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Abstract— Effective and stable execution of a remote mani-
pulation task in an uncertain environment requires that the
task force and position trajectories of the slave robot be ap-
propriately commanded. To achieve this goal, in teleimpedance
control, a reference command which consists of the stiffness
and position profiles of the master is computed and realized
by the compliant slave robot in real-time. This highlights the
need for a suitable and computationally efficient tracking of
the human limb stiffness profile in real-time. In this direction,
based on the observations in human neuromotor control which
give evidence on the predominant use of the arm configuration
in directional adjustments of the endpoint stiffness profile,
and the role of muscular co-activations which contribute to a
coordinated regulation of the task stiffness in all directions,
we propose a novel and computationally efficient model of
the arm endpoint stiffness behaviour. Real-time tracking of
the human arm kinematics is achieved using an arm triangle
monitored by three markers placed at the shoulder, elbow
and wrist level. In addition, a co-contraction index is defined
using muscular activities of a dominant antagonistic muscle
pair. Calibration and identification of the model parameters
are carried out experimentally, using perturbation-based arm
endpoint stiffness measurements in different arm configurations
and co-contraction levels of the chosen muscles. Results of this
study suggest that the proposed model enables the master to
naturally execute a remote task by modulating the direction of
the major axes of the endpoint stiffness and its volume using
arm configuration and the co-activation of the involved muscles,
respectively.

I. INTRODUCTION

The need to manipulate objects and tools in unstructured
or hostile environments has lead to the development of
several Master-Slave teleoperation interfaces: from the most
basic, unilateral position-based, to bilateral force-reflecting
systems. Notwithstanding the widespread use of such fra-
meworks, they are known to lack substantial requirements
to render an appropriate interaction performance (e.g. soft
interactions in unilateral and stability in the latter [1], [2]).
In an attempt to overcome the limitations of conventional
teleoperation interfaces, the concept of teleimpedance control
has been recently introduced [3], [4], with several interaction
scenarios in support of the efficacy of this control concept
[3], [5], [6].
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To establish such an interface, an aggregate reference
command that includes the desired motion trajectories and
impedance profiles of the operator is realized by a com-
pliant slave robot in real-time. Unlike the results and conti-
nuous improvements in implementation of various control
frameworks that enable a robust and effective interaction
performance in active, passive or hybrid compliant robots,
a bigger issue, i.e. a suitable, real-time and computationally
efficient modelling of the master’s stiffness profile remains
to be done.

It is well known that humans modulate their limb endpoint
visco-elastic properties in different ways. One approach to
achieve this is by co-contracting muscle groups acting on the
limb [7]. Alternatively, it is performed through the adaptation
in the sensitivity of reflex feedback [8] or selective control
of the limb configuration [9]. Traditionally, the combined
effect of the above stiffness modulation mechanisms at
the arm endpoint is explored by applying position (force)
perturbations to the hand, and probing the restoring force
(displacement response) profile [10], [11]. This is usually
followed by an off-line post-processing phase to estimate
the impedance parameters. Application of such methods in
estimation of dynamic impedance profiles in multi-joint arm
movements has been extensively investigated [12].

Despite the popularity of the perturbation based approa-
ches, their real-time applications result in an inconvenient
and often impossible operation due to the interference of
the external disturbance with the hand trajectories. As a
consequence, other avenues of research seek for a more
suitable Human Machine Interface (HMI) that is particu-
larly beneficial for real-time applications [3], [13], [14].
In this direction, due to the existence of high correlations
between the muscle activations, muscular force and joint
torque profiles, a large portion of related literature utilize
electromyography (EMG) signals to account for real-time
tracking of the arm joint/endpoint stiffness profile. While
in a fixed arm configuration, such a modelling turns out to
be straightforward due to the linear association between the
EMG and arm endpoint stiffness profiles [15], the whole arm
workspace stiffness estimation appears to require a complex
modelling of the musculo-skeletal system [13], [16]. This,
however, contrasts with several studies on human motor
behaviour which suggest that the central nervous system
(CNS) solves for this complexity and redundancy in an
elegant, effective and coordinated manner [17], [18].

