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Abstract—This paper presents a contribution to the problem of
obtaining an optimal synthesis for shortest paths for a unicycle
guided by an on–board limited Field–Of–View (FOV) sensor,
which must keep a given landmark in sight. Previous works
on this subject have provided an optimal synthesis for the case
in which the FOV is limited in the horizontal directions (H–
FOV, i.e. left and right boundaries). In this paper we study the
complementary case in which the FOV is limited only in the
vertical direction (V–FOV, i.e. upper and lower boundaries). With
respect to the H–FOV case, the vertical limitation is all but a
simple extension. Indeed, not only the geometry of extremal arcs
is different, but also a more complex structure of the synthesis is
revealed by analysis. We will indeed show that there exist initial
configurations for which the optimal path does not exist. In such
cases, we provide an e–optimal path whose length approximates
arbitrarily well any other shorter path. Finally, we provide a
partition of the motion plane in regions such that the optimal
or e–optimal path from each point in that region is univocally
determined.

I. INTRODUCTION

The final goal of the proposed research is to study the
problem of maintaining visibility of a set of landmarks with a
nonholonomic vehicle equipped with a limited Field–Of–View
(FOV) sensor. A preliminary analysis on local optimal paths,
in case of a set of landmarks and considering a FOV with
horizontal bounds, can be found in [1] where a randomized
planner is also proposed. To the authors’ best knowledge, no
results have already been obtained for a FOV with vertical
bounds. Hence, in this paper we consider the simplified case
of a single landmark determining global optimal paths for a
vertically limited FOV. In other words, the goal is to obtain
shortest paths from any point on the motion plane to a desired
position while keeping, along the path, a given landmark within
the vertical bounds of the camera.

Regarding optimal (shortest) paths in absence of sensor
constraints, the seminal work on unicycle vehicles [2] provides
a characterization of shortest curves for a car with a bounded
turning radius. In [3], authors determine a complete finite
partition of the motion plane in regions characterizing the
shortest path from all points in the same region, i.e. a synthesis.
A similar problem with the car moving both forward and
backward has been solved in [4] and refined in [5]. The global
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(a) Cartesian and polar coordinates
and Horizontal–Field–Of–View (H–
FOV) constraints.

(b) Vertical–Field–Of–View (V–
FOV) constraints.

Fig. 1. Mobile robot and systems coordinates. The robot’s task is to reach P
while keeping the landmark within a limited Field–Of–View (dashed lines).

synthesis for the Reeds and Shepp vehicle has been obtained
in [6] combining necessary conditions given by Pontryagin’s
Maximum Principle (PMP) with Lie algebraic tools. More re-
cently, [7], [8] present time optimal trajectories for differential–
drive robots and for nonholonomic bidirectional robots, respec-
tively. Finally, in [9], the minimum wheel rotation problem for
differential-drive robots has been solved.

On the other hand, sensor constraints deeply influence the
accomplishment of assigned tasks and hence the control laws,
especially in those cases in which robots are subject to non-
holonomic constraints. Moreover, for self-localization purposes
or maintaining visibility of objects in the environment, some
landmarks must be kept in sight. In visual servoing tasks, this
problem becomes particularly noticeable and in the literature
several solutions have been proposed to overcome it, see
e.g. [10], [11], [12]. However, the FOV problem has been
successfully solved for a unicycle–like vehicle in [13], [14],
[15] nevertheless, the resultant path is inefficient and absolutely
not optimal. Several preliminary results have been recently ob-
tained in case of navigation in environment with obstacles that
may occlude the landmark visibility, see e.g. [16] and [17]. In
[17] author propose a motion planning strategy for a humanoid
to safely navigate among obstacles while maintaining at least
one landmark in sight. The strategy is based on the synthesis
in [18] and provides a path that consists of shortest geometric
primitives. In [16] necessary and sufficient conditions for the
existence of a collision free path that ensure a given landmark
visibility also in presence of obstacles are obtained through an
iterative algorithm.

A related study, similar to the one analyzed in this paper,
has been tackled in [18] where only right and left camera
limits, i.e. the Horizontal–FOV (H–FOV) constraints, were
taken into account. The camera has been modeled as a frontal
and symmetric (with respect to the robot forward direction)



Fig. 2. Sensor model: four-sided right rectangular pyramid.

planar cone, as represented in Fig. 1(a). The constraint on
the symmetry (with respect to the robot forward direction)
of the planar cone has been relaxed in [19] where the robot
forward direction is not necessarily supposed to be included
inside the planar cone. After showing that logarithmic spirals,
straight lines and rotations on the spot are extremal arcs of the
optimal control problem, a finite alphabet of these arcs has
been obtained and the shortest paths from any point on the
motion plane to a desired final configuration, i.e. a synthesis,
has been provided. In [20], based on the geometric properties
of the synthesis proposed in [18], optimal feedback control
laws which are able to align the vehicle to the shortest path
from the current configuration are also defined, for any point
on the motion plane. Moreover, based on the same synthesis,
a switched, homography–based, visual servoing scheme is
proposed in [21] to steer the vehicle along the optimal paths.

However, in real cameras there exist also the upper and
lower limits that previous works have not taken into account.
Hence, in this work we study the complementary case in which
only upper and lower camera limits are considered, i.e. the
Vertical–FOV (V–FOV) constraints, see Fig. 1(b). The goal
of our research is to obtain first the optimal paths taking
into account both kinematics and V–FOV constraints and then
the optimal synthesis of the motion plane. Finally, from the
optimal synthesis, optimal feedback control laws might be
derived to steer the vehicle toward the goal without violating
the constraints. Once the synthesis of this problem is obtained,
the optimal synthesis for a realistic sensor modeled as a four–
sided right rectangular pyramid (see Fig. 2), can be achieved
by appropriately merging synthesis provided in [18] with that
provided in this paper.

In this work, we first show that involutes of circle, straight
lines and rotations on the spot are extremal arcs of the V–
FOV problem, and then we exploit geometric properties of
these arcs to achieve the synthesis. However, several aspects
make the problem addressed in this paper much more difficult
with respect to the one in [18] and prevent us to use the
same approach to tackle the problem. One is that there exists
a compact set around the feature for which paths reaching
it now become impracticable since they violate the V–FOV
constraints. Moreover, the whole procedure adopted in [18] for
obtaining the final synthesis is mainly based on the invariance

property of logarithmic spirals with respect to scaling (with
center at the origin). Unfortunately, involutes of circle do not
have this property and hence a different approach must be
used. Moreover, a major challenge is that, for the V–FOV case,
there exist points in the motion plane from which the optimal
path does not exist. Indeed, the paths would consist of infinite
sequences of arcs whose total lengths are anyhow proved to
be finite. On the other hand, an e–optimal path whose length
approximates arbitrarily well any other shorter path can be
determined and used to obtain an e–optimal synthesis.

Preliminary results on this problem have been published
in [22] where, for space limitations, several proofs and tech-
nical details have been omitted. In this paper we briefly report
the results in [22] necessary for the characterization of the
optimal synthesis together with the missing proofs. From the
results in [22] we will characterize the optimal and e–optimal
paths with respect to the relative positions of initial and final
points. Finally, we will provide the main contribution of the
paper that is the subdivision of the motion plane in regions of
points that are characterized by the same optimal or e–optimal
path typology, i.e. the e–optimal synthesis.

It is worth noticing that the results obtained in this paper
are necessary to determine the optimal synthesis for a FOV
with both horizontal and vertical limits. This can be done by
integrating, with a non straightforward procedure, the obtained
synthesis with the one in [18]. Thus, the complete synthesis
could be extended to the multi-feature case with the results
in [1].

As in previous works, in this paper a fixed on–board camera
is considered. There are multiple reasons for our focus on such
cameras, of both a technological and a theoretical nature.

From a technological point of view, although pan–tilt cam-
eras costs are not prohibitive, they remain much more complex
and prone to failures. Furthermore, angle measurement errors
and backlash in the mechanism may add significantly to local-
ization errors. From a functional viewpoint, having a panning
mechanism effectively widens the H–FOV by the angular range
spanned by the camera motor; similarly, the tilting mechanism
widens the V–FOV, which is the issue relevant to this paper. If
the pan and tilt angles are wide enough to cover the whole 4p

solid angle, then optimal control is trivialized to a non-limited
FOV problem. If otherwise the pan/tilt angles are limited (such
as e.g. in [16], [1], [17] and [21]), then our problem definition
remains valid, only with wider bounds.

From a theoretical point of view, however, our analysis
works in the assumption that the camera plane is orthogonal
to the motion plane. The control extremals and the synthesis
for different tilting angles needs a specific analysis. Moreover,
if the tilting angle is changed along the motion, a wholly new
optimal control problem with three instead of two inputs is
generated. The study of this problem is not considered in this
paper.

