two elements a, b ∈ B̃, it holds that a = a∧b if, and only if, a∨b = b,
which introduces a partial order relation ≤ among the elements of
the domain. In particular, we will say that a ≤ b, if, and only if, one
of the two above equivalent conditions hold. Moreover, 0 and 1 are
the smallest and greatest elements, respectively. Then, given any two
elements a, b ∈ B̃, the meet a ∧ b and the join a ∨ b coincide with
their infimum or supremum, respectively, w.r.t. ≤.

An element a ∈ B̃ is referred to as a scalar. Consider the set B̃n

of Boolean vectors and the set B̃n×n of square Boolean matrices.
We can give the following definitions that generalize the notions
presented in e.g. [14], [19], which are valid only when B̃ is the
binary domain {0, 1}:

Definition 2.2: Given two vectors v = (v1, . . . , vn) and w =
(w1, . . . , wn), and two square matrices A = {ai,j} and B = {bi,j},
define the scalar product as w · v def

=
∨n
i=1 vi ∧ wi ∈ B̃, the product

Av as the vector whose i–th element is the scalar product between
the i–th row of A and the vector v, and the product AB as the matrix
whose (i, j)–th element is the scalar product between the i–th row
of A and the j–th column of B. In other words products between a
matrix and a vector and between two matrices are computed in the
usual way, substituting + with ∨ and · with ∧. �

We denote with 0 the null scalar, vector, or matrix, according to
the context. The above described partial order relation ≤ between any
two elements of B̃ can be extended to Boolean vectors and matrices
by assuming component–wise evaluation.

Definition 2.3 (Boolean Dynamic Systems (BDS)): Given a
Boolean algebra, a BDS is an iterative system of the form in Eq. 1,
whose state X is a vector in B̃n and where F is a map combining
the elements of its input argument to produce a new state vector, by
using only the meet ∧, the join ∨, and the complement ¬ operations
of the Boolean algebra itself.

Definition 2.4 (Linear BDS): A BDS is linear if there exists a set–
valued matrix A ∈ B̃n×n s.t., for all X ∈ B̃n, F (X) = AX .

For the following study, we need to give the following definitions:

Definition 2.5 (Canonical Basis): The set of the vectors
e1, e2, . . . , en, with ej ∈ B̃n contains 1 in the j–th element
and zeros elsewhere, is called the canonical basis of B̃n.

Definition 2.6 (Eigenvalues and Eigenvectors): A scalar λ ∈ B̃ is
an eigenvalue of a Boolean matrix A ∈ B̃n×n if there exists a vector
x ∈ B̃n, called eigenvector, s.t. Ax = λx.

Definition 2.7 (Incidence Matrix): The incidence matrix of a
Boolean map F is a Boolean binary matrix B(F ) = {bi,j}, with
bi,j ∈ B̃ and where bi,j = 1 if, and only if, the i–th component of
F (x) depends on the j–th component of the input vector x.
It is worth noting that, in the case of a distributed BDS, similarly
to what happens in the example of Section I, every agent of the
system share the value of its Boolean state by sending a message to
its neighbors, and the map F specifies how these states need to be
combined together in order to accomplish a global computation task.
The incidence matrix B(F ) allows analyzing how the information
flows from one agent to another, and, as it is shown below, plays an
important role in the convergence study of the corresponding BDS.

III. SET–VALUED BOOLEAN DYNAMIC SYSTEMS - GLOBAL

CONVERGENCE

As it is known from Stone’s Representation Theorem [20], every
Boolean algebra is isomorphic (i.e. it possesses the same structural

properties) to a field of sets, which is, given a generic set X, a subset
Σ(X) ⊂ P(X) that is closed under finite set unions, intersections,
and complementations. For this reason, we focus on the following
class of systems:

Definition 3.1 (Set–Valued Boolean Dynamic Systems (SVBDS)):
A SVBDS is a BDS whose Boolean algebra is given by the sextuple
(Σ(X),∪,∩, C(·), ∅,X), where X is a possibly infinite set called the
unity, ∅ is the empty set, and the operators ∪, ∩, C(·) are the set
union, intersection, and complement, respectively. �

Remark 1: This class of SVBDM includes set–valued maps also
involving the set difference \ and the symmetric difference S
operations between any two sets Xi, Xj ∈ Σ(X) or between a set Xi
and a constant set A ∈ Σ(X). To show this, one can recall that both
operations can be rewritten in terms of the Boolean algebra’s basic
operations: the former can be expressed as X \Y = {x ∈ X s.t.x 6∈
Y } = {X ∩ C(Y )}, and the latter as

S : P(X)× Σ(X)→ Σ(X)
(x, y) 7→ (C(x) ∩ y) ∪ (x ∩ C(y))

. (2)

Moreover, if F involves operations with k constant sets,
A1, · · · , Ak, one can define an augmented state vector X̃ =
(X1, · · · , Xn, A1, · · · , Ak)T and consider a system defined through
the following dynamic map involving only Boolean operations on X̃:

F̃ (X̃) = (F1(X1, · · · , Xn, A1, · · · , Ak), · · · ,
Fn(X1, · · · , Xn, A1, · · · , Ak), A1, · · · , Ak)T . �

In the remainder of this section, we study under which conditions
these systems converge to a unique equilibrium. The incidence matrix
of a set–valued Boolean map F , as defined in Def. 2.7, specializes to
a matrix B(F ) ∈ {∅,X}n×n. Following the steps of [14] for binary
systems, we provide the following:

Definition 3.2 (Boolean vector distance): Given any two set–
valued vectors X,Y ∈ Σ(X)n, the Boolean vector distance between
the two vectors is described by the following application:

D : Σ(X)n × Σ(X)n → Σ(X)n

(X,Y ) 7→ (S(X1, Y1), · · · , S(Xn, Yn))
,

where Xi, Yi are the i–th components of the vectors X and Y ,
respectively, and S is the symmetric difference in Eq. 2. �
Note that D satisfies the same formal properties of a metric:

1) D(X,Y ) = D(Y,X) for all X,Y (symmetry),
2) D(X,Y ) = ∅ if, and only if X = Y (identity),
3) D(X,Y ) ⊆ D(X,Z) ∪ D(Z, Y ) (sub–additivity),

where the inclusion relation ⊆ is the partial order relation introduced
after Def. 2.1, as specialized to the Boolean Algebra of the sets.

The following Prop. 3.1–3.5 are based on results that were first
presented in the conference paper [16].

Proposition 3.1: Given any set–valued map F , it holds, for every
X,Y ∈ Σ(X)n,

D(F (X), F (Y )) ⊆ B(F )D(X,Y ) . (3)

Proof: Consider a chain of adjacent vector states, i.e. a sequence
where any two successive states differ in exactly one component,
connecting X to Y . By using the sub–additivity axiom, the i–th
component of D(F (X), F (Y )) can be decomposed as follows:

S(Fi(X1, · · · , Xn), Fi(Y1, · · · , Yn)) ⊆
⊆ S(Fi(X1, · · · , Xn), Fi(Y1, X2, · · · , Xn)) ∪
∪S(Fi(Y1, X2, · · · , Xn), Fi(Y1, Y2, X3, · · · , Xn)) ∪

· · ·
∪S(Fi(Y1, · · · , Yn−1, Xn), Fi(Y1, · · · , Yn−1, Yn)) .