Observations in human neuromotor control of the arm end-
point stiffness suggest that due to i) the major contribution of
the limb geometry to efficient modifications in the orientation



of the endpoint stiffness ellipsoid, ii) ergonomic efficiency of
postural adjustments in comparison to co-contractions, and
iii) the existence of cross–joint muscles in limbs, humans
tend to maximize the use of limb postures to realize a
desired endpoint stiffness direction [19]. Concurringly, co-
contractions appear to mostly contribute to modifications in
size, rather than orientation of the stiffness ellipsoid [3], [19].
A reason for that is deemed to be the involvement of the
arm muscles in a synergistic fashion [18], [20]–[22], which
contribute to coordinated variations in the diagonal (joint
stiffness) and off-diagonal (due to the existence of cross-joint
muscles) components of the joint stiffness matrix.

On these bases, we explore the role of arm geometry and
muscular contraction in modifications in directionality and
size of the arm endpoint stiffness ellipsoid, respectively. To
do so, we investigate the configuration-dependent properties
of the joint and Cartesian stiffness profiles in humans and
illustrate that directional variations of the endpoint stiffness
ellipsoid are predominantly influenced by the arm Jacobian
than the pose-varying component of the joint stiffness.
Consequently, with the purpose of minimizing the number
of tracking points in human arm to account for the arm
geometry, an arm triangle model is introduced and used
for the estimation of joint angles and the arm Jacobian.
On the other hand, a co-contraction index is defined and
experimentally identified that appoint to the size-adjusting
component of the arm endpoint stiffness.

Having the two models identified, the endpoint stiffness of
the human arm is estimated by tracking the arm Jacobian and
the co-contraction index in real time. This enables the master
to modify the direction of the endpoint stiffness ellipsoid by
changing the arm posture, while being capable of adjusting
its volume by increasing the co-activation of the dominant
arm muscles. As a result, teleoperated tasks which require
significant modulation of the endpoint stiffness and force can
be executed effectively and naturally.

II. DIMENSIONALITY REDUCTION IN ENDPOINT
STIFFNESS REPRESENTATION

It is well-known that in a steady muscular contraction, the
arm geometry affects both the joint and endpoint stiffness
behaviour. While the configuration-dependent nature of the
joint stiffness is mainly caused by the variations in passive
joint properties such as moment arms, muscle and tendon
lengths, the calculation of the Cartesian stiffness on the other
hand, requires an additional transformation which is provided
by the arm Jacobian.

To investigate the geometric dependency of the joint and
Cartesian stiffness profiles, we address the transformation
for the joint and Cartesian stiffness of the human arm for
two nearby equilibriums [q0,KJ(p,q0),Kc(p,q0)] and [q0 +
δq,KJ(p,q0+δq),Kc(p,q0+δq)] (see [23], [24] for details)

Kc(p,q0 +δq) =
J+T (q0 +δq)[KJ(p,q0 +δq)−GJ(q0 +δq)]J+(q0 +δq),

(1)
Here, J ∈ R6×7, Kc ∈ R6×6, KJ ∈ R7, and q ∈ R7 denote

the arm Jacobian, Cartesian stiffness, joint stiffness and the

joint angle vector, respectively. p is a co-contraction index
which is considered steady in both configurations. q0 and
δq denote the initial and infinitesimal increment of the joint
angle vector, respectively. GJ(q) is defined by

GJ(q) =
∂JT (q) f0

∂q
+

∂τg(q)
∂q

, (2)

which captures the effect of external load f0 and gravity
τg(q) on Cartesian stiffness. A first order Taylor expansion
of the Cartesian stiffness gives

Kc(p,q0 +δq) = Kc(p,q0)+
∂Kc(p,q)

∂q

∣∣∣∣
q=q0

δq. (3)

By computing the last term above, we obtain

∂Kc(p,q)
∂q

∣∣∣
q0

δq =

∂J+T (q)
∂q

∣∣∣
q0

δq[KJ(p,q0)−GJ(q0)]J+(q0)+

J+T (q0)[
∂KJ(p,q)

∂q

∣∣∣
q0

δq+ ∂GJ(q)
∂q

∣∣∣
q0

δq]J+(q0)+

J+T (q0)[KJ(p,q0)−GJ(q0)]
∂J+(q)

∂q

∣∣∣
q0

δq,

(4)

which explains that the pose-varying component of the joint
stiffness matrix in Cartesian coordinates is reflected by the
only relation

J+T (q0)[
∂KJ(p,q)

∂q

∣∣∣∣
q0

δq]J+(q0).