II. PROBLEM DEFINITION

Consider a vehicle moving on a plane where a right-handed
reference frame hW i is defined with origin in Ow and axes
Xw,Zw. The configuration of the vehicle is described by x (t) =



(x(t),z(t),q(t)), where (x(t),z(t)) is the position in hW i of a
reference point in the vehicle, and q(t) is the vehicle heading
with respect to the Xw axis (see Fig. 1). We assume that the
dynamics of the vehicle are negligible, and that the forward and
angular velocities, n(t) and w(t) respectively, are the control
inputs of the kinematic model of the vehicle. Choosing polar
coordinates (see Fig. 1), the kinematic model of the unicycle-
like robot is
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We consider vehicles with bounded velocities which can turn
on the spot. In other words, we assume

(n ,w) 2U, (2)

where U is a compact and convex subset of IR2, containing
the origin in its interior.

The vehicle is equipped with a rigidly fixed pinhole camera
with a reference frame hCi = {Oc,Xc,Yc,Zc} such that the
optical center Oc corresponds to the robot’s center [x(t),z(t)]T
and the optical axis Zc is aligned with the robot’s forward
direction. Cameras can be generically modeled as a four-sided
right rectangular pyramid, as shown in Fig. 2. Its characteristic
solid angle is given by W = 4arcsin

�
sin f̂ sinf

�
and e = 2f̂

and d = 2f are the apex angles, i.e. dihedral angles measured
to the opposite side faces of the pyramid. We will refer to
those angles as the vertical and horizontal angular aperture of
the sensor, respectively. Moreover, f̂ is half of the V–FOV
angular aperture, whereas f is half of the H–FOV angular
aperture.

In [18], authors have provided a complete characterization
of shortest paths towards a goal point taking into account only
a limited horizontal aperture of the camera and hence modeling
the camera FOV as a planar cone moving with the robot. The
obtained optimal paths consist of at most 5 arcs of three types:
rotations on the spot (denoted by the symbol ⇤), straight lines
(S) and left and right logarithmic spirals (T L and T R). Finally
an optimal synthesis has been obtained, i.e. a subdivision of
the motion plane in regions such that an optimal sequence
of symbols (corresponding to an optimal path) is univocally
associated to a region and completely describes the shortest
path from each point in that region to the desired goal.

In this paper, we consider only the upper and lower limits
of the camera, i.e. we assume f = p/2. Moreover, we consider
the most interesting case in which f̂ is less than p/2. The goal
is hence to obtain the optimal synthesis considering only the
V–FOV constraints.

Without loss of generality, the feature to be kept within the
vertically limited FOV lays on the axis through the origin Ow,
perpendicular to the motion plane (see Fig. 1). Referring to
Fig. 2, h+hc and h are the feature heights from Ow and from
the plane Xc⇥Zc respectively. We denote with (r, y)= (rP, 0)
the position, on the Xw axis, of the robot target point P.

Remark 1: In order to maintain the feature within the ver-

tical FOV, the following must hold:

r cosb � h
tan f̂

= Rb . (3)

Indeed, considering a pinhole camera model [23], the position
of the landmark in the image plane is given by

Ix = f
cx
cz

, (4)

Iy = f
h
cz
, (5)

where cx = r sinb and cz = r cosb are the coordinates of the
landmark in the camera frame hCi and f is the focal length,
i.e. OcOI (see Fig. 2). Since the vehicle is moving on a plane,
a constant value of Iy corresponds to a constant cz = r cosb ,
see Fig. 1(a). The maximum allowable value for Iy depends on
the vertical angular aperture of the camera, hence Iy  f tan f̂ .
Finally, substituting cz = r cosb in (5) we obtain (3).

Definition 1: Let Z0 = {(r, y)|r <Rb} be the disk centered
in the origin with radius Rb and Z1 = {(r, y)|r � Rb}.

Remark 2: Z0 is the set of points in IR2 that violates the
V–FOV constraint (3) for any value of the bearing angle b .
Notice that points with r = Rb verify the constraint only if
b = 0. Z1 is the set of points in IR2 such that inequality (3)
holds.

To determine the motion plane synthesis, we are now
interested in studying the shortest path covered by the center of
the vehicle from any point Q 2 Z1 to P, such that the feature is
kept in the sensor V–FOV. Hence, the problem is to minimize
the cost functional

L =
Z

t

0
|n |dt , (6)

under the feasibility constraints (2), (3) and the kinematic
model (1). Since the cost functional (6) does not weight b

the maneuvers consisting of rotations on the spot have zero
length. In the following, these zero cost maneuvers, denoted
by ⇤, will be used only to properly connect other maneuvers,
i.e. denoting a non smooth transition.

This problem has been preliminary addressed in [22] where
the first step of the characterization of the shortest paths have
been considered. However, for space limitations several proofs
and results have been omitted. For the sake of clarity and
reader convenience, notations, definitions and main results
(without proofs) of [22] that are necessary to fully understand
the analysis toward the optimal synthesis of the V–FOV,
provided in this paper, will be reported.

III. EXTREMALS AND OPTIMAL CONCATENATIONS

In this section we briefly characterize the extremals of the
optimal control problem, their main geometrical peculiarities
and their concatenations that can not be part of optimal paths.
Moreover, conditions under which such optimal paths do not
exist will also be determined. For those purposes, we start
analyzing the V–FOV constraints and the properties of the
geometrical curves followed by the vehicle while moving
activating the constraints.



Fig. 3. Extremal arcs for the V–FOV: the involutes of a circle of radius Rb.
I0 is the involute with yb = 0. Path C1 = IL+ ⇤ IR� and path C2 = IR� ⇤ IL+

both between Q1 and Q2.

The V–FOV constraint is activated for those configurations
that verify

r cosb = Rb. (7)

Given the kinematic model of the vehicle, the relationship
between the control inputs v and w required to follow a path
along which (7) holds is given by

ṙ cosb �r sinbḃ = 0 ) r sinbw = n .

Notice that r sinb represents the radius of curvature at a point
of the path followed by the vehicle while (7) is satisfied. The
trajectory followed with such inputs satisfies ẏ = � tan2

bḃ

that by integration gives the following relation between y and
b ,

y = yb � tanb +b . (8)

Paths characterized by equations (7) and (8) are curves known
as involutes of a circle1 expressed by polar coordinates. yb
is the angular coordinate of a point on the involute such that
b = 0, and hence r = Rb (see Fig. 3).

To proceed in the analysis, we first need to characterize the
geometrical involutes properties and to compute their lengths.
First notice that involutes are invariant with respect to rotations
(around Ow) and axial symmetries (with the axis through Ow).
Hence, for simplicity, we will consider points on the involute
given by (7) and (8) with yb = 0 and b 2 (�p/2,0] denoted
by I0.

Remark 3: The relation between y and b for points on I0
is given by the invertible function

Y(b ) = tanb �b , b 2 [0,
p

2
). (9)

Its inverse will be denoted by Y�1(y). Notice that, the
function Y is increasing and convex for b 2 [0, p

2 ) while the
inverse function Y�1(y) is increasing and concave.

1The involute of a circle is the path traced out by a point on a straight line
r that rolls around a circle without slipping (see Fig. 3). Notice that, while
the vehicle follows an involute of a circle the axis Xc is tangent to the circle
with radius Rb and plays the role of r.

Given a point Q = (rQ, yQ) 2 I0, the length of the involute
arc from Q to Qb = (Rb, 0) is

`0(bQ) =
Rb

2cos2(bQ)
� Rb

2
. (10)

Given two points Q1 and Q2 on I0 with rQ1 � rQ2 the length
of the involute arc between the points is

`(Q2,Q1) = `0(bQ2)� `0(bQ1). (11)

where bi and yi are given by equations (7) and (9) respectively.

A. V–FOV Extremals
For any point on circumference CRb with radius Rb and

centered in Ow there are two involutes of circle rotating clock-
wise and counterclockwise. We refer to these two involutes as
Left and Right, and by symbols IL and IR, respectively (see
Fig. 3). The adjectives “Left” and “Right” indicate the half-
plane where the involute starts for an on-board observer aiming
at the landmark.

Following the same Hamiltonian-based approach used
in [18], the extremal arcs (i.e. curves that satisfy necessary
conditions for optimality, see [24]) are the involutes IR and
IL, the turn on the spot ⇤ and the straight lines S. Moreover,
as extremal arcs can be executed by the vehicle in either
forward or backward direction, superscripts + and � will be
used in the following in order to make this explicit. As a
consequence, extremal paths consist of sequences, or words,
comprised of symbols in the finite alphabet A = {⇤, S+, S�,
IR+, IR�, IL+, IL�}. The set of possible words generated by
the symbols in A is a language L .

B. Optimal concatenation of extremals
Let PQ be the set of all feasible extremal paths from Q to

P. We now exploit the particular symmetries of the considered
problem to determine extremals concatenations that do not
belong to the optimal path in PQ. For example, the analysis of
optimal paths in PQ can be done considering only the upper
half plane with respect to the Xw axis. The optimal synthesis
for the lower half plane can be obtained by replacing + (�)
with � (+) and R (L) with L (R).