(4)

Let X̃j = (X1, · · · , Xj−1, Xj , Yj+1, · · · , Yn)T and Ỹ j =
(X1, · · · , Xj−1, Yj , Yj+1, · · · , Yn)T be the j–th pair of consecutive
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state vectors in the chain. We want to prove that

S(Fi(X̃
j), Fi(Ỹ

j)) ⊆ bi,j S(Xj , Yj) , (5)

where bi,j are the elements of B(F ). If bi,j = ∅, i.e. the map Fi
is independent of the j–th component of the state, Eq 5 is trivially
satisfied, since its first member is the empty set. Let us thus focus
on the case with bi,j = X. Given the state vector X̃j , the one–input
argument function

F̃ ji : Σ(X)→ Σ(X)
Z 7→ Fi(X1, · · · , Xj−1, Z, Yj+1, · · · , Yn)

allows rewriting Eq. 5 as

S(F̃ ji (Xj), F̃
j
i (S(Xj , Sj))) ⊆ Sj , (6)

where Sj = S(Xj , Yj). Note that F̃ ji may consist only of one of the
four applications: A ∩ Z, A ∩ C(Z), A ∪ Z, A ∪ C(Z), where
A ∈ Σ(X) is a set depending on the components of X̃j , except for
the j–th one. Direct computation on the above four cases shows that
Eq. 6 holds for all Xj and all Sj , as it is shown in the following.
Indeed we have:

S(A ∩Xj , A ∩ S(Xj , Sj)) =
= (C(A) ∪ C(Xj)) ∩A ∩ S(Xj , Sj) ∪

∪A ∩Xj ∩ (C(A) ∪ C(S(Xj , Sj))) =
= A ∩ (C(Xj) ∩ S(Xj , Sj) ∪ Xj ∩ C(S(Xj , Sj))) =
= A ∩ (C(Xj) ∪Xj) ∩ Sj = A ∩ Sj ⊆ Sj ,

S(A ∩ C(Xj), A ∩ C(S(Xj , Sj))) =
= (C(A) ∪Xj) ∩A ∩ C(S(Xj , Sj)) ∪

∪A ∩ C(Xj) ∩ (C(A) ∪ S(Xj , Sj)) =
= A ∩ (Xj ∪ C(Xj)) ∩ Sj = A ∩ Sj ⊆ Sj ,

S(A ∪Xj , A ∪ S(Xj , Sj)) =
= C(A) ∩ C(Xj) ∩ (A ∪ S(Xj , Sj)) ∪

∪ (A ∪Xj) ∩ C(A) ∩ C(S(Xj , Sj)) =
= C(A) ∩ (C(Xj) ∩ S(Xj , Sj) ∪ Xj ∩ C(S(Xj , Sj))) =
= C(A) ∩ (C(Xj) ∪Xj) ∩ Sj = C(A) ∩ Sj ⊆ Sj ,

S(A ∪ C(Xj), A ∪ C(S(Xj , Sj))) =
= C(A) ∩Xj ∩ (A ∪ C(S(Xj , Sj))) ∪

∪ (A ∪ C(Xj)) ∩ C(A) ∩ S(Xj , Sj) =
= C(A) ∩ (Xj ∪ C(Xj)) ∩ Sj = C(A) ∩ Sj ⊆ Sj ,

(7)
where we made use of Eq. 2 of De Morgan’s rules, C(M ∩ N) =
C(M)∪C(N) and C(M∪N) = C(M)∩C(N) (see e.g. [18]), and of
the properties M ∩ C(M) = ∅, M∪C(M) = X, for any sets M,N ∈
Σ(X). Moreover, the second member of Eq. 4 is upper bounded
by bi,1 S(X1, Y1) ∪ bi,2 S(X2, Y2) ∪ . . . ∪ bi,n S(Xn, Yn) =
BiD(X,Y ), where Bi = (bi,1, · · · , bi,n). The thesis immediately
follows by repeating the process for all i.

Proposition 3.2: A Boolean matrix M ∈ {∅,X}n×n, with M =
{mi,j}, satisfies the Boolean inequality

D(F (X), F (Y )) ⊆ M D(X,Y ) , (8)

for all vectors X,Y ∈ Σ(X)n, if, and only if, B(F ) ⊆ M .

Proof: The sufficiency can be shown by observing that, if M =
B(F )∪∆M , where ∆M is a nonempty matrix, the right–hand side
of the inequality in Eq. 8 can be lower bounded as follows:

M D(X,Y ) = B(F )D(X,Y ) ∪∆M D(X,Y ) ⊇
⊇ B(F )D(X,Y ) ⊇ D(F (X), F (Y )) ,

where the result of Prop. 3.1 has been used.

To prove the necessity, we show that, if

M +B(F ) = {bi,j} , (9)

then there exist two vectors X,Y s.t.

M D(X,Y )+D(F (X), F (Y )) . (10)

Since both M and B(F ) belong to {∅,X}n×n, the inequality in
Eq. 9 implies that there exist i, j s.t. mi,j = ∅ and bi,j = X. Since
bi,j = X, there must exist two vectors

X = (C1, · · · , Cj−1, Xj , Cj+1, · · · , Cn)T ,
Y = (C1, · · · , Cj−1, Yj , Cj+1, · · · , Cn)T ,

where all Cs and Xj , Yj are sets in Σ(X), with Xj 6= Yj , s.t.
Fi(X) 6= Fi(Y ). This last condition implies that the right–hand side
of Eq. 10 must be nonempty. By expanding the i–th row of left–hand
side of Eq. 10, we obtain(

∪ns=1,s6=jmi,s S(Cs, Cs)
)
∪ mi,j S(Xj , Yj) = ∅ ,

since each S(Cs, Cs) = ∅ and mi,j = ∅. Thus, we have ∅ =
MD(X,Y )+D(F (X), F (Y )) 6= ∅.

Corollary 3.1: For any two set–valued maps F,G : Σ(X)n →
Σ(X)n, the incidence matrix of the function composition F (G(X))
satisfies the Boolean inequality B(F (G)) ⊆ B(F )B(G).

Proof: The proof trivially follows from above. Indeed, if (F ◦G)i
depends on Xj , then there exists k s.t. Fi depends on Xk and Gk
depends on Xj . Hence, B(F )i,k ∩ B(G)k,j = X which in turn
implies that (B(F )B(G))i,j = X.

Moreover, recalling the notions introduced in Def. 2.6, we can
provide the following:

Definition 3.3 (Boolean spectrum): The Boolean spectrum σ(·) of
a Boolean matrix A ∈ Σ(X)n×n is set of the eigenvalues of A.

A first result about the spectrum of a Boolean map is the following:

Proposition 3.3: A Boolean matrix A ∈ Σ(X)n×n, A = {ai,j},
admits the Boolean eigenvalue λ = ∅ if, and only if, it has at least
one column for which the union of all its elements is less than X,
i.e. there exists j ∈ {1, · · · , n} s.t. ∪ni=1ai,j ⊂ X.

Proof: (Sufficiency) Suppose that j satisfies the condition
∪ni=1ai,j ⊂ X. We want to prove that λ = ∅ is a Boolean eigenvalue
of A, i.e. there exists X 6= ∅ s.t. AX = ∅X = ∅. Consider a
vector whose components are empty sets except for the j–th one.
Then, we have AX = Aj Xj , where Ai is the i–th column of A,
which we want to be the vector of empty sets. This last equation
can be explicitly written as ai,1 ∩ Xj = ∅, ai,2 ∩ Xj = ∅,
ai,n ∩ Xj = ∅, which hold if, and only if, it also happens that
(a1,j ∩ Xj) ∪ (a2,j ∩ Xj) ∪ · · · ∪ (an,j ∩ Xj) = ∅, and, by the
distributivity property, that (a1,j ∪ a2,j ∪ · · · ∪ an,j) ∩Xj = ∅, and⋃n
i=1 ai,j ∩ Xj = ∅, for which the two sets are disjoint. Moreover,

the value X̄j = X \
(⋃n

i=1 ai,j
)
6= ∅ satisfies this condition and,

due to the hypothesis that ∪ni=1ai,j ⊂ X, is different from ∅, which
implies that X = (∅, · · · , ∅, X̄j , ∅, · · · , ∅)T is an eigenvector of A.

(Necessity) Suppose that λ = ∅ is an eigenvalue of A. This implies
that there exists X 6= ∅ s.t. A X = ∅. This means

⋃n
i=1 ai,j ∩

Xj = ∅, for all j. This condition is trivially satisfied for every null
component of X . For every other component of X that is different
than ∅, the component itself must be disjoint to the union of the sets
composing the corresponding column of A. This implies that their
union can not cover the entire set X, which gives the thesis.