As observed in the above equations, the arm Jacobian has
a quadratic effect in Cartesian stiffness behaviour. On the
other hand, it has been illustrated that far from the arm joint
limits, the muscle length and moment arm variations are
fairly smooth and bounded [25], [26]. For instance, in the
full range of angular displacements, the length of wrist and
elbow muscles can change by 8.5% and 55%, respectively.
However, in a proximity of the middle ranges of the arm
joints (which the experiments will be conducted), this range
is shifted towards smaller values [25]. These remarks imply
that in a certain volume of the human arm workspace, the
effect of arm geometry in directional variations of the princi-
pal axes of the Cartesian stiffness ellipsoid though Jacobian
is more effective than the role of configuration-dependent
joint stiffness term. Thus, in our model, we include the
effect of arm Jacobian in directional variations of the major
axes of the arm endpoint stiffness ellipsoid, and neglect the
configuration-dependent effect of the joint stiffness matrix.
This task-related decision is made based on the chosen trade
off between the accuracy and modelling complexity.

Furthermore, solid evidence on the coordinated stiffening
of the arm joints [3], [18], [20] which contributes to the
modifications in the volume of the endpoint stiffness ellip-
soid suggests that the active joint stiffness regulations can be
modelled as KJ = acc(p) KJ , with KJ corresponding to the
joint stiffness matrix at minimum muscle activity, and acc(p)
a size-adjusting co-contraction index. Thus,

Kc(p,q) = J+T (q)[acc(p) KJ−GJ(q)]J+(q). (5)
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Fig. 1: Human arm kinematic model.

One of the objectives of this paper is to investigate the
feasibility of the above model and illustrate that a fairly
acceptable and real-time tracking of the human arm endpoint
stiffness in 3D can be achieved using KJ (which will be
experimentally identified), tracking of the arm configuration
and the co-contraction index.

III. HUMAN ARM JACOBIAN TRACKING

As mentioned earlier, human limb kinematics play a
dominant role in geometric regulations of the endpoint
impedance and force ellipsoids [23]. As a result, so called
“natural” postures emerge while humans execute tasks which
require significant stiffness or force modulations. Therefore,
to analyse the effect of arm configuration in regulations of
Kc in (5), a model of the human arm Jacobian must be
implemented.

One way to achieve this is to measure and track the
arm joint angles in real-time. This is usually performed by
attaching several optical tracking markers or position sensors
to the human arm which brings discomfort and complexity.
To avoid that, using our previous results in modelling and
identification of the human arm kinematics in a rather simple
but accurate way, a human arm triangle model is introduced
and used for the calculation of J(q) in real-time [27].

First, we establish a typical kinematic model for the human
arm [28], as shown in Fig. 1. The corresponding DH parame-
ters are presented in Table I. The values in the parentheses
denote the offset angles of θi in a configuration which is
depicted in Fig. 1. The link frames are established in a post-
position manner. For convenience, the directions of the zb, xb
and yb axes of the base frame {b} are considered upwards,
horizontal right and horizontal forward, respectively. The
origin of the frame {b} is placed at the centre of the shoulder.
The z7 axis of the last frame {7} coincides with the unit
normal vector of the plane of palm, x7 points in the direction
of fingers, and y7 points in the inverse direction of thumb.
The origin of this frame is set to be the centre of the palm.
In addition, lu and ll denote the lengths of the upper arm and
the lower arm, respectively. lh represents the length measured
from the centre of the wrist to the centre of the palm.

Consequently, a human arm triangle model (see Fig. 2)
is defined and used for the estimation of the joint angles,

TABLE I: DH Parameters of Human Arm Kinematic Model

i(i−1Ti) θi di ai αi

0 −90
◦

0 0 −90
◦

1 θ1(90
◦
) 0 0 90

◦

2 θ2(0
◦
) 0 0 −90

◦

3 θ3(90
◦
) lu 0 90

◦

4 θ4(0
◦
) 0 0 −90

◦

5 θ5(−90
◦
) ll 0 90

◦

6 θ6(90
◦
) 0 0 −90

◦

7 θ7(0
◦
) 0 lh 180

◦

Fig. 2: Human arm triangle model.

and the Jacobian matrix. The human arm triangle model is
expressed by five parameters:

r: unit direction vector of the upper arm.
l: unit normal vector of the plane of the human arm
triangle. The direction of l is determined by the right-
hand rule, and the right-hand screw direction is the
direction of elbow extension.
α: the angle between the upper arm and lower arm.
f i: unit direction vector of the fingers.
n: unit normal vector of the plane of the palm. Its
direction points outward from the centre of the palm.