Definition 2: A path in PQ (i.e. from Q to P), consisting of
a sequence w2L of symbols in A , is a palindrome symmetric
path if w is palindrome and the path is symmetric with respect
to the bisectrix of angle \QOW P.
We recall that a word is palindrome if it reads equally forward
or backward. As an example, the path S+IL+ ⇤ IR�S� is a
palindrome symmetric path, associated to the palindrome word
SIIS, if the straight arcs and the involute arcs are of equal
length pairwise.

Proposition 1: For any path in PQ with rQ = rP there
always exists a palindrome symmetric path in PQ whose
length is shorter or equal.
The proof of this proposition can be found in [22].

Before determining the extremals concatenations that char-
acterize the optimal paths, we start considering the regions of
points from which P can be reached with extremals S+ or S�.



Fig. 4. Region LimQ with its border ∂LimQ = LimR
Q [LimL

Q and cone LQ
delimited by half–lines sR

Q and sL
Q.

We will show such regions are closed with borders described
by half–lines and curves known as Pascal’s Limaçons, [25]

Definition 3: For a point Q 2 IR2, LimR
Q (LimL

Q) denotes the
arc of the Pascal’s Limaçon from Q to O such that, 8V 2 LimR

Q

(LimL
Q), \QVOw = p � b̄ , with b̄ = arctan

⇣
rQ
Rb sinb

⌘
, in the

half-plane on the right (left) of QOw (cf. Fig. 4). Also, let
LimQ be the region with borders LimR

Q and LimL
Q from Q to

O.
Definition 4: For a point Q 2 IR2, sR

Q (sL
Q) denotes the half-

line from Q forming an angle yQ + b̃ (yQ � b̃ ), where b̃ =

arccos
⇣

Rb
rQ

⌘
, with the Xw axis (cf. Fig. 4). Also, let LQ be the

cone delimited by sR
Q and sL

Q.
Proposition 2: For any starting point Q, all points of LimQ

(LQ) are reachable by a forward (backward) straight path
without violating the V–FOV constraints.
The proof of Proposition 2 (that has been omitted in [22] for
space limitations), is based on how the projection on the image
plane of the landmark moves within the sensor limits (see [26])
when vehicle performs extremal maneuvers and is reported in
Appendix A.

At this point the regions associated to the single straight line
maneuvers have been obtained. Following a similar approach
to the one used in [18], the goal is to obtain a sufficient
family of optimal paths from which the complete synthesis
can be obtained. Unfortunately, in this case optimal paths do
not always exist as stated in the following theorem.

Theorem 1: For any Q on the upper half plane, one of the
following conditions is verified.

1) There exists a shortest path toward P of type S+IL+ ⇤
IR�S� or IR� ⇤ IL+ (or degenerate cases, with sub–paths
of zero length, e.g. S+ ⇤S�).

2) The infimum of the cost functional L is not reached and
hence the shortest path does not exist.

In order to prove Theorem 1 we proceed showing that partic-
ular extremals concatenations can not belong to any optimal

Fig. 5. Path of type S�Q2
⇤ S+Q1

from Q2 = (r,y2) to Q1 = (r,y1) with
y2 > y1 can be shortened by a path of type IR�

Q2
⇤ IL+

Q1
(see Proposition 3).

path. In [22] some results have been obtained in this direction
and are summarized in the following Remark for reader
convenience.

Remark 4: For symmetry properties, it is sufficient to con-
sider a starting point Q = (rQ,yQ) with yQ � 0. From such
Q the optimal path toward P lays on the upper half-plane and
arcs of type IR+ and IL� are not part of the optimal path.
Moreover, in the optimal paths the arc S� can not be followed
by arcs of type IR� and IL+ while arc S+ can not follow arcs
of type IL+ and IR�.

Those results can be further refined with the following
proposition that excludes concatenations of type S� ⇤S+ from
optimal paths.

Proposition 3: Any path of type S� ⇤ S+ between Q1 =
(r,y1) and Q2 = (r,y2) with y2 > y1 can be shortened by a
path of type IR� ⇤ IL+.

Proof: Referring to Fig. 5, let N1 be the switching point
between arcs S� and S+. From Proposition 2 we have that
N1 2 LQ2 \LQ1 . However, among all paths of type S� ⇤ S+,
the shortest one has N1 2 ∂LQ2 \ ∂LQ1 . In this case, from
Definition 4, IR�

Q2
is tangent to S� in Q2 and IL+

Q1
is tangent to

S+ in Q1. Moreover, the path IR� ⇤ IL+ lays between S� ⇤S+
and Q1Q2. For the convexity of both paths, the length of S� ⇤
S+ is longer than the length of IR� ⇤ IL+ and hence the thesis.

Extremals can be represented by nodes of a graph while
possible concatenation by arrows where an arc with (⇤)
denotes a non smooth concatenation. The graph reported in
Fig. 6 represent a graphical summary of the results obtained
so far. The obtained graph is not acyclic and hence optimal

Fig. 6. Extremals and sequences of extremals from points IR2.

path consisting of infinite number of extremals are, at this



point, neither excluded nor proved. Hence, to conclude the
analysis of optimal extremal concatenations we need to study
concatenations of type IL+ ⇤ IR� and IR� ⇤ IL+.

IV. INFINITE SEQUENCES OF INVOLUTE ARCS

In this section we will show that the particular characteristics
of the involute arcs may give rise to an infimum (and finite) arc
length consisting of infinite involutes of infinitesimal length.
To study the occurrence of such peculiarity, we consider
Q1 = (rQ1 ,yQ1) and Q2 = (rQ2 ,yQ2) with rQ1 = rQ2 and
yQ1 > yQ2 . The points Q1 and Q2 can be connected by
two paths, each one palindrome and hence symmetric with
respect to the bisectrix of angle \Q1OwQ2, consisting of two
pairs of involute curves C1 = IL+ ⇤ IR� and C2 = IR� ⇤ IL+.
Let H1 = (rH1 ,yH1) and H2 = (rH2 ,yH2) be the points of
intersection of the involute curves on C1 and C2 respectively,
i.e. rH1 < rQi < rH2 and yH1 = yH2 . We denote by L(C1) and
L(C2) the lengths of the curves C1 and C2, respectively.

The goal of this section is to prove that the shortest path
consisting only of involutes, between two points Q1 and Q2 on
a circumference, is of type C2 (evolving outside the circum-
ference) if rQ1 and the angle \Q1OwQ2 are sufficiently small.
On the other hand, it is of type C1 (hence a pair of involute
evolving inside the circumference) if rQ1 is sufficiently large
while the angle \Q1OwQ2 is sufficiently small. Otherwise, the
shortest path consisting only of involutes does not exist. More
formally, we will prove

Theorem 2: Given the points Q1 = (rQ1 ,yQ1) and Q2 =
(rQ2 ,yQ2) with rQ1 = rQ2 and yQ1 > yQ2 . Recalling that
r2 =

p
2Rb, it holds that

1) for rQ1 2 [Rb,r2),
a) if yQ1 �yQ2  2(Y(p/4)�yQ1) the optimal trajectory

from Q1 to Q2 is C2 = IR� ⇤ IL+.
b) yQ1 �yQ2 > 2(Y(p/4)�yQ1) the shortest path does

not exist.
2) For rQ1 � r2

a) if yQ1 �yQ2 > 2(yQ1 �Y(p/4)) the shortest path does
not exist.

b) if yQ1 �yQ2  2(yQ1 �Y(p/4)) the optimal trajectory
from Q1 to Q2 is C1 = IL+ ⇤ IR�

The proof of this theorem follows straightforwardly from the
results stated in the following two propositions. In the first one
only pairs of involutes (C1 and C2) are taken into account while
in the second an arbitrary number of involutes are considered.
Hence, we start comparing the lengths L(C1) and L(C2) to
characterize the conditions on rQ1 and rH1 under which one
is smaller than the other.

Proposition 4: There exist r̄ and r̃ with r̄ > r2 > r̃ such
that

1) rQ1  r2 ) L(C2) L(C1) 8rH1 .
2) rQ1 2 (r2, r̃), rH1 < r̃ ) L(C2)< L(C1)
3) rQ1 2 (r2, r̄), rH1 > r̃ ) L(C1)< L(C2)
4) rQ1 � r̄ ) L(C1) L(C2) 8rH1 .
The proof of this proposition, omitted in [22] for brevity,

can be found in Appendix B. The value rH1 of the switching

point H1 with respect to r̃ can be rewritten in terms of the
angle yQ1 �yQ2 spanned by C1 and C2 as in the following
proposition where we consider also the possibility of connect-
ing Q1 and Q2 with path consisting of an arbitrary number of
involutes.

The following Proposition is a collection of results in [22]
and provides conditions under which the optimal path does not
exist.

Proposition 5: Consider the points Q1 = (rQ1 ,yQ1) and
Q2 = (rQ1 ,yQ2) with yQ1 > yQ2 .

1) if rQ1 < r2, and Y(p/4)�yQ1 � yQ1�yQ2
2 the optimal

trajectory consisting of involutes from Q1 to Q2 is C2 =
IR� ⇤ IL+.