Remark 2: Note that, if λ if an eigenvalue of a Boolean A with
associated eigenvector X , then every matrix A′ = PTAP , where P
is a permutation matrix3, has the same eigenvalue with eigenvector
PTX . To show this, left–multiply the equation AX = λX by

3P is a permutation matrix in the classical sense, but where every 0 and 1
are replaced with ∅ and X, respectively.
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PT and recall that PTP = I4. This gives (PTAP ) (PTX) =
λ (PTX), which proves the statement. �

The spectrum of a Boolean matrix may have a structure that
is impossible in Rn. The following example shows that the same
eigenvector may be associated with different eigenvalues, or that the
spectrum can be represented by the entire power set Σ(X):

Example 3.1: Consider the entire real interval X = (−∞,∞) and
the two following matrices

A1 =

(
∅ {13}

(17, 28] X

)
; A2 =

(
[3, 5) X

X {4}

)
.

A1 admits the eigenvalue λ = ∅ by Prop. 3.3, being the union of its
first column’s elements is less than X, with associated eigenvectors
Vλ = (X, ∅)T , where X is any set in (−∞, 17]∪(28,∞). Moreover,
A2 does not admit the eigenvalue λ = ∅ by Prop. 3.3, while any
scalar λ ⊆ X \ ∅ is an eigenvalue of A2, with associated eigenvector
Vλ = (X,X)T , with X ⊆ λ. �

A complete characterization of the Boolean spectrum of a generic
map is complex (see e.g. the work in [21]). However, for a subclass
of these maps, the two following results can be stated:

Proposition 3.4: A matrix A ∈ {∅,X}n×n admits the Boolean
eigenvalue λ = X if, and only if, there exist no permutation bringing
A in strictly lower or upper triangular form.

Proof: (Sufficiency) Supposing the existence of a permutation
matrix P s.t. A′ def

= PTAP is strictly lower triangular, a vector
X 6= ∅ s.t. A′X = XX = X does not exist. This trivially holds
due to the form of matrix A′. Direct computation gives:

∅ = X1 ,
a′2,1 ∩ X1 = X2 ,

a′3,1 ∩ X1 ∪ a′3,2 ∩ X2 = X3 ,
...

a′n,1 ∩ X1 ∪ · · · ∪ a′n,n−1 ∩ Xn−1 = Xn .

The value λ = X is not an eigenvalue of A since the only vector
solving the system is X = ∅.

(Necessity) We need to prove that, if λ = X is not an eigenvalue
of A, then there exists a permutation that brings A in strictly lower
triangular form. Note that X is an eigenvalue of A if, and only if,
A has a fixed point. So, let us start imposing that the vector w =
(X, . . . ,X)T is not a fixed point. Then, if A has not an empty row, the
scalar product between every row of A and w is X, and therefore w
would be a fixed point. Then suppose that the i–th row of A is made
of empty sets. We can now apply to A a permutation that exchanges
the i–th row with the first one, and then exchanges the i–th with the
first column. In this way we obtain a matrix where the first row is
empty. By induction, suppose that there exists a permutation matrix
P s.t. PTAP has the form

∅ · · · ∅ ∅ · · · ∅
a′2,1 · · · ∅ ∅ · · · ∅

...
. . .

...
...

. . .
...

a′i,1 · · · a′i,i−1 ∅ · · · ∅
a′i+1,1 · · · a′i+1,n

...
. . .

...
a′n,1 · · · a′n,n


,

and consider the vector v = (∅, . . . , ∅,X, . . . ,X)T , where the first i
rows are null. v is not a fixed point of PTAP only if there exists j >
i s.t. the j–th row of PTAP has the form (a′j,1, . . . , a

′
j,i, ∅, . . . , ∅).

We can now apply to PTAP a permutation that exchanges the j–
th row with the i–th one, and then exchanges the j–th with the i–th

4I is the identify matrix with X on its diagonal and ∅ elsewhere.

column. The inductive step is complete since we obtain the following
matrix: 

∅ · · · ∅ ∅ · · · ∅
a′2,1 · · · ∅ ∅ · · · ∅

...
. . .

...
...

. . .
...

a′i+1,1 · · · a′i+1,i ∅ · · · ∅
a′i+2,1 · · · a′i+2,n

...
. . .

...
a′n,1 · · · a′n,n


,

which concludes the proof.
Proposition 3.5: If A ∈ {∅,X}n×n is s.t. X /∈ σ(A), then σ(A) =

Σ(X) \ X.
Proof: By Prop. 3.4, we can assume that A is strictly lower

triangular. Therefore, for every scalar λ ⊂ X, the non–null vector
v = (∅, · · · , ∅, C(λ))T is an eigenvector of A associated with the
eigenvalue λ, since it holds ∅ = Av = λ v = ∅.

Corollary 3.2: For a matrix A ∈ {∅,X}n×n, the spectrum σ(A)
is given by either X or Σ(X) \ X.

Proof: The proof straightforwardly follows from Prop. 3.4 and
Prop. 3.5.

Definition 3.4 (Contractive map): A set–valued Boolean map F :
Σ(X)n → Σ(X)n is said to be contractive w.r.t. the vector distance
D, if there exists a matrix M ∈ {∅,X}n×n, s.t. X /∈ σ(M),

D(F (X), F (Y )) ⊆M D(X,Y ) , for all X,Y ∈ Σ(X)n . �

Remark 3: While Prop. 1 implies that, for every generic set–
valued F , the distances D(X,Y ) and D(F (X), F (Y )) are always
comparable through the incidence matrix B(F ), it is not ensured
for F to satisfy the contractivity requirement of Def. 3.4, which is
one of the reasons why contractivity is only sufficient for the global
convergence of the corresponding SVBDS. �

Proposition 3.6: A set–valued Boolean map F is contractive if,
and only if, X 6∈ σ(B(F )).

Proof: The sufficiency is trivially satisfied by choosing M =
B(F ). The necessity can be proved as follows. Let M be the Boolean
matrix of Def. 3.4. Since X 6∈ σ(M), by Prop. 3.4, there exists
a permutation P s.t. PTMP is strictly triangular. Moreover, by
Prop. 3.2, we have that B(F ) ⊆ M , and thus that also the matrix
PTB(F )P is strictly triangular. Finally, by Prop. 3.5, we have that
σ(B(F )) = Σ(X) \ X, which gives the thesis.

Definition 3.5 (Global Convergence): A SVBDS X(t + 1) =
F (X(t)), with F : Σ(X)n → Σ(X)n, is globally convergent, if
there exist q ∈ N and a unique ξ ∈ Σ(X)n s.t. for all X ∈ Σ(X)n,
it holds F t(X) = ξ for t ≥ q. �

A result characterizing the global convergence of a SVBDS is the
following:

Theorem 3.1: If the map F is contractive w.r.t. the vector distance
D, the SVBDS X(t+ 1) = F (X(t)) is globally convergent.

Proof: Since F is contractive, by Prop. 3.6, X /∈ σ(B(F )), and
B(F ) is strictly lower or upper triangular, up to a transformation
PTB(F )P , with P a permutation matrix. This implies the existence
of a non–negative integer q ≤ n s.t. (B(F ))q = ∅. By Corollary 3.1,
we have B(F q) = B(F · · · F ) ⊆ B(F ) · · · B(F ) = (B(F ))q =
∅, which means that the application F q is independent of X , i.e. there
exists ξ ∈ Σ(X)n s.t., for all X ∈ Σ(X)n, we have F q(X) = ξ.
Moreover, it holds that F q+1(ξ) = F q(F (ξ)) = ξ, being F q is
constant, and that F q+1(ξ) = F (F q(ξ)) = F (ξ), thus F (ξ) = ξ,
i.e. ξ is a fixed point of F . Suppose by absurdity that ξ is not unique,
i.e. there exists η ∈ Σ(X)n, η 6= ξ s.t. F (η) = η. By Prop. 3.1, we
have D(ξ, η) = D(F (ξ), F (η)) ⊆ B(F ) D(ξ, η), which repeated q
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times gives D(ξ, η) ⊆ (B(F ))q D(ξ, η) = ∅, since (B(F ))q = ∅.
Being D(ξ, η) = ∅ we have the contradiction ξ = η.