It has been demonstrated that the human arm triangle space
spanned by these five parameters has a one-to-one mapping
relationship with the joint space spanned by the seven joint
variables (see [27], [29] for details). Therefore, using this
model and assuming that the shoulder base frame data is
known, only wrist posture and elbow position measurements
are necessary to complete the model.

Furthermore, using the weight and centre of mass of the
segments of an average human arm [30], in this study, a
rough estimate of the human arm gravitational torque is
implemented using

τg(q) =
nJ

∑
i=1

JT
comi

(q)gmi, (6)

with Jcomi , mi, nJ and g being the centre of mass Jacobian
and the mass of the ith limb, number of joints, and vector
of gravitational accelerations, respectively. For more accu-
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Fig. 3: Stiffness measurement experimental setup. KUKA light-
weight robot was programmed to apply stochastic perturbations to
the human hand. Experiments were carried out in different arm
configurations with a fixed position/orientation of the wrist and
shoulder. Arm joints were allowed to vary within the redundant
manifold of the corresponding shoulder and wrist position. One
subject participated in the experiments.

rate modelling of the arm gravitational torques in different
configurations, alternative platforms such as OpenSim [31]
can be utilized.

IV. HUMAN ARM ENDPOINT STIFFNESS ESTIMATION

This section describes the procedure to identify the mini-
mum muscular contraction (minimum activity) joint stiffness
matrix KJ , and the co-contraction index acc(p). As a result, a
model of KJ is realized which contributes to the adjustments
in size of the endpoint stiffness ellipsoid (Kc). In this direc-
tion, based on the observations in support of the coordinated
activation of arm muscles in stiffness regulation tasks [7],
[18], and the presence of high correlation between the active
joint stiffness profiles and muscular activations which can
be estimated using electromyography signals (EMGs), we
acquire and process surface EMGs from a pair of antagonistic
muscles in the forearm.

To identify KJ and acc(p), assuming that J(q) and GJ(q)
are calculated and known1, Kc in (5) must be identified in
different configurations2 and co-contraction levels of the hu-
man arm. While the minimum-activity trials will be selected
for the identification of KJ , others will be utilized for the
modelling and identification of the co-contraction index.

Following standard techniques in identification of human
arm endpoint stiffness in 3D [11], stochastic perturbations
were applied to the human wrist and restoring forces were
recorded using a 6-axis force-torque sensor (ATI Inc.), which

1We assume that no endpoint forces are generated or applied to the human
arm. Thus f0 = 0 in (2).

2To strengthen our assumption on the negligence of the pose-varying
component of the joint stiffness (through moment arms and muscle-tendon
lengths), the experiments will be carried out in a reasonable workspace of
the human arm, avoiding extreme extension or flexion of the arm joints.

was placed between the robot and the handle (see Fig. 3).
KUKA lightweight robot IV was programmed in position
control mode using Fast Research Interface [32], aiming at
applying perturbation profiles to the arm endpoint through a
handle.

Experiments were carried out in eight different positions
of the wrist w.r.t the shoulder frame. These configurations
were chosen anterior to the coronal plane of the body, within
a reasonable workspace of the human arm while avoiding
singular configurations and joint limits. In each set, arm
joints were allowed to vary within the redundant manifold
of the corresponding shoulder-wrist configuration to realize
three distinct elevation angles of the elbow joint (see Fig.
3), resulting in 24 arm configurations in total. At each
configuration, the subject was asked to modulate and keep
the co-activation of the arm muscles in three different levels:
minimum-activity (0% ‖Pmax‖), Mid (30% ‖Pmax‖) and High
(60% ‖Pmax‖), generating 72 trials in total, some of which
repeated for testing purposes. ‖Pmax‖ is the maximum value
of the co-contraction indicator and is calculated by the norm3

of the processed (acquired, filtered and normalized at 700
Hz; see [3] for details) EMG signals from two dominant,
antagonistic upper arm muscles; namely Biceps (PB) and
Triceps (PT ) Brachii, hence

‖P‖= ‖[PB PT ]‖.