2) if rQ1 = r2 and 8yQ2 , the optimal (shortest) path between
Q1 and Q2 consisting of involutes does not exist, i.e. the
infimum of the cost functional (6) is not reached.

3) If rQ1 > r2, and yQ1 �Y(p/4) � yQ1�yQ2
2 the optimal

trajectory consisting of involutes from Q1 to Q2 is C1 =
IL+ ⇤ IR�.

The proposition states that whenever C1 or C2 intersects the
circumference of radius r2 they can both be shortened. For
example, if C1 crosses the circumference of radius r2 in G1 and
G2 the sub–path between such points can be shortened with
a path of type C2 (see Proposition 4 second item). Moreover,
from Proposition 4 third item, this shorter path of type C2 can
in turn be shortened by a path consisting of two or more sub–
paths of type C2. By iterating this procedure it is possible to
conclude the non-existence of a shortest path between Q1 and
Q2 with rQ1 = rQ2 = r2.

For those cases in which the path does not exist, we are
now interested in the infimum of the lengths of the paths
consisting of infinite pairs of involutes of type C2. The
following Theorem, whose proof can be found in [22], states
that such infimum length is finite.

Theorem 3: Consider r = r2, the point Q1 = (r,yQ1) 2 I0
and a point Q2 = (r,yQ2) with yQ1 >yQ2 and yQ1 �yQ2  p .
The infimum of the lengths of the paths consisting of infinite
sub–paths of type C2 from Q1 to Q2 is finite and

Lin f (Q1,Q2) =
p

2(r2(yQ1 �yQ2))

i.e.
p

2 times the length of the circular arc from Q1 to Q2 on
the circumference with radius r2.

From a practical point of view, the infimum length path
can be approximated by paths consisting of a finite sequence
of involutes. The approximation error is as smaller as more
accurate is the wheel motor.

Definition 5: C(n) is the path from Q1 to Q2 on the circum-
ference of radius r2 consisting of n identical sub–paths of type
C2, i.e. C(n) = IR� ⇤ IL+ ⇤ IR� ⇤ IL+ ⇤ · · · ⇤ IR� ⇤ IL+ ⇤ IR� ⇤ IL+.

The following corollary provides a sufficient number n of
sub–paths of type C2 in C(n) such that the length of any other
shorter path is no longer than an arbitrarily small e > 0.

Corollary 1: Given a trajectory C(n) from Q1 to Q2 on the
circumference of radius r2 and a positive parameter e > 0,
there exists c0 > 4Rb such that for

n �
c0(yQ1 �yQ2)

2

2e



we have L(C(n))�Lin f (Q1,Q2) e.
The proof can be found in Appendix C.

From a practical point of view, consider a robot whose
motor accuracy allows it to follow a path of type C2 on
the circumference of radius r2 with amplitudes larger than
d . Hence, given points Q1 to Q2 on the circumference of
radius r2, the path of minimum length that can be followed
by the robot is C(n) with n = b |yQ2�yQ1 |

d

c whose length can be
computed and compared with Lin f .

Definition 6: Given e > 0, Z
e

=C(n(e)) is the path consisting
of a sequence of n(e) arcs of type C2 on circumference of
radius r2.

Since the infimum length is finite and there exist arcs of type
Z

e

whose lengths are arbitrarily close to the infimum one, with
an abuse of notation we will denote with Z the non existing but
approximable path and we consider Z as a pseudo extremal arc.
The alphabet A is extended with Z obtaining a new alphabet
AZ . If a path contains the symbol Z we use the analytical
expression of the path length to determine the infimum length
path from any point of the motion plane. Notice that such
paths are optimal only if they do not contain arcs Z. With
a slight abuse of language sequences associated to infimum
length paths will be referred to as the optimal language on
AZ and the induced synthesis will be referred to as optimal
synthesis. True e–optimal synthesis will finally be obtained
substituting Z with its e–optimal subpath Z

e

.

V. THE OPTIMAL LANGUAGE

Based on the results of previous sections we are now inter-
ested in determining the optimal language that characterizes
the infimum length paths. Based on Theorem 2, it follows that
sequences S+ ⇤ IR� and IL+ ⇤S� do not belong to any infimum
length path. Indeed it holds

Proposition 6: Any path of type S+ ⇤ IR� or IL+ ⇤ S� can
be shortened by a path of type S+IL+ ⇤ IR�S� or S+IL+ ⇤Z ⇤
IR�S�.
The proof of this proposition can be found in Appendix D.
As a consequence, the so called optimal language LZ can be
described by the graph in Fig. 7.

The symbol Z occurs at most once in infimum length paths
as a consequence of the following Proposition.

Proposition 7: For any pair of points Q1 and Q2 with rQ1 =
rQ2 = r2, the path of infimum length from Q1 to Q2 is Z.

Proof: From the graph in Fig. 7 the only possible way
to connect Q1 and Q2 is with paths of type Z or with
concatenations of type S+ ⇤ IR� and IL+ ⇤S�. From the proof
of Proposition 6 such concatenation can be shortened by paths
of type IL+ ⇤ IR� that in turn can be shortened by Z (see point
2 of Proposition 5).

We are finally able to prove Theorem 1 that can now be
refined with the inclusion of the infimum length arc Z.

Theorem 1: For any Q on the upper half plane, one of the
following conditions is verified.

1) There exists a shortest path toward P of type S+IL+ ⇤
IR�S� or IR� ⇤ IL+ (or degenerate cases, with sub–paths
of zero length, e.g. S+ ⇤S� ).

Fig. 7. Extremals in AZ and sequences of extremals (in the optimal language)
from points in IR2. Notice that in optimal paths the switching between involutes
may occur only once, e.g. IL+ ⇤ IR� ⇤ IL+ is never optimal. Moreover, the
symbol Z may appear only once in sequences associated to infimum length
paths.

2) The infimum of the cost functional L is not reached
and hence the shortest path does not exist. Considering
the infimum arc Z the infimum length paths are of
type S+IL+ ⇤Z ⇤ IR�S�, S+IL+ ⇤ZIL+, IR�Z ⇤ IR� ⇤S� or
IR�ZIL+ (or degenerate cases).
Proof: From previous results, the optimal language rep-

resented in Fig. 7 has been obtained. Moreover, as a con-
sequence of Proposition 7, symbol Z may appear only once
in infimum length paths. On the other hand, sequences of
three or more involutes are never optimal. Indeed, one of
the two concatenations IL+ ⇤ IR� and IR� ⇤ IL+ can always be
shortened. Which is the concatenation that can be shortened
depends on their evolution with respect to C2. For example,
when evolving inside C2, IL+⇤IR� is longer than a path of type
IR� ⇤ IL+ or IR�ZIL+. Finally, sequences of type ZIL+ ⇤ IR�

and Z ⇤ IR� ⇤ IL+ are never part of an infimum length path.
Indeed, the subpath IL+⇤IR� (IR�⇤IL+) after Z evolves outside
(inside) C2 and hence can be shortened. Similarly, paths of type
IR�⇤IL+⇤Z and IL+⇤IR�Z are never part of an infimum length
path. Hence the thesis.

VI. V–FOV OPTIMAL SYNTHESIS

In this section we analyze the length of the extremal paths
from any point of the motion plane considering the alphabet
AZ .

Based on all previous results, circumference C2 of radius
r2 = Rb

p
2 plays an important role and the resulting optimal

synthesis deeply depends on the position of the desired and
initial points P = (rP,0) and Q = (rQ,yQ), respectively, with
respect to C2. For this reason, to simplify the analysis, the opti-
mal graph represented in Fig. 7 will be specialized depending
on where Q and P are with respect to C2. Notice that for
all the positions of Q, P and C2 there are at most 4 switching
among extremals that are summarized in the following theorem
that corresponds to a detailed version of Theorem 1. Indeed,
Theorem 4 specifies the infimum path length type depending
on the values of rQ, rP and r2.

Theorem 4: Given the initial point Q = (rQ,yQ), the final
point P = (rP,0) and the circumference C2 of radius r2, the
optimal language LO is characterized as follows:
a) For rQ, rP  r2 the infimum length paths are of type

S+IL+, IR�S�, IR� ⇤ IL+ or IR�Z ⇤ IL+ (or degenerate
cases).



(a) rQ, rP  r2 (b) rQ, rP � r2

(c) rP  r2  rQ (d) rQ  r2  rP

Fig. 8. Extremals and sequences of extremals, forming the sufficient e–
optimal language depending on the values of rP and rQ with respect to r2.
The symbol Z may appear only once in sequences associated to infimum
length paths.

b) For rQ, rP � r2 the infimum length paths are of type
S+IL+ ⇤ IR�S� or S+IL+ ⇤Z ⇤ IR�S� (or degenerate cases).

c) For rP  r2  rQ the infimum length paths are of type
S+IL+ or S+IL+ ⇤ZIL+ (or degenerate cases).

d) For rQ  r2  rP the infimum length paths are of type
IR�S� or IR�Z ⇤ IR�S� (or degenerate cases).