Example 3.2: Consider a discrete–time dynamic system X(t +
1) = F (X(t)), where X = (X1, X2, X3)T ∈ Σ(X)3, F and thus
its incidence matrix are

F (X) =

 X1 ∪ (X2 ∩X3)
X1 ∪ C(X2)

C(X1) ∩ C(X2) ∩ C(X3)

 , B(F ) =

 X X X
X X ∅
X X X

 .

(11)
By Prop. 3.4, σ(B(F )) contains the eigenvalue X, and thus, by
Prop. 3.6, F is not contractive. �

We can finally prove the following result establishing a condition
for global consensus convergence for a class of SVBDS:

Proposition 3.7 (Consensus of Linear SVBDS): A linear SVBDS
of the form X(t + 1) = AX(t) possesses at least a set–valued
equilibrium point that is a consensus state if, and only if,

n⋂
i=1

ai,1 ∪ ai,2 ∪ · · · ∪ ai,n 6= ∅ .

Proof: The point 1n ξ is a consensus equilibrium state if, and
only if, A 1n ξ = 1n ξ, i.e., for all i = 1, · · · , n, (ai,1 ∪ ai,2 ∪
· · · ∪ ai,n) ξ = ξ. This holds if, and only if, the intersection of all
matrix rows is not the emptyset.

IV. BINARY ENCODING OF SET–VALUED BOOLEAN DYNAMIC

SYSTEMS

While the results in Section III are very promising, a complete
characterization of the spectrum of a general Boolean matrix is still
far. Such an analysis is much simpler in the case of binary dynamic
systems, which are BDS based on the simplest Boolean algebra
where B̃ = B = {0, 1} is the binary domain, ∧ is the logical
product (“and”) ·, ∨ is the logical sum (“or”) +, and ¬ is the “not”
operator. Local convergence for binary dynamic systems has been
addressed by introducing the notion of a discrete derivative [15]. A
possible generalization of this notion for SVBDS is represented by
the so–called Boolean derivative, proposed in [22]. However, this
formulation of “derivative” gives rise to matrices containing not only
the empty set and the unity, for which results characterizing their
spectrum cannot be easily obtained.

For this reason, in the remainder of the paper, we pursue a
different approach, which applies to SVBDS and allows their local
convergence to be fully characterized. We show how a SVBDS can
be translated into a binary dynamic system x(t+1) = f(x(t)), where
x ∈ Bκ is binary state vector, and f : Bκ → Bκ is a binary iterative
map, and κ is a suitable dimension [22]. We say that the above
binary system encodes a SVBDS (see Def. 3.1), in the sense that
every execution of the original system can be obtained by simulating
the binary one. To this purpose, we first need to give the following
definitions:

Definition 4.1 (Induced Unity Partition): Given a set–valued vec-
tor X̄ = (X̄1, · · · , X̄n)T , with each X̄i ∈ Σ(X), we call the induced
unity partition the following collection of sets:

Z̄1(X̄) = X̄1 ∩ X̄2 ∩ · · · ∩ X̄n−1 ∩ X̄n ,
Z̄2(X̄) = X̄1 ∩ X̄2 ∩ · · · ∩ X̄n−1 ∩ C(X̄n) ,
Z̄3(X̄) = X̄1 ∩ X̄2 ∩ · · · ∩ C(X̄n−1) ∩ X̄n ,
Z̄4(X̄) = C̄(X1) ∩ X̄2 ∩ · · · ∩ X̄n−1 ∩ X̄n ,
Z̄5(X̄) = C̄(X1) ∩ X̄2 ∩ · · · ∩ X̄n−1 ∩ C̄(Xn) ,

...
Z̄κ−1(X̄) = C(X̄1) ∩ · · · ∩ C(X̄n−1) ∩ X̄n ,
Z̄κ(X̄) = C(X̄1) ∩ · · · ∩ C(X̄n−1) ∩ C(X̄n) ,

where κ = 2n. �

It is straightforward to verify that the above sets form a partition of
X, i.e. Z̄i ∩ Z̄j = ∅, and Z̄1 ∪ · · · ∪ Z̄n = X. Let Z(X̄) be the
smallest collection of sets closed under set union and including Z̄i,
i = 1, · · · , κ.

Definition 4.2 (Binary Encoding): Given a unity partition
Z̄1, · · · , Z̄κ, a binary encoding is represented by a left–invertible
application L : Z(X̄)→ Bκ, called the encoder map, that associates
any set Xi ∈ Z(X̄) with a κ–dimensional binary vector xi whose
h–th component is 1 if, and only if, Xi has non–null overlapping
with the set Z̄h, i.e. xi = L(Xi) where

L : Z(X̄)→ Bκ

Xi 7→ xi =
(
xi1, · · · , xiκ

)T
, xih =

{
0 if Xi ∩ Z̄h = ∅ ,
1 otherwise .

The left–inverse relation L† : Bκ → Z(X̄), referred to as the decoder
map, returns the set Xi originally associated with a binary vector xi,
i.e. Xi = L†(xi) where

L† : Bκ → Z(X̄)
xi 7→ Xi =

⋃
h=1,··· ,κ , xi

h
=1 Z̄h . �

Definition 4.3: Given two Boolean Algebras with domain sets
B̃1 and B̃2, respectively, two functions Φ1 : B̃n1 → B̃1 and
Φ2 : B̃n2 → B̃2 are formally identical, if Φ1 can be obtained from Φ2

by replacing the operations of the second algebra involved in Φ2 with
the corresponding one in the first algebra, and vice–versa.

In the remainder of this section, by proving that all sets that can
be obtained from arbitrary combination of unions, intersections, and
complements of the sets X̄i, can be described as suitable unions of
the sets Z̄1, · · · , Z̄κ, we provide a method to find a binary encoding
of the set–valued Boolean map F . This fact is formalized in the
following main result:

Theorem 4.1 (Binary Encoding of SVBDS): Given a generic set–
valued Boolean map F : Σ(X)n → Σ(X)n and an initial set–valued
vector state X0 ∈ Σ(X)n, the evolution X(t), for t = 0, 1, · · · , of
the SVBDS

X(t+ 1) = F (X(t)) ,
X(0) = X0 ,

can be computed as
X(t) = L†(x(t)) ,

where L is the binary encoding associated with the unity partition cor-
responding the sets X0

1 , · · ·X0
n, and x(t) ∈ Bn×κ, for t = 0, 1, · · · ,

is the evolution of the binary dynamic system

(xi,1(t+ 1), · · · , xi,κ(t+ 1)) =
(fi(x1,1(t), · · · , xn,1(t)), · · · , fi(x1,κ(t), · · · , xn,κ(t))) ,

(xi,1(0), · · · , xi,κ(0)) = L(X0
i )T ,

for i = 1, · · · , n, where each function fi : Bκ → B is formally
identical to the corresponding function Fi.

Proof: As a first step we need to prove that the intersection, the
union, and the complement of any two sets X̄i and X̄j can be com-
puted by operating bitwise logical product, sum, and complement,
respectively, on the binary vectors x̄i = L(X̄i) and x̄j = L(X̄j),
and then projecting the results back through the left–inverse map L†.
First consider the following set intersection:

X̄i ∩ X̄j = L†(x̄i) ∩ L†(x̄j) =

=
(⋃κ

h=1, x̄i
h

=1 Zh
)
∩
(⋃κ

l=1, x̄
j
l
=1
Zl
)
,

which can be expanded, by distributing the set intersection, as the
union of the sets given by the intersection of one Zh with one Zl.
As all Zi are disjoint, only those Zi appearing in both the original



7

sets, X̄i and X̄j , remain in the intersection. Therefore, we can write

X̄i ∩ X̄j =
⋃κ
h=1 , (x̄i

h
=1)∧ (x̄

j
h

=1)
Zh =

=
⋃κ
h=1 , x̄h=1 Zh = L†(x̄) ,

where x̄ ∈ Bκ is obtained through the following bit–wise operation
on the vectors x̄i and x̄j :

x̄ = x̄i x̄j = (x̄i,1 x̄j,1, · · · , x̄i,κ x̄j,κ) ,

which proves the correspondence relation:

X̄i ∩ X̄j
L


L†

x̄i x̄j . (12)

Moreover, consider the following set union:

X̄i ∪ X̄j = L†(x̄i) ∪ L†(x̄j) =

=
(⋃κ

h=1 , x̄i
h

=1 Zh
)
∪
(⋃κ

l=1 , x̄
j
l
=1
Zl
)

=

=
⋃κ
h=1,(x̄i

h
=1∨ x̄j

h
=1)

Zh =
⋃κ
h=1,x̄h=1 Zh =

= L†(x̄) ,

with
x̄ = x̄i + x̄j = (x̄i,1 + x̄j,1, · · · , x̄i,κ + x̄j,κ) ,

which proves the correspondence relation:

X̄i ∪ X̄j
L


L†

x̄i + x̄j . (13)

Finally, consider the following complementation of two sets:

C(X̄i) = C(L†(x̄i)) = C
(⋃κ

h=1 , x̄i
h

=1 Zh
)

=

=
⋂κ
h=1 , x̄i

h
=1 C(Zh) .