Throughout the experiments, ‖P‖ was illustrated to the su-
bject to keep the co-contraction levels as steady as possible.
Meanwhile, body-markers were attached to the human wrist,
elbow and shoulder for synchronized and precise tracking
of the i) human hand trajectories under perturbations and
ii) human arm Jacobian, using Optitrack motion tracking
system at 200 Hz. Acquisition, processing, control, and
synchronization algorithms were all implemented in C++.

Consequent to the acquisition and pre-processing of the
position and restoring force trajectories of the human arm
endpoint, multiple–input multiple–output (MIMO) dynamics
of the endpoint impedance was decomposed into the linear
subsystems associating each input to each output [3]. Based
on this assumption, and indicating with Fx( f ), Fy( f ) and
Fz( f ) the Fourier transforms of the endpoint force along the
axes of the Cartesian reference frame, with x( f ), y( f ) and
z( f ) the transforms of the human endpoint displacements,
the dynamic relation between the displacements and force
variations can be described byFx( f )

Fy( f )
Fz( f )

=

Gxx( f ) Gxy( f ) Gxz( f )
Gyx( f ) Gyy( f ) Gyz( f )
Gzx( f ) Gzy( f ) Gzz( f )

x( f )
y( f )
z( f )

 . (7)

A non-parametric algorithm was adopted to identify the
empirical transfer function of each of the SISO subsystems
described above in frequency domain (MATLAB, The Ma-
thWorks Inc.). The smoothed spectral estimates of input
and outputs (using windowing techniques) were fed to this
algorithm in order to identify each SISO transfer function.

3In this paper, the operator (‖.‖) refers to the Frobenius norm.



Consequently, we adopted a parametric, second order, linear
model of each impedance transfer function of the type

Gi j(s) = Ici js
2 +Bci js+Kci j, s = 2πf

√
−1 (8)

where Ic, Bc and Kc denote the endpoint inertia, viscosity and
stiffness matrices, respectively. The parameters of the second
order linear model were identified based on least squares
algorithm in frequency range from 0 to 10Hz.

In a post-processing stage, identified Cartesian stiffness
matrices from the minimum activity trails were used to
compute KJ by minimizing

‖KJ− JT (q)KcJ(q)−
∂τg(q)

∂q
‖. (9)

On the other hand, to identify acc(p) from Mid and
High muscular activity trials, a modified hyperbolic tangent
function of PB and PT is used. This choice is due to the
simplicity, flexibility and capability of this model in the
generation of various (saturated) output profiles [6], [33].
Hence,

acc(p) = 1+
c1[1− e−c2(PB+PT )]

[1+ e−c2(PB+PT )]
, (10)

with c1 and c2 being constant coefficients that can be
identified by minimizing

‖acc(p) KJ− JT (q)KcJ(q)−
∂τg(q)

∂q
‖. (11)

V. RESULTS

In this section, we evaluate the results of the identification
of the proposed model in a teleimpedance control setup.
We demonstrate that even though the calibrated model is
subject to uncertainty due to the i) use of minimum number
of muscles to account for the co-contraction index, and ii)
negligence of the pose-varying effect of KJ , it still provides
the master with an intuitive and efficient capability to realize
a desired task stiffness profile using his/her arm pose and
co-activation of the involved muscles.

A. Identification Results

Experimental identification of the endpoint impedance
matrices was performed by applying position perturbations
and acquiring the force response within 10 Hz frequency
range. In all trials, multiple and partial coherence values of
the force-position data (see Fig. 4), positive definiteness and
symmetric4 measures of the estimated impedance matrices
[3], [11] were the proving factors for the feasibility of
the acquired results. Those trails which did not satisfy the
above conditions were discarded and repeated. Consequently,
identified stiffness matrices and the corresponding human
arm Jacobian were used for the identification of KJ and
acc(p).

4By calculating Kc−KT
c

Kc+KT
c

which resulted in an average value of 0.12 overall
trials.
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Identification of KJ resulted in 14% average normalized
error value over the calibration and test minimum activity
trials, which is calculated by

eKJ
=

nme

∑
i=1

‖Kc(KJ ,qi)−Kcei‖
‖Kcei‖

, (12)

with Kc, Kce, and nme being the realized and the experimental
Cartesian stiffness matrices and the total number of minimum
activity trials, respectively.