The result of the theorem is summarized in Fig. 8 while
its proof can be found in Appendix E. Given the deep differ-
ences of the obtained optimal languages, next subsections are
dedicated to determine the optimal synthesis depending on the
position of final point P with respect to C2.

A. Optimal synthesis for P with rP  r2

Consider the partition of the upper half–plane in eight re-
gions illustrated in Fig. 9. Regions are generalized polygonals
characterized by vertices and whose boundaries belong either
to the extremal curves or to the switching loci. Such regions
characterize the optimal synthesis as stated in the following
theorem that summarizes one of the main contributions of this
paper.

Theorem 5: The synthesis of the upper half–plane taking
into account the infimum path length Z as an extremal, is
described in Fig. 9 and Table I. For each region, the associated
path type entirely defines a path of infimum length to the goal.

To simplify the proof of this theorem we first need to analyze
two cases corresponding to initial point Q inside or outside C2.

Referring to the graph in Fig. 8(a), we start considering
initial point Q with rQ  r2. Let P2 be the intersection point
of C2 with IL

P , see Fig. 9.
Proposition 8: Given Q 2C2 \LP the infimum path length

is given by a path of type ZIL+
P if yQ �yP2 , and of type S+IL+

P
otherwise. The degenerate case S+ occurs for Q 2C2 \LP.

Proof: The simple case of the minimum path length
of type S+ when Q 2 C2 \ LP follows from Proposition 2.
Consider now Q 2 C2 \ LP, path S+IL+

P exists only if Q is
such that LimQ\ IL+

P 6= /0 and, in this case, the switching point

Region Included Included Optimal
Vertices Boundaries Path Type

I O, P LimR
P S�

IC P sR
P S+

II P CRb , LimR
P, IR

P IR�S�

IIC P sR
P, IL

P , sR
P5

S+IL+

III P, P2 CRb , IL
P , IR

P , IL
P2

IR�IL+
P

IV P2 CRb , IL
P2

, C2 IR�ZIL+
P

V P2, P5 IL
P2

, C2, C5 IL+ ⇤ZIL+
P

VI P5 C5, sR
P5

S+IL+ ⇤ZIL+
P

TABLE I. OPTIMAL SYNTHESIS IN THE UPPER HALF–PLANE WHEN
rP  r2. C5 IS THE CIRCUMFERENCE OF RADIUS r5 =

p
5Rb AND

P5 ⌘C5 \ IL
P WHILE P2 ⌘C2 \ IL

P .

V 2 LimL
Q \ IL+

P . Hence, until yQ is smaller than yP2 it holds
LimQ\IL+

P 6= /0, and the optimal path is of type S+IL+
P . As soon

as yQ becomes larger than yP2 we have LimQ \ IL+
P = /0 and

hence, from Proposition 7, the only admissible way to reach
the involute IL+

P from Q is towards Z.
Referring to the graph in Fig. 8(c), we now consider initial

point Q with rQ � r2.
Proposition 9: Given Q on IL

P , the infimum length paths
from Q to P are of type IL+

P if bQ  arctan(2) (i.e. rQ 
r5 = Rb

p
5) and of type S+IL+ ⇤ZIL+

P otherwise. The locus of
switching points between S+ and IL+ is the circumference C5
centered in the origin with radius r5.

Proof: Consider a point Q with rQ > r2 on IL
P . Referring

to the graph in Fig. 8(c), the path from Q to P is of type
S+IL+ ⇤ZIL+

P . All those paths go through the intersection point
P2 between IL+

P and C2 (see Fig. 9) toward P. Hence, we may
consider only the sub–path S+IL+ ⇤Z from Q to P2.

Let V and N be the switching points between the straight line
and the involute and between the involute and Z, respectively.
The straight sub–path S+ from Q can be parametrized by the
bearing angle bS 2 [0, bQ] in Q where bQ = arccos

⇣
Rb
rQ

⌘
is

the bearing angle of the vehicle aligned with IL+ in Q. The
switching point V lays on LimL

Q and hence S+ is tangent in V
to an involute. Hence, the bearing angle in V is (cf. proof of
Proposition 2)

bV = arctan
✓

Rb

rQ
sinbS

◆
= arctan

✓
sinbS

cosbQ

◆
. (12)

The length of the considered sub–path S+QIL+ ⇤ Z from Q
to P2 is given by L = lS + lI + lZ . From the equation of the
Pascal’s Limaçon reported in the proof of Proposition 2 the
length of the straight arc is

lS = Rb

✓
cosbS

cosbQ
�1

◆
. (13)

From (10) the length of the involute arc is

lI = `(V, N) = `0(bV )� `0(bN). (14)

Finally, from Theorem 3

lZ = 2Rb (Y(bQ)�Y(bV )�bV +bS) . (15)



Fig. 9. Optimal synthesis with Rb  rP  r2.

From (9), (10) and (12) the derivative of L with respect to bS
is given by

∂L(bS)

∂bS
= Rb

✓
�1+

cosbS

cosbQ

◆✓
�2+

sinbS

cosbQ

◆
,

that is zero if bS = bQ and if bS = arcsin(2cosbQ) with bQ �
arctan(2) (to ensure bS  bQ).

Notice that if bQ  arctan(2) the length is decreasing and
hence the minimum is attained at bS = bQ (that corresponds
to a zero length S and Z and an optimal path from Q to P
of type I+P ), for bQ � arctan(2) the minimum is attained with
bS = arcsin(2cosbQ) (that corresponds to an optimal path from
Q to P of type S+IL+ ⇤ZIL+

P ). Considering the optimal value
bS = arcsin(2cosbQ), the corresponding point V has bearing
angle bV = arctan(2) and it does not depend on bQ. Indeed, the
locus of switching points V is the circumference C5 centered
in the origin and with radius r5 = Rb

p
5.

To prove Theorem 5 we now study each region separately.
Regions are defined in Table I and represented in Fig. 9.

Proof: (Theorem 5)
Region I, IC: From any point in this region it is possible to
reach P with a straight path in backward (Region I) or forward
(Region IC) motion without violating the V–FOV constraint
(cf. Proposition 2).
Region II: For any Q in this region it holds rQ  rP. From
any of those Q, P cannot be reached with only a straight line
or only an involute covered backward. Moreover, the involute
IR
Q intersects LimP before than intersecting the involute IL+

P or
C2, i.e. extremal IR�

Q cannot be followed neither by IL+
P nor by

Z. Hence, referring to the graph in Fig. 8(a), the only possible
path from Q to P is IR�

Q S�P .
Region III: From any Q in this region the point P cannot be
reached with only a straight line or only an involute covered
backward. Moreover, the involute IR

Q intersects IL+
P before

intersecting C2 and does not intersect LimP, i.e. extremal IR�
Q

cannot be followed neither by Z nor by S�. Hence, the only
possible concatenation is IR�

Q ⇤ IL+
P , see Fig. 8(a).

Region IV: For any Q in this region it holds rQ  rP. From
any Q, referring to graph in Fig. 8(a), the only possible path
toward P is IR�

Q ZIL+
P . Indeed, P cannot be reached with only a

straight line or only an involute covered backward. Moreover,
the involute IR

Q intersects C2 before than IL
P and does not

intersect LimP, i.e. IR�
Q can not be followed by S� or by IL+.

Region V: From Proposition 9, since the region is delimited
by C5, the infimum length path is of type IL+ ⇤ZIL+

P .
Region VI: We start considering Q in the area delimited by C5
and the involute IL

P starting from point P5. From Proposition 9,
for such Q there exists an infimum length path toward P from
a point on IL

P that crosses Q. Hence, the sub–path from Q to
P is of type S+IL+ ⇤ZIL+

P . Referring to the graph in Fig. 8(c),
from all other points Q in Region VI the path is still of
type S+IL+ ⇤ZIL+

P . Notice that the common border of Regions
VI and IIC is an optimal path of type S+IL+

P as proved in
Proposition 9, see Fig. 9. As a consequence, an infimum length
path of type S+IL+ ⇤ZIL+

P can not cross that border. Hence,
from those Q the path of infimum length can only cross the
involute IL

P starting from point P5. The infimum length path
from that involute are of type S+IL+ ⇤ ZIL+

P and hence the
possible concatenation with those paths is through a straight
arc that hat smoothly connects Q to those paths.
Region IIC: From points Q in this region the point P can
be reached through paths with last extremal S+ or IL+

P , see
the borders of the adjacent regions. Referring to the graphs
in Figures 8(a) and 8(c), no extremal can precede S+ in an
optimal path while only S+ can precede IL+

P . Indeed, arc IL+
P

is preceded by Z or by IR� only for points that are outside
IIC.