By definition C(Zh) is the set of points not belonging to Zh, that
can be obtained as the union of all the other partition sets:

Z̄h = C(Zh) =
⋃κ
h′=1,h′ 6=h Z

′
h =

= Z1 ∪ Z2 ∪ · · · ∪ Zh−1 ∪ Zh+1 ∪ · · · ∪ Zκ =

= L†(z1) ∪ L†(z2) ∪ · · · ∪ L†(zh−1)∪
∪L†(zh+1) ∪ · · · ∪ L†(zκ) =

=
⋃κ
l=1,αl,h=1 Zl ,

with αh = z1 +z2 + · · ·+zh−1 +zh+1 + · · ·+zκ. Easy computation
gives a logical vector αh = (1, . . . , 1, 0, 1, . . . , 1)T containing all
entries to 1 except for the h–th one. Finally, intersection of all Z̄h
yields:

C(X̄i) =
⋂κ
h=1 , x̄i

h
=1 Z̄h =

=
⋂κ
h=1 , αh=1 Zh, with α = α1 α2 . . . αr ,

where r is the number of x̄i’s non–null components. As all these
components are assigned with a logical vector αl containing a null
element at position l, and as all these components are considered, the
sets that remain in the intersection are those not belonging to X̄i, or
in other words, for which x̄ih = 0. Hence, we have

C(X̄i) =
⋃κ
h=1 , x̄i

h
=0 Zh =

⋃κ
h=1 , x̄i

h
=1 Zh =

= L†(yi) ,

with
yi = ¬x̄i = (¬x̄i,1, · · · ,¬x̄i,κ) ,

which proves the correspondence relation:

C(X̄i)
L


L†
¬ x̄i . (14)

The proof of the theorem can now be given as follows. First assume
the choice X̄ = (X̄1, · · · , X̄n) = X0. The generic function Fi,
involved in the application F , generates a new set X̄ ′i , by combining,
according to a suitable order, pairs of the elements of X̄ or of their
combinations, via set intersection, union, and complement. Based on
the discussion above, it follows that X̄ ′i is a set that can be obtained
by operating, with the same order, all the corresponding bit–wise
logical operations on suitable logical vectors. More precisely, having
denoted with fi the binary function formally identical to Fi and given
the binary vectors x̄i = L(X̄i), we can write X̄ ′i = L†(x̄′i), where

x̄′i = (x̄′i,1, · · · , x̄′i,κ) =
= (fi(x̄1,1, · · · , x̄n,1), · · · , fi(x̄1,κ, · · · , x̄n,κ)) ,

which proves the correspondence relation:

Fi(X̄)
L


L†

(fi(x̄1,1, · · · , x̄n,1), · · · , fi(x̄1,κ, · · · , x̄n,κ)) .

Repeating the same reasoning on the new state X̄ ′ = (X̄ ′1, · · · , X̄ ′n)T

of the SVBDS yields to the state X̄ ′′, which can also be expressed
as a suitable union of the sets Z̄i. This fact also shows that the same
binary encoding can be used at every time step t, which concludes
the proof.

Remark 4: Note that, although the binary encoding L depends
on the initial state X(0), the above theorem implies that the same
encoding can be used during the entire evolution of the original
SVBDS.

Remark 5: Reordering the binary state variables based on their
second index reveals that the evolution of a SVBDS can be computed
through that of the following κ decoupled binary systems:

(x1,j(t+ 1), · · · , xn,j(t+ 1)) = φ (x1,j(t), · · · , xn,j(t)) ,

for j = 1, · · · , κ, where

φ : Bn → Bn y1

...
yn

 7→
 f1(y1, · · · , yn)

...
fn(y1, · · · , yn)

 . (15)

While each of these systems are initialized with a different state, they
share the same binary dynamic map φ.

Example 4.1: Consider again the system of Example 3.2, where
the unity is X = [0,∞) and system’s initial state is X(0) =
([1, 5], [3, 7], [2, 3) ∪ [4, 5] ∪ [6,∞))T . The first two values of the
system’s state can be obtained according to Eq. 11, which yields

X(1) =

 [1, 5] ∪ [6, 7]
[0, 5] ∪ (7,∞)

[0, 1)

 , X(2) =

 [0, 5] ∪ [6, 7]
[1, 7]
(5, 6)

 .

(16)
The same results can be obtained by using the binary encoding of
the system. We first need to consider the collection of sets

Z1 = X1 ∩X2 ∩X3 = [4, 5] ,
Z2 = X1 ∩X2 ∩ C(X3) = [3, 4) ,
Z3 = X1 ∩ C(X2) ∩X3 = [2, 3) ,
Z4 = X1 ∩ C(X2) ∩ C(X3) = [1, 2) ,
Z5 = C(X1) ∩X2 ∩X3 = [6, 7] ,
Z6 = C(X1) ∩X2 ∩ C(X3) = (5, 6) ,
Z7 = C(X1) ∩ C(X2) ∩X3 = (7,∞) ,
Z8 = C(X1) ∩ C(X2) ∩ C(X3) = [0, 1) ,

and then associate each state Xi with a binary vector xi ∈ B8. Based
on Theorem 4.1, the original system can be simulated by the binary
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dynamic system x(t+ 1) = f(x(t)), where x = (xT1 , x
T
2 , x

T
3 )T and

f(x) = (x1,1 + x2,1x3,1, · · · , x1,8 + x2,8x3,8,
x1,1¬x2,1, · · · , x1,8¬x2,8,
¬x1,1¬x2,1¬x3,1, · · · ,¬x1,8¬x2,8¬x3,8) ,

(17)

with initial state x(0) = (xT1 (0), xT2 (0), x3(0)T )T , where
x1(0) = L(X1(0)) = (1, 1, 1, 1, 0, 0, 0, 0), x2(0) =
L(X2(0)) = (1, 1, 0, 0, 1, 1, 0, 0), and x3(0) = L(X3(0)) =
(1, 0, 1, 0, 1, 0, 1, 0). The first two values of the binary state
are x(1) = (x1(1), x2(1), x3(1))T = f(x(0)) and x(2) =
(x1(2), x2(2), x3(2))T = f(x(1)), with

x1(1) = (1, 1, 1, 1, 1, 0, 0, 0) ,
x2(1) = (1, 1, 1, 1, 0, 0, 1, 1) ,
x3(1) = (0, 0, 0, 0, 0, 0, 0, 1) ,

x1(2) = (1, 1, 1, 1, 1, 0, 0, 1) ,
x2(2) = (1, 1, 1, 1, 1, 1, 0, 0) ,
x3(2) = (0, 0, 0, 0, 0, 1, 0, 0) ,

which corresponds to the original system’s states

X(1) = L†(x(1)) =

 Z1 ∪ Z2 ∪ Z3 ∪ Z4 ∪ Z5

Z1 ∪ Z2 ∪ Z3 ∪ Z4,∪Z7 ∪ Z8

Z8

 ,

X(2) = L†(x(2)) =

 Z1 ∪ Z2 ∪ Z3 ∪ Z4 ∪ Z5 ∪ Z8

Z1 ∪ Z2 ∪ Z3 ∪ Z4 ∪ Z5 ∪ Z6

Z6


being clearly equal to the values obtained in Eq. 16. �

V. CONVERGENCE REVISITED AND COMPLETED

We first show how the encoding technique presented above gives
rise to the same global convergence conditions of Section III. First
recall from [14] the following notions and result:

Definition 5.1 (Spectral radius): Given a binary matrix A ∈
Bm×m, its spectral radius ρ(A) is given by its biggest eigenvalue
in the sense of the partial order relation ≤.