Accordingly, identified KJ together with the computed co-
contraction index acc(PB +PT ) were utilized to compute the
modelling error for the overall number of high activation
trials (nha) as follows

eacc, KJ
=

nha

∑
i=1

‖Kc(acci ,KJ ,qi)−Kcei‖
‖Kcei‖

, (13)

which resulted in an average value of 23%. The relationship
(P < 0.0005; R2 = 0.67) between the summed muscular
activities of the antagonistic pair (|PB +PT |) and the volume
index

Π(Kce) = λ1.λ2.λ3

with λ1, λ2, and λ3 being the eigenvalues of the experimen-
tally identified endpoint stiffness matrix is illustrated in Fig.
5.
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Fig. 6: Human arm configuration (upper plots), computed pose from the processing of the arm triangle (mid plots) and estimated Cartesian
stiffness profiles along x (Kcx), y (Kcy), and z (Kcz) in different levels of the muscular activity (PB +PT ) are illustrated. Proposed model
provides the master with additional capabilities to realize the desired shape of the endpoint stiffness ellipsoid using arm configuration
(e.g. compare lower two plots of (a) and (c) in which the most stiff direction varies between y and x directions), and its size (by taking
into account the effect of cocontraction (PB +PT ) in coordinated adjustments of the endpoint stiffness profile) for intuitive execution of a
remote manipulation task.

B. Human Endpoint Stiffness Tracking

Figure 6 illustrates typical results of the tracking of the hu-
man arm endpoint stiffness profile in different arm geometry
and muscular co-contraction levels. Arm configurations (up-
per plots) of the master were tracked using the arm triangle
data and used for the estimation of the arm joint angles and
the Jacobian. Estimated poses are illustrated in middle plots,
using MATLAB’s robotic toolbox. Computed arm Jacobian
together with the co-activation index acc(PB +PT ) in two ar-
bitrary contraction levels were used to calculate the Cartesian
stiffness profiles along x (Kcx), y (Kcy), and z (Kcz) directions,
in real-time (lower plots). Results suggest that chosen arm
configurations have effectively modulated the direction of the
realized endpoint stiffness profile, providing that its volume
can be adjusted using muscular co-contractions.

The accompanying video [34] provides a simple example
on the use of the proposed human arm endpoint stiffness
estimation in a teleimpedance setup (see Fig. 7). In this
video, the estimated stiffness profile and the tracked hand
trajectories are realized by the Cartesian impedance control-
ler of the KUKA robot in real-time. As demonstrated in the
video, the subject is able to realize a desired direction and
size of the Cartesian stiffness profile in the slave robot using
his arm pose and the co-activation of the upper arm muscles,
respectively.

A possible combination of the proposed model with the
common-mode and configuration-dependent stiffness con-
troller of the robot [35], will potentially achieve an effective
and natural task execution in both master and remote sides.

VI. CONCLUSIONS

In this paper, a method for achieving effective interaction
performance in a teleimpedance control setup was presented.
To accomplish that, a novel, computationally efficient and
real-time model of the human arm endpoint stiffness was
proposed. Calibration and identification of the model para-
meters were carried out experimentally, using perturbation-
based arm endpoint stiffness measurements in different arm
configurations and co-contraction levels of the chosen mu-
scles. Experiments evaluated the efficacy of the proposed
model in generation of a desired stiffness profile, in real-
time. Results suggest that the proposed model provided
the master with the ability to regulate the direction of
the major axes of the endpoint stiffness ellipsoid and its
volume by choosing the arm pose and applying muscular
co-contractions, respectively.

Future work will concentrate on the verification of the
proposed model on more subjects and will include enhance-
ments on the modelling of the joint stiffness matrix as an
extension towards a larger workspace of the human arm.



Human arm Jacobian
(directional adjustment of EPS)
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(volume adjustment of EPS)
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Fig. 7: Block diagram of the proposed teleimpedance controller.
The arm Jacobian is computed by processing the arm triangle data
and used for directional adjustment of the endpoint stiffness profile
(EPS). Meanwhile, EMG signals are acquired from Biceps and
Triceps Brachii, processed (700 Hz) and applied to account for
the volume-adjusting component of the EPS. Resulting trajectories
are then realized by a Cartesian impedance controller in 200 Hz.
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