B. Optimal synthesis for P with rP > r2

We will now prove that for P with rP > r2 a new Region is
obtained with respect to the case rP  r2 based on a similar
approach to the one used in Proposition 9. For example, the
circumference C5 is still the locus of switching points between
S+ and IL+ but from a point P5 that does not lay on IL

P anymore.
Without loss of generality, consider P with rP > r2, and Q

on IL
P with rQ � rP. Referring to the graph in Fig. 8(b) the

infimum length path can be of type K = S+IL+ ⇤Z ⇤ IR�S�
or of type P = S+IL+ ⇤ IR�S�. Starting from point Q on the
involute IL

P , we are hence interested in comparing the length
of paths K and P . Notice that, the path of type IL+

P from
Q to P can be considered as a degenerate case of K and P .
Moreover, bQ = arccos Rb

rQ
> bP = arccos Rb

rP
> p/4. Based on

the computation of first and second derivatives of K and P ,
the infimum length paths are proved to depend on the positions
of P and Q with respect to C5. Hence, we start considering
rP  r5. The lengths comparison can be summarized by the
following theorem.

Theorem 6: Let P be a point with r2 < rP  r5 and consider
a point Q lying on the involute through P and such that rQ >
rP. The infimum length path from Q to P is



Fig. 10. Infimum length path subdivision on the (bP,bQ) plane with Q on
IL
P . Recall that an angle b = arctan(2) corresponds to a radius r = r5.

1) IL+
P for p/4  bP  bQ and bQ  k(bP).

2) S+IL+ ⇤ IR�
P for bQ > k(bP) and n(bQ,bP) Y(p/4).

3) S+IL+ ⇤Z ⇤ IR�
P for bQ > k(bP) and n(bQ,bP)> Y(p/4).

where
k(bP) = arctan

✓
1

cosbP sinbP

◆
(16)

and n(bQ,bP) =
1
2 (2� arcsin(2cosbQ)+2Y(bP)�Y(bQ)).

For space limitations the proof of the theorem is omitted2.
However, for reader convenience, the infimum length paths
from Q on IL

P to P are reported in the left sector of Fig. 10 as
a function of bP  arctan(2) and bQ. Referring to Figures 10
and 11, for rP  r5, i.e. bP  arctan(2), consider all Q
with bP  bQ  k(bP). From the first case of Theorem 6,
the optimal path is IL+

P for all points Q on IL
P between

P and PI characterized by bPI = k(bP). Consider Q with
k(bP)  bQ  k(bP) below the curve n(bQ,bP) = Y(p/4).
From the second case of Theorem 6 the optimal path is of
type S+IL+IR�

P for all points Q on IL
P between PI and P0

I
characterized by n(bP0

I
,bP) = Y(p/4). Finally, consider Q

above the curve n(bQ,bP) = Y(p/4) with YQ  p (i.e. Q is
on the upper half–plane). From the third case of Theorem 6
the infimum length path is of type S+IL+⇤Z⇤IR�

P for all points
Q on IL

P after P0
I .

From the proof of Theorem 6 in case of infimum length path
of type S+IL+ ⇤Z ⇤ IR�

P , the locus of switching points between
S+ and IL+ is C5. Given P0

I the optimal path is S+IL+ ⇤ IR�
P

where the switching point between S+ and IL+ is denoted by
P5, while the switching point between IL+ and IR� is denoted
by P2. Notice that P2 is the point of intersection between IR

P
and C2. Hence, for all Q with infimum length path of type

2The complete proof of Theorems 6 and 7 and other details can be found
in the Appendix of
http://www.centropiaggio.unipi.it/sites/default/files/HFOVdim.pdf

Fig. 11. Optimal synthesis with r2 < rP  Rb
p

5.

S+IL+ ⇤Z ⇤ IR�
P , the switching point between Z and IR�

P is P2
that is independent from Q.

The construction of Theorem 6 identifies two regions of
the upper half–plane. The first region, R1, is delimited by the
circumference CRb and the arc IL

P while the second, R2, is the
complementary one. From the analysis in Theorem 6 the op-
timal synthesis for rP  r5 can be obtained straightforwardly.
Indeed, for any point Q0 2 R1 that lays outside C2 there exists
a point Q on IL

P such that the infimum length path from Q to P
crosses Q0. For all Q 2 R1 inside C2 the synthesis for rP  r2
can be used by switching the roles of P and Q. Moreover, from
the graph reported in Fig. 8(b), the only possible way to obtain
an infimum length path from points Q 2 R2 is to connect to
the path of infimum length from point on IL

P smoothly with
an arc S+ or to go toward P directly with S+. Finally, for the
remaining points Q in the region delimited by IR

P from P to
CRb and CRb previous result can be applied by switching the
roles of P and Q.

To conclude, the obtained synthesis is reported in Fig. 11.
Notice that, for rP  r2, whose synthesis is reported in Fig. 9,
the points P5, PI and P0

I were coincident. Hence, for r2 
rP  r5 the synthesis is similar to the one for rP  r2 but
has two more regions. However, for space limitation is not
possible to provide here an analytical characterization of the
curve between PI and P5 of switching points between S+ and
IL+. Numerically, it can be obtained as a solution of a set of
nonlinear equations.

To conclude the optimal synthesis analysis, the case rP >
r5 must now be taken into account. Similarly to what has
been done for rP  r5 the following theorem summarizes the
lengths comparison of paths K and P .

Theorem 7: Let P be a point with rP > r5 and consider a
point Q lying on the involute through P and such that rQ > rP.
The infimum length path from Q to P is

1) IL+
P for p/4  bP  bQ and bQ  k(bP).

2) S+IL+ ⇤ IR�S�P for bQ > k(bP) and n(bQ,bP) Y(p/4).
3) S+IL+ ⇤ Z ⇤ IR�S�P for bQ > k(bP) and n(bQ,bP) >

Y(p/4).



Fig. 12. Optimal synthesis with rP > Rb
p

5.

where
k(bP) = arctan

✓
1

cosbP sinbP

◆
(17)

and

n(bQ,bP) =
4� arcsin(2cosbQ)� arcsin(2cosbP)+Y(bP)�Y(bQ)

2
.

For the proof of the theorem see footnote 2. For reader
convenience, the infimum length paths from Q on IL

P to P are
reported in Fig. 10 as a function of bP and bQ.

With respect to the analysis for rP  r5 the point PI 0 is
such that n(bP0

I
,bP) = Y(p/4) with function n as defined in

Theorem 7. From P0
I the optimal path is of type S+IL+ ⇤ IR�S�

where the switching point between S+ and IL+ is denoted by P5
on C5 and the switching point between IL+ and IR� is denoted
by P2 on C2. Finally, the switching point between IR� and S�
is denoted by P0

5 2 LimR
P \C5.

The optimal synthesis can be obtained straightforwardly
using an approach similar to the one used for rP  r5 and
it is reported in Fig. 12. In this case, the region characterized
by the optimal path of type S+IL+ ⇤ IR�S� formally consists in
two sub regions characterized by non degenerate path of type
S+IL+ ⇤ IR�S� and the degenerate paths of type S+IL+ ⇤ IR�.

Formally, the three synthesis obtained in this paper provide
paths of infimum length that do not exist. However, by
substituting the (non existing) arc Z with Z

e

an e–optimal
synthesis has been obtained such that each e–optimal path is
not longer than e with respect to the associated infimum length
path.

VII. CONCLUSIONS AND FUTURE WORKS

Given the finite optimal language associated to the extremals
of the considered optimal control problem, all regions of points
from which the optimal path does not exist have been herein
characterized. However, the infimum length of paths from such
regions is finite and can be analytically obtained. Its length
can be used to compute an optimal synthesis of infimum
length paths. Moreover, since the infimum can be arbitrarily
well approximated using paths containing a finite number of
switching between involute arcs the e–optimal synthesis can
be straightforwardly obtained. Notice that the e–optimal paths

can be determined based on the motor characteristics of the
robotic vehicle and hence there exist control laws that are able
to steer the vehicle along such paths.

Future works will be dedicated to the integration of the
results obtained for the H–FOV and the V–FOV in a complete
synthesis for a more realistic camera. Moreover, from such
synthesis optimal feedback control laws could be determined
with a similar approach to the one used in [20].
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APPENDIX

A. Proof of Proposition 2
Proposition 2: For any starting point Q, all points of LimQ

(LQ) are reachable by a forward (backward) straight path
without violating the V–FOV constraints.
The proof of Proposition 2, is based on how the projection
on the image plane of the landmark moves within the sensor
limits (see [26]) when vehicle performs extremal maneuvers.
For this purposes, we need to introduce the basic notations
and results of the projective geometry used in visual servoing
applications. Let F = (Ix, Iy) be the position of the landmark
with respect to a reference frame hIi = (OI , XI , YI) centered
on the principal point of the image plane (see Fig. 2). The
velocity of F is related to the linear and angular velocity (v
and w) of the vehicle through the image Jacobian [23]. For a
rotation on the spot (⇤), setting n = 0 in the image Jacobian,
the trajectories follows by F is given by

Iy =
Iyi cos

⇣
arctan

⇣
I xi
f

⌘⌘

cos
⇣

arctan
⇣

I x
f

⌘⌘ =
Iyi cosbi

cosb

(18)

where (Ixi, Iyi) is the initial position of F with respect to hIi.
Equation (18) represents a conic, i.e. the intersection between

the image plane and the right circular cone with vertex in
Oc and directrix passing through the landmark position. For
a straight lines path (S), setting w = 0 in the image Jacobian,
the trajectory follows by F is given by

Iy =
Iyi
Ixi

Ix (19)

which represents a straight line passing through OI .
With those notations and results we can prove Proposition 2.