Definition 5.2 (Binary Vector Distance): Given two binary vectors
x, y ∈ Bm, the binary vector distance between the two vectors is
represented by the application

d : Bm × Bm → Bm

(x, y) 7→ (x1 ⊕ y1, · · · , xm ⊕ ym)
,

where ⊕ is the exclusive disjunction

⊕ : B× B→ B
(xi, yi) 7→ (¬xi yi) + (xi ¬yi)

.

Note that the Boolean vector distance of Def. 3.2 specializes to the
binary vector distance if the domain B̃ is binary.

Theorem 5.1: A map f : Bm → Bm is contractive w.r.t. the binary
vector distance d if, and only if, the following equivalent conditions
hold: 1) ρ(B(f)) = 0, 2) there exists a permutation matrix P s.t.
PTB(f)P is strictly lower or upper triangular; 3) B(f)q = 0, with
0 ≤ q ≤ m. Moreover, if f is contractive, there exists a positive
integer q ≤ m s.t. fq , the composition of f with itself q times, is a
constant map, i.e. it is independent of the input vector. �

Consider a SVBDS characterized by a set–valued map F :
Σ(X)n → Σ(X)n and its corresponding binary dynamic system
characterized by the function f : Bm → Bm, with m = nκ. We
first want to show that the properties of global contractivity of F can
be investigated in the binary domain by studying the same properties
of f . To this purpose we can prove the following:

Lemma 5.1: Having denoted with B(f) the incidence matrix of f ,
the following equivalence holds {B(F )}i,j = X if, and only if,
{B(f)}2n(i−1)+1:2n(i−1),2n(j−1)+1:2n(j−1) = I , where I is the
identity matrix and the notation Mi:j,k:l indicates a sub–matrix of
M obtained by extracting its rows from i to j and its columns from
k to l.

Proof: First rewrite the map F (X1, . . . , Xn) =
(F1(X1

i1 , . . . , X
1
ik1

), · · · , Fn(Xn
i1 , . . . , X

n
ikn

))T , where Xj
il

are the
variables on which the j–th component of the image of F actually
depends. By the encoding map, we have that B(f) ∈ Bnκ×nκ

equals
0 . . . 0

i11︷︸︸︷
I 0 · · ·

i12︷︸︸︷
I · · ·

i1k1︷︸︸︷
I · · · 0

... · · · · · · · · · · · · · · · · · · · · · · · · · · ·
...

0 · · · I︸︷︷︸
in1

0 · · · I︸︷︷︸
in2

0 · · · I︸︷︷︸
in
kn

· · · 0


,

where 0 and I are here the zero and identity matrices, respectively.
The thesis easily follows since the matrix B(F ), by replacing 0 with
∅ and I with X, has exactly the same form:

0 . . . 0

X1
1︷︸︸︷

X 0 · · ·

X1
2︷︸︸︷

X · · ·

X1
k1︷︸︸︷
X · · · 0

... · · · · · · · · · · · · · · · · · · · · · · · · · · ·
...

0 · · · X︸︷︷︸
Xn1

0 . . . X︸︷︷︸
Xn2

0 · · · X︸︷︷︸
Xn
kn

· · · 0


.

Theorem 5.2 (Global Convergence): The dynamic map F :
Σ(X)n → Σ(X)n of a SVBDS is contractive if, and only if, its
encoding L(F ) : Bnκ → Bnκ is contractive.

Proof: By Theorems 5.1 and 3.1, it is sufficient to prove
that X 6∈ σ(B(F )) if, and only if, ρ(B(f)) = 0. We have
that X /∈ σ(B(F )) if, and only if, there exists a permutation
matrix P s.t. PTB(F )P is strictly lower or upper triangular, and
Theorem 5.1 assures that ρ(B(f)) = 0 if, and only if, there
exists a permutation matrix p s.t. pTB(f)p is strictly lower tri-
angular. By Lemma 5.1, it holds {B(F )}ij = X if, and only if,
{B(f)}2n(i−1)+1:2n(i−1),2n(j−1)+1:2n(j−1) = I , which immediately
implies that X 6∈ σ(B(F )) if, and only if, ρ(B(f)) = 0.

Remark 6: It is worth remarking that, for some initial conditions
X(0), the induced unity partition Z̄i, for i = 1, · · · , κ, can be
degenerate, i.e. some sets in the collection can be emptysets. For
this specific initial condition the original SVBDS may converge
notwithstanding the fact that state components of the encoded binary
system associated with empty sets may not converge. However, other
initial conditions certainly exist s.t. the same state components are not
associated to empty sets, hence the necessity that the encoded binary
system global convergence for the same property for the SVBDS.

Remark 7: ρ(B(f)) = 0 if, and only if, ρ
(
B̃(F )

)
= 0, where

B̃(F ) is the matrix obtained substituting 1 to X and 0 to ∅. This
can be easily seen by using the equivalent formulation in terms of
permutation matrices given by Theorem 5.1. �

Example 5.1 (Cont’d): Consider again the system of Example 3.2.
Following the derivation of the associated logical system (Eq. 17),
the incidence matrix of the corresponding binary dynamic system is
B(f) = {Ci,j}, with Ci,j ∈ B8×8 and Ci,j = I8 for i 6= 2, j 6= 3
and C2,3 = 08, where 08 and I8 are the null and identity matricies of
dimension 8, respectively. According to Theorem 5.2, the system of
the Example 3.2 is contractive if, and only if, its binary dynamic
system is contractive. Based on Theorem 5.1, this system is not
contractive, since B(f) cannot be put in a strictly triangular form
by a permutation matrix (there should be a zero row). Then, based
on Theorem 5.2, we can conclude that the system of Example 3.2 is
not contractive, as we obtained in Section III by using Theorem 3.1. �
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We now move on to attack the study of local convergence of a
SVBDS, for which we recall from [15] the following definitions
and results on the local convergence of a binary map f about an
equilibrium point x s.t. f(x) = x.

Definition 5.3 (Von–Neumann Neighborhood (VNN)): The VNN
of a point x ∈ Bm is the set V (x) of all points differing from x
in at most one component, i.e. V (x) = {x, x̃1, · · · , x̃m}, where
x̃j = (x1, · · · , xj−1,¬xj , xj+1, · · · , xm)T .

Definition 5.4 (Discrete Derivative): The discrete derivative of a
binary map f : Bm → Bm at a point x ∈ Bm is a binary matrix
f ′(x) = {f ′i,j}, s.t. f ′i,j = 1 if, and only if, a variation in the j–th
component of x produces a variation in the i–th component of f(x),
i.e., f ′i,j(x) = fi(x)⊕ fi(x̃j).

Definition 5.5: An equilibrium point x∗ ∈ Bm is attractive in its
VNN V (x∗) if, for all y ∈ V (x∗), the following relations hold: 1)
f(y) ∈ V (x∗), and 2) ∃ m̄ ∈ N s.t., fm̄(y) = x∗.

Definition 5.6: A binary map f is said to be locally convergent at
an equilibrium point x∗ if x∗ is attractive in its VNN.

Theorem 5.3: An equilibrium point x∗ ∈ Bm is attractive in its
VNN if, and only if, the following two relations hold: 1) ρ(f ′(x∗)) =
0, and 2) f ′(x∗) contains at most one element to 1 in each column. �
We can now focus on a generic SVBDS with an equilibrium point
given by X∗ = (X∗1 , · · · , X∗n)T ∈ Σ(X)n. The following definitions
and results extend the corresponding ones in [15]:

Definition 5.7 (Complemented Neighborhood (CN)): The
CN Ṽ (X∗) of a point X∗ ∈ Σ(X)n is the set of
points differing from it in at most one complemented
component, i.e., Ṽ (X) = {X, X̃1, · · · , X̃n}, with
X̃j = (X∗1 , · · · , X∗j−1, C(X∗j ), X∗j+1, · · · , X∗n)T . �
Note that, if X∗ ∈ Σ(X)n, it also holds that Ṽ (X∗) ∈ Z(X∗).

Definition 5.8: An equilibrium point X∗ of F : Σ(X)n → Σ(X)n

is attractive in its CN if the following two relations hold: 1)
F
(
Ṽ (X∗)

)
⊂ Ṽ (X∗) and 2) Fn(Y ) = X , for all Y ∈ Ṽ (X∗).

We can prove the following result:
Theorem 5.4 (Local Convergence of SVBDS): An equilibrium

point X∗ of the generic set–valued map F : Σ(X)n → Σ(X)n

is attractive in its CN V (X∗) if, and only if, the binary
equilibria y∗j = (x∗1,j , · · · , x∗n,j)T , for j = 1, · · · , κ, where
(x∗1,1, · · · , x∗1,κ, · · · , x∗n,1, · · · , x∗n,κ) = L(X∗), are all attractive in
their VNN V (y∗j ) for the binary map φ in Eq. (15).

Proof: By comparing Def. 5.3 and Def. 5.7, we first obtain that
F (Ṽ (X∗)) ∈ Ṽ (X∗) if, and only if, φ (V (y∗j )) ∈ V (y∗j ), for all y∗j .
Moreover, we also obtain that Fn(Y ) = X∗ for all Y ∈ Ṽ (X∗) if,
and only if, φn(y) = y∗j for all y ∈ V (y∗j ) and all yj . Based on this,
by Theorem 5.3, the thesis is implied.

Example 5.2 (Cont’d): Consider again the system of Example 3.2,
with a generic initial condition given by X(0) = (A,B,C)T , where
A, B, and C are time–invariant sets in Σ(X). As discussed above,
the system is not contractive (the spectrum of its incidence matrix
B(F ) contains X, or equivalently the spectral radius of the incidence
matrix B(f) of its encoding f is 1). Moreover, it is easy to verify
that the state vector obtained with A = B = X and C = ∅
is an equilibrium of the system. The partition sets of the binary
encoding are Z1 = Z3 = · · · = Z8 = ∅ and Z2 = X. After
reordering the unique non–empty set, i.e. κ = 1, we obtain the
partition set described by Z1′ = X. The encoded binary vector
state is x̄ = L(X̄) = (xT1 , x

T
2 , x

T
3 )T , with x1 = x2 = 1 and

x3 = 0, which is attractive in its VNN for the encoded binary map
f(x) = (x1,1 + x2,1x3,1 , x1,1x̄2,1 , x̄1,1x̄2,1x̄3,1)T . Therefore,
by Theorem 5.4, the equilibrium point X̄ is attractive in its CN for
the original system. �

VI. APPLICATION TO DISTRIBUTED CHART ESTIMATION

Consider a mosaicking application involving reconstruction of a
geographical chart, by using n balloon stations deployed over the
area. Let Q be the set of points on the Earth surface with latitude
and longitude comprised within 30◦N and 75◦N, and 30◦W and
50◦E, respectively, roughly corresponding to the European continent.
By acquiring a spotlight–type image of the underneath surface, each
station Ai is able to produce a local estimated chart Ii(0) ⊆ Q,
composed of a collection of connected sets representing the estimated
emerged lands. Moreover, let Vi(0) ⊆ Q be a region representing
the field–of–view of Ai, i.e., the set of points that can be “seen”
by Ai. For simplicity we model each Vi(0) as a circle centered
at the projection of Ai’s position on the Earth surface and having
radius given by a constant d. Within its field–of–view, each Ai may
incorrectly include portions of sea or neglect parts of existing lands
in Ii(0).

We assume a minimum measurement multiplicity constraint requir-
ing that each point in a subset Q′ ⊆ Q lays within the intersection of
at least r > 0 field–of–views; we further assume a bounded detection
error constraint requiring that, in every set of r stations satisfying
the measurement multiplicity constraint, at most γ of these stations
may perform an incorrect detection. By assuming that each station is
able to share data via communication with other neighboring stations,
we seek a solution enabling an end–user on the ground, willing e.g.
to use the chart information for navigation purpose, to efficiently
and promptly poll its nearest station so as to retrieve a unique and
consistent chart of the continent’s surface.

A first solution can be found by following a centralized approach.
In this solution a central processor with high computation and
memory capacities must receive the estimated charts and visibility
regions from all the stations, combine them into a global geographical
chart, and then send this chart back to all stations. To cope with
incorrect land detection, a well–known result from fault–tolerance
theory can be used [23], requiring that, for every point q ∈ Q′, the
central processor uses the estimated charts received from at least
r′ = 2γ+1 different stations including q in their field–of–view (thus
it must hold the condition r ≥ r′). Among these r′ estimated charts,
if γ is the maximum number of them that are possibly containing
detection errors at least γ+ 1 charts – the majority – contain correct
information for that point. According to this approach, the central
process can reconstruct an estimated chart I∗ by using the following
formula:

I∗ =
⋃
q∈Q

(⋃
H ∈Sγ+1(Kq)

(⋂
h∈H Ih(0)

))
, (18)

where Sα(A) returns the set of all sets of cardinality α composed of
elements in A, and

Kq = { i ∈ {1, · · · , n} | q ∈ Vi(0)} .

Intuitively, the formula can be explained as follows. For every point
q ∈ Q, it is necessary to generate all possible agent index r′–tuples
and, for each tuple, to intersect the initially estimated charts Ih(0) of
the involved agents. Note that each Ih(0) may include estimated lands
that lie outside the initial confidence region Vh(0); however these
estimated lands are dropped out from I∗ if they are not confirmed
by a sufficient number of agents. With the same reasoning, a region
of global visibility can be defined as follows, representing the region
for which the centralized process has received sufficient information
to perform high accuracy land detection:

V ∗ =
⋃
q∈Q

(⋃
H ∈Sγ+1(Kq)

(⋂
h∈H Vh(0)

))
. (19)

While it effectively solves the problem, this centralized solution is
unsatisfactory for at least three reasons: The first is non–scalability,
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since the amount of data to be elaborated by the processor requires
computation and memory capacities increasing super–linearly with
the number n of stations; secondly, the approach requires an explicit
management of message routing in order to allow every station to
reach and be reached from the central processor; third, it leads to the
implementation of a system that has a single–point of failure.

By bearing in mind the centralized solution as an indicator of
achievable performance, we seek a solution that is fully distributed,
i.e., no central processor is used, and that requires no message routing,
namely all stations must reach a consensus on the continent chart
by exchanging messages only with their one–hop neighbors. We
assume a minimum communication connectivity constraint requiring
that, for every point q ∈ Vi(0), each Ai has at least 2γ + 1
communication neighbors whose field–of–view comprises q. Let the
set–valued variable Xi ⊆ Q×Q be the state of Ai, and Ci the index
set of its communication neighbors. A possible distributed solution
can be obtained by using a SVBDS, where Ai’s state is initialized
with the value

Xi(0) = (Ii(0), Vi(0)) ,

and then iteratively updated according to the rule{
Ii(t+ 1) =

⋃
H ∈Sγ+1(Ci)

⋂
h∈H (Vh(t) ∩ Ih(t)) ,

Vi(t+ 1) =
⋃
H ∈Sγ+1(Ci)

⋂
h∈H Vh(t) .

(20)

We need to prove that, by means of the update rule in Eq. 20,
each state Xi converges to the state (I∗, V ∗). First note that, having
defined the set K = {1, · · · , n}, Eq. 18–19 can be rewritten as{

I∗ =
⋃
H ∈Sγ+1(K)

⋂
h∈H (Vh(0) ∩ Ih(0)) ,

V ∗ =
⋃
H ∈Sγ+1(K)

⋂
h∈H Vh(0) .