Proof: For any starting point Q = (rQ, yQ), with bQ = 0,
let us consider the vehicle rotating on the spot. During such
maneuver, the landmark moves on the image plane along a
conic until the V–FOV constraint is activated and Iy = f tan f̂ .
Let b̃ be the corresponding value of the bearing angle. The
new direction of motion of the vehicle is now tangent to an
involute of circle. Moreover, from (5), rQ cos b̃ = h

tan f̂

= Rb.
From all configurations (rQ, yQ, bQ) with bQ 2 [�b̃ , b̃ ] the
vehicle can move backward on a straight line without violating
the constraint. Hence, referring to Definition 4, the region of
points reachable from Q with a backward straight line is LQ.

In order to determine the region reachable with a forward
straight line, assume hQ = (rQ, yQ, bQ) with bearing angle
bQ 2]� b̃ , b̃ [, i.e. the direction of motion is not necessarily
tangent to one of the involutes through Q. Let V be the point
on the forward straight line where the V–FOV constraint is
activated. While the vehicle moves along the straight line, the
landmark moves, in the image plane, along a straight line as
well, i.e. from (4) and (5), Iy =

I yi
I xi

Ix where Iyi = f h
rQ cosbQ

and Ixi = f tanbQ. As before, when the V–FOV constraint is
active, Iy = f tan f̂ and hence Ix = f rQ

h tan f̂ sinbQ. From (4),
in V , Ix = f tanbV and hence the bearing angle in V is
bV = arctan

⇣
rQ
h tan f̂ sinbQ

⌘
= b̄ . Moreover, since the V–FOV

constraint is active in V , the direction of motion of the vehicle
is tangent to an involute through V . Hence, the distance rV
can be determined by the equation rV cosbV = Rb. By using
the Carnot theorem and Rb =

h
tan f̂

, distance d covered by the
vehicle is d = a + bcosb with a = �Rb and b = rQ > a,
i.e. the equation describing a Pascal’s Limaçon with respect to
a reference frame with origin in Q and the x-axis aligned with
the line through Ow and Q, (see Fig. 4). As a consequence,
referring to Definition 3, points of LimQ are reachable by a
forward straight line.

B. Proof of Proposition 4
Consider Q1 = (rQ1 ,yQ1) and Q2 = (rQ2 ,yQ2) with rQ1 =

rQ2 and yQ1 > yQ2 . The points Q1 and Q2 can be connected
by two paths, each one symmetric with respect to the bisectrix
of angle \Q1OwQ2, consisting of two pairs of involute curves
C1 = IL+ ⇤ IR� and C2 = IR� ⇤ IL+. Let H1 = (rH1 ,yH1) and
H2 = (rH2 ,yH2) be the points of intersection of the involute
curves on C1 and C2 respectively, i.e. rH1 < rQi < rH2 and
yH1 = yH2 . We denote by L(C1) and L(C2) the lengths of the
curves C1 and C2, respectively.

Proposition 4: There exist r̄ > r2 > r̃ such that
1) rQ1  r2 ) L(C2) L(C1) 8rH1 .



2) rQ1 2 (r2, r̄), rH1 < r̃ ) L(C2)< L(C1)
3) rQ1 2 (r2, r̄), rH1 > r̃ ) L(C1)< L(C2)
4) rQ1 � r̄ ) L(C1) L(C2) 8rH1 .

Proof: Consider the parametric equations of involute I0
( x(l ) = Rb(cosl +l sinl )

z(l ) = Rb(sinl �l cosl )
l = tanb , b � 0.

Since the involute length depends on the cosine of angle b ,
without loss of generality we consider H 0

2 = (rH2 , yH 0
2
) that

lays on I0 as Q1 and H1 and has bH 0
2
=�bH2 , see Fig. 3.

The heading angles corresponding to the points Q1, H1 are
given by

bQ1 = arccos
✓

Rb

rQ1

◆
= arctan

s
r

2
Q1

R2
b
�1, (20)

bH1 = arccos
✓

Rb

rH1

◆
= arctan

s
r

2
H1

R2
b
�1. (21)

The heading angle associated to H 0
2 can be computed by means

of the function Y(b ), imposing the identity yH1 = yH2 , bH 0
2
=

Y�1(2Y(bQ1)�Y(bH1)). In this way one has

L(C1)/2 = `1(bQ1 ,bH1) = `0(bQ1)� `0(bH1)
L(C2)/2 = `2(bQ1 ,bH2) = `0(bH 0

2
)� `0(bQ1)

(22)

To simplify the notation, let y = bH1  w = bQ1  y0 = bH 0
2
.

To compare L(C1), L(C2) we analyze the function

D`(w,y) = `2(w,y0(y))� `1(w,y) = `0(y)+ `0(y0(y))�2`0(w),
(23)

where y0(y) = Y�1(2Y(w)�Y(y)). The function D`(w,y) is
always zero for y = w, i.e. D`(w,w) = 0 w 2 [0,p/2]. Moreover
we will now prove that it is always negative and increasing if
w  p/4 while, for w > p/4 it is negative for y  ȳ  p/4
and positive for y 2 [ȳ,w] (where ȳ will be determined in the
following). To prove this we analyze the sign of the derivative
of D(w,y) with respect to y.

The derivate of y0(y) with respect to y is dy0(y)
dy =� tan2 y

tan2 y0(y) .
For the sake of simplicity, in the following, we omit the
dependency of y in y0(y). Hence,

∂D`(w,y)
∂y

=
d`0(y)

dy
� d`0(y0)

dy
tan2 y
tan2 y0

.

Substituting d`0(y)
dy = Rb

2 (1+ tan2 y) we obtain

∂D`(w,y)
∂y

= Rb
tany
tany0

(tany0 � tany)(1� tany0 tany).

Since y  w  y0 we have that the sign of ∂D`(w,y)
∂y is equal to

the sign of the function F(y) = 1� tany0 tany with y 2 [0,w].
Upon simple computations we obtain

dF(y)
dy

=� tany0 � tany
tan2 y0

(tan2 y+ tan2 y0+ tany0 tany+ tan2 y0 tan2 y),

that is always negative for y 2 [0,w) and zero only in y = w.
Moreover, F(0) = 1 and F(w) = 1� tan2 w. Hence, F(y) is

always non-negative for w p/4 (is zero only for y=w= p/4)
while is positive and then negative for p/4w w̄ and finally
always positive for w > w̄. The value r̄ associated to bQ1 = w̄
is hence larger than r2, i.e. r̄ > r2.

Based on those results, we have that D`(w,y) is always neg-
ative and increasing (F(y) is non-negative) if w = bQ1  p/4
(i.e. rQ1  r2) while, for p/4 < w  w̄ (i.e. r2  rQ1  r̄)
there exists a ỹ  p/4 (i.e. a r̃  r2) such that D`(w,y) is
negative for y= bH1 < ỹ (i.e. rH1 < r̃) and positive for y2 [ỹ,w]
(i.e. rH1 � r̃), finally for w > w̄ (i.e. rQ1 > r̄) is always
positive.

C. Proof of Corollary 1
Corollary 1: Given a trajectory C(n) from Q1 to Q2 on the

circumference of radius r2 consisting of n identical sub–paths
of type C2 and a positive parameter e > 0, given

n �
c0(yQ1 �yQ2)

2

2e

.

we have
L(C(n))�Lin f (Q1,Q2) e.

Proof: Since Y(p/4+ s)� Y(p/4)+ s 8s 2
⇥
0, p

4
�
, and

since the function Y�1 is increasing, the following inequality
can be deduced

Y�1(Y(p/4)+ s) p/4+ s 8s 2
h
0,

p

4

⌘
.

Moreover, the single pair of involute of type C2 between Q1
and Q2 with \Q2OwQ1 = z has length:

L(C2)= L(C(1)) = 2
✓
`0

✓
Y�1

✓
z

2
+Y(p/4)

◆◆
� `0(p/4)

◆
.

Hence,

L(C(n)) = 2n
✓
`0

✓
Y�1

✓
z

2n
+Y(p/4)

◆◆
� `0(p/4)

◆


 2n
✓
`0

✓
p/4+

z

2n

◆
� `0(p/4)

◆
.

The following estimate holds

`0(p/4+ s) `0(p/4)+2Rbs+ c0s2, (24)

with c0 > 4Rb and s 2 [0, f (c0)) where f (c0) is solution of
(24) as an equality. Since we are interested in finding a good
approximation of the shortest path, it is reasonable to consider
small increments of the variable z/n  f (c0). Substituting
(24) in L(C(n)), we obtain L(C(n))  2Rbz + c0

z

2

n 8n � 2,
or equivalently

L(C(n))�Lin f (Q1,Q2) c0
z

2

n
8n � 2.