It is straightforward to verify that the state X∗ = 1n (I∗, V ∗) is an
equilibrium for the above SVBDS. While the system is not globally
convergent to X∗, it is possible to show that such an equilibrium
is attractive in a region that is large enough to tolerate up to γ
incorrect land detections. Let us consider the general case in which
three assumptions hold: 1) I∗ 6= ∅ and V ∗ 6= ∅, indicating that some
land exists and is in the field–of–view of at least 2γ+1 stations; 2) a
portion of sea, C(I∗), is included in the global visibility region V ∗;
and 3) V ∗ ⊂ Q, indicating that a portion of the European continent
is not in the field–of–view of at least 2γ + 1 stations. The unity
partition sets described in Section IV are given by

Z1 = I1(0) ∩ · · · ∩ In(0) ∩ V1(0) ∩ · · · ∩ Vn(0) = I∗ ∩ V ∗ = I∗,
...

Zκ = C(I1(0)) ∩ · · · ∩ C(In(0)) ∩ C(V1(0)) ∩ · · · ∩ C(Vn(0)) =
= C(I∗) ∩ C(V ∗) = C(V ∗) .

with κ = 22n. In the above equations the property I∗ ⊆ V ∗, which
can be deduced by simple reasoning on the definitions of I∗ and V ∗,
has been used. It is possible to provide physical interpretations for the
sets Z1, representing the emerged lands that can be detected by using
the information available from all stations, and Zκ, representing the
region not included in the field–of–view of at least 2γ + 1 stations.
The original SVBDS can be simulated by a binary dynamic system,
where the (i, j)–th update rule is{

ηi,j(t+ 1) =
∑
H ∈Sγ+1(Ci)

Πh∈H (vh,j(t) ηh,j(t)) ,

vi,j(t+ 1) =
∑
H ∈Sγ+1(Ci)

Πh∈H vh,j(t) ,
(21)

for i = 1, · · · , n, j = 1, · · · , κ, and the initial state is obtained from
the relations

xi(0) = (ηi,1(0), · · · , ηi,κ(0), vi,1(0), · · · , vi,κ(0)) = L(Xi(0)) ,

Figure 2. Deployment and connectivity of 135 stations over the European
continent (from top to down, A8, A73, A84, and A112 are represented with
bigger circles).

for i = 1, · · · , n. The corresponding equilibrium
point is x∗ = (η∗1 , v

∗
1 , · · · , η∗n, v∗n), with (η∗i , v

∗
i ) =

L((I∗, V ∗)) = (1, 0, · · · , 0, 1, 0, · · · , 0). After reorder-
ing the state variables according to Remark (5), i.e.
(η∗1,1, v

∗
1,1, · · · , η∗1,κ, v∗1,κ, · · · , η∗n,1, v∗n,1, · · · , η∗n,κ, v∗n,κ)T , and

thus obtaining the corresponding map φ as in Eq. 15, one can find
that the spectral radii of the discrete derivatives of φ, evaluated at
the points y∗1 = (1, · · · , 1)T and y∗2 = · · · = y∗κ = (0, · · · , 0)T , are
all null. This implies by Theorem 5.3 that each y∗j is attractive in its
VNN V (y∗j ), and hence, by Theorem 5.4, that X∗ is attractive for
the original SVBDS at least in its CN. Furthermore, consider the
region Γ composed of the states that differ in at most γ components
from x∗. It is easy to verify that the value of the map in Eq. 21
remains constant for all states in Γ, i.e., for all x̃ ∈ Γ, it holds
f(x̃) = f(x∗) = x∗. This fact tells us that Γ is included in the
region of attractiveness of x∗. By projecting back Γ to the original
system domain, we can prove that X∗ is attractive at least in the set
L†(Γ), which is large enough to tolerate γ incorrect land detections.

Remark 8: Based on the above discussion, the system in Eq. 20
is guaranteed to converge in at most 2n steps. Moreover, it has been
established that, if the set–valued map F corresponding to the update
rule in Eq. 20 is commutative, associative, and idempotent w.r.t. any
pair of its input arguments, the system’s convergence time is upper
bounded by the diameter of the communication graph [13]. In this
respect, note first that the second function of Eq. 20 is idempotent
w.r.t. any pair of its inputs. Note also that the function is commutative
and associative w.r.t. any pair of input argument set H ∈ Sγ+1(Ci).
To show this, define, for every index set H , a new fictitious input
argument as UH =

⋂
h∈H Vh(t). The set–valued function can be

written as Vi(t + 1) =
⋃
H ∈Sγ+1(Ci)

UH , which clearly satisfies
the above two properties w.r.t. the new input arguments UH . By
drawing a similar discussion about the first function in Eq. 20, we
can conclude that the communication graph’s diameter is an upper
bound for the system’s convergence time. The view that is thus finally
reconstructed and shared among the agents is unique and consistent
with all available measures. However, the required land detection
accuracy is guaranteed only within the region Q′.

Remark 9: The binary encoding of Eq. 21 is only needed for anal-
ysis purposes. Every station update its state by making computations
in the original set–valued domain, for which it is only required to
know who its neighbors are.

A more general case can be considered, where, due to noise
increasing with the distance and to local atmospheric conditions, such
as the presence of stratus clouds, eachAi can incorrectly detect points
within its field–of–view with probability ε. Each region Vi(0) can
thus be interpreted as the initial region of ε–confidence of Ai, i.e.,
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(t = 0)

(t = 2)

(t = 5)

(t = 8)

(t = 11)

Figure 3. Simulation run with 135 balloon stations and maximum number of faults per pixel given by γ = 3. Only the evolutions of the charts estimated by
4 stations is reported for space reasons: from left to right, A8 is placed approximately at latitude 66◦N and longitude 41◦E, A73 at 48◦N and 8◦W, A84 at
45◦N and 32◦E, and A112 at 39◦N and 6◦E. The network of stations effectively consents on a global map of the European continent with reduced noise.

the set of points where the probability of land detection error is not
greater than ε. Furthermore, we require, for every point in Q, that the
probability E of land detection errors in the global chart is bounded
as E ≤ Ē < 1. For each Ai, the probability of having more than γ
land detection errors in Vi(1) is

p(ε) = 1−
γ∑
k=0

(
r

k

)
εk (1− ε)r−k .

With the same reasoning, the probability of having more than γ land
detection errors in Vi(2) is p ◦ p (ε), and in Vi(t) is sε(t) = p ◦
· · · ◦ p (ε), i.e. the composition of p with itself t times. Therefore,
we need to chose a set of sensors with the probability ε satisfying
the constraint

sε(t) < Ē for all t ≥ 1 . (22)

It is possible to show that, for ε < 1
2

and for all γ, p(ε) < ε and
the function sε(t) monotonically decreases for t ≥ 1. Hence, for
an admissible error probability Ē < 1

2
, the condition in Eq. 22 is

implied by ε < Ē.

Let us finally consider a simulative example including n = 135
stations with the hypothesis of γ = 3, r = 7, ε = 0.05. By
placing the stations on a grid with mesh size δ, we satisfy the
measurement multiplicity constraint with r =

⌊
πd(d−1)

δ

⌋
+ 1, as

known from number theory [24]. Fig. 2 is a depiction of the stations’
deployment and the available communication graph. The diameter of
the communication graph, i.e. the maximum distance between any
two nodes on the graph, is 11. Let us consider a case in which
E = 0.02. Fig. 3 shows how the network of stations iteratively update
their estimated charts Ii by running an instance of the consensus
algorithm described in Eq. 20. The first row reports the initial
estimated charts of 4 stations obtained from processing of the images
taken by their onboard vision systems, while the last row reveals that
the stations have successfully converged to the centralized estimated
chart I∗. In the figures the visibility sets Vi are not drawn for
legibility purpose. Their borders roughly corresponds to the transition
zones from the regions with clear land contours to the ones containing
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only noise. We can observe that, during the estimation process, each
Vi expands as the land contours become clear and finally include the
entire chart.

VII. CONCLUSIONS

This paper focused on the convergence towards consensus on
information in distributed systems, where agents share data that is
not represented by real numbers, rather by logical values or sets.
We showed that both types of information convergence problems can
indeed be attacked in a unified way in the framework of Boolean
distributed information systems. Based on a notions of contractivity
and local convergence for Boolean dynamical systems, a necessary
and sufficient condition ensuring the global and local convergence
toward an equilibrium point is presented. Application of achieved
results to some examples was finally shown. Future works will
address the convergence of more general set–valued maps.
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