As a consequence the bound L(C(n))� Lin f (Q1,Q2)  e is
ensured if

n �
c0(yQ1 �yQ2)

2

2e

.



Fig. 13. Graphical construction for the proof of Proposition 6.

D. Proof of Proposition 6
For the proof of Proposition 6 we first need the following:
Lemma 1: Consider a function f (x) with f (0) = 0, f (x̄)>

0, f 0(x)� 0 for x 2 [0, x̄] with x̄  1 and a function g(x) with
g(x̄) = f (x̄) > 0, g(1) = 0 and g0(x)  0 for x 2 [x̄,1]. Let L f
and Lg be the lengths of the paths g f (s) = f (sx̄) and gg(s) =
g(s(1� x̄)+ x̄) with s 2 [0,1] respectively. The following holds

L f  1+Lg.

Proof: Since for x, y � 0,
p

x+ y 
p

x+py, the length
of the path g f (s) verifies

L f =
Z x̄

0

q
1+ f 02(s)ds 

Z x̄

0
(1+ f 0(s))ds = x̄+ f (x̄).

On the other hand, since g0(x) 0, the length of the path gg(s)
verifies

Lg =
Z 1

x̄

q
1+g02(s)ds ��

Z 1

x̄
g0(s)ds = g(x̄)�g(1) = f (x̄).

Hence, L f  x̄+ f (x̄) 1+ f (x̄) = 1+Lg.
Proposition 6: Any path of type S+ ⇤ IR� or IL+ ⇤ S� can

be shortened by a path of type S+IL+ ⇤ IR�S� or S+IL+ ⇤Z ⇤
IR�S�.

Proof: Consider a path of type S+ ⇤ IR� and assume that it
evolves completely outside C2 . There always exist two points
Q1 and Q2 along arcs S+ and IR� respectively, with rQ1 =
rQ2 > r2.

We now prove that the subpath S+Q1
⇤ IR�

Q2
can be shortened

by paths of type IL+
Q1

⇤ IR�
Q2

, S+Q1
IL+ ⇤ IR�

Q2
or S+Q1

IL+ ⇤Z ⇤ IR�
Q2

.
Indeed, consider the two palindrome paths constructed from
S+Q1

⇤ IR�
Q2

: S+Q1
⇤ IR� ⇤ IL+ ⇤ S�Q1

and IL+
Q1

⇤ IR�
Q2

. From Propo-
sition 1, those paths are of smaller or of equal length with
respect to S+Q1

⇤ IR�
Q2

. If IL+
Q1

⇤ IR�
Q2

is smaller the thesis is proved.
Otherwise, since the path S+Q1

⇤ IR� ⇤ IL+ ⇤ S�Q1
is assumed to

evolve outside C2, from points 3 or 4 of Proposition 4 and
point 2 of Theorem 2, the subpath IR� ⇤ IL+ can be shortened
by IL+ ⇤ IR� or by IL+ ⇤Z ⇤ IR�. Considering again the original
path S+⇤IR� the thesis follows from the fact that a path of type
S� ⇤ IR� can be shortened by a path of type IR�S�, see [22].

If the path of type S+ ⇤ IR� evolves also inside C2, there
always exist two points Q1 and Q2 along arcs S+ and IR�

respectively, with rQ1 = rQ2 < r2. We will prove that the path
S+Q1

⇤ IR�
Q2

is longer than the path IL+
Q1

⇤ IR�
Q2

.
Let V and N be the switching points between S+Q1

and IR�
Q2

and between IL+
Q1

and IR�
Q2

, respectively. It is hence sufficient

to prove that the path consisting of S+ between Q1 and V and
of IR� from V to N is longer than the arc IL+ between Q1
and N. To do this, we apply Lemma 1 where g f (s) is the arc
IL+ (between Q1 and N) and gg(s) is the arc IR� (between V
and N). The lemma will be applied considering the origin in
Q1 and the x–axis laying along S+. Moreover, the distances
are normalized with respect to the length of the S+ arc. Once
the hypothesis of the lemma are verified the thesis of this
proposition will hence follow straightforwardly.

To apply Lemma 1 we first need to prove that the projection
of point N along S+ lays between Q1 and V , i.e. that x̄ of the
lemma lays in [0, 1]. Secondly we need to prove that the half–
line from the origin through V forms an angle with the line
through Q1 and V that is smaller with respect to the angle
formed with the tangent to IL+

Q1
in V . Indeed, this would prove

that f 0(x)� 0. The condition g0(x) 0 for x 2 [x̄,1] is clearly
verified.

To prove that the projection of point N along S+ lays
between Q1 and V , consider the point H of intersection
between the orthogonal to S+ through V and the circle of radius
rQ1 = rQ2 = rQH . We need to prove that \VOwH � \VOwQ2.
Indeed, if this holds the projection of Q2 on S+ lays between
Q1 and V and even more so does N.

For the relations between heading angles of points on
involutes and their distance with respect to the origin, we
have that the angle \VOwQ2 = Y(bQ1)� Y(bV ) = tanbQ1 �
bQ1 � (tanbV �bV ). On the other hand, for the definition of
point H, the angle \OwV H = p/2 + bV while for sine rule
\V HOw = arcsin

⇣
rV

rQ1
cosbV

⌘
. Since rV = Rb

cosbV
and rQ1 =

Rb
cosbQ1

, \V HOw = arcsincosbQ1 = p/2�bQ1 . Hence, from the
sum of internal angles of a triangle and the fact that angles are
smaller than p/2, we have \VOwH = bQ1 �bV . To conclude we
have that \VOwH � \VOwQ2 = 2bQ1 � tanbQ1 � (2bV � tanbV ).
Since function F(b ) = 2b � tanb is increasing in [0,p/4] and
since bV < bQ1 it holds \VOwH � \VOwQ2 � 0 and hence the
first hypothesis of the lemma is verified.

To verify the second hypothesis let K be the point of
intersection between the half–line from OW through V and the
tangent to IL+ in N. The hypothesis holds if \OW KN > bV .
The angle \OW NK = p � bN while \NOW K = tanbN � bN �
(tanbV �bV ). Hence, \OW KN = 2bN � tanbN � (bV � tanbV ).
Since bN > bV and the function F(b ) is increasing we have
\OW KN > bV and hence the thesis.

A similar proof can be applied to paths of type IL+ ⇤S�.

E. Proof of Theorem 4
Theorem 4: Given the initial point Q = (rQ,yQ), the final

point P = (rP,0) and the circumference C2 of radius r2, the
optimal language LO is characterized as follows:
a) For rQ, rP  r2 the infimum length paths are of type

S+IL+, IR�S�, IR� ⇤ IL+ or IR�Z ⇤ IL+ (or degenerate
cases).

b) For rQ, rP � r2 the infimum length paths are of type
S+IL+ ⇤ IR�S� or S+IL+ ⇤Z ⇤ IR�S� (or degenerate cases).



c) For rP  r2  rQ the infimum length paths are of type
S+IL+ or S+IL+ ⇤ZIL+ (or degenerate cases).

d) For rQ  r2  rP the infimum length paths are of type
IR�S� or IR�Z ⇤ IR�S� (or degenerate cases).

Proof:
a) For Q and P with rQ, rP  r2, the sub–path of type

C1 = IL+ ⇤ IR� does not belong to an infimum length path.
Indeed, if it does there exists a pair of points Q1 and Q2
with rQ1 = rQ2  r2, i.e. that verifies the first condition of
Proposition 4, for which C2 is shorter than C1.
Moreover, from Theorem 3, the infimum length path from
Q to P lays completely inside the circumference C2 or,
at most, contains the sub–path Z. Hence, the sequences
Z ⇤ IR� and IL+ ⇤ Z, as rQ  r2, can not be part of an
infimum length path. Hence, the sufficient optimal language
is described by the graph represented in Fig. 8(a).

b) For rQ, rP � r2, from cases 3) and 4) of Proposition 4 and
from the case 2) of the same proposition and Theorem 3,
the infimum length path from Q to P can not include a sub–
path of type C2 = IR� ⇤ IL+. Indeed, if rQ, rP � r2 one of
the conditions 2)–4) of Proposition 4 holds. In cases 3) and
4) the sub–path C2 can be shortened by C1. On the other
hand, in case 2), by applying Theorem 3 the sub–path C2
can be shortened by a path of type IL+ ⇤Z ⇤ IR�.
Moreover, similarly to the previous case, the infimum
length path from Q to P lays completely outside the
circumference C2 or, at most, contains the sub–path Z.
Hence, Z ⇤ IL+ and IR� ⇤Z can not be part of an infimum
length path. Concluding, the sufficient optimal language is
described by the graph represented in Fig. 8(b).

c) For rP  r2  rQ there always exists a point V on the
infimum length path that lays on C2. The sub–path from V
to P has been previously considered in point a) (rV , rP 
r2). Hence, from the graph in Fig. 8(a) the only infimum
length sub–path is of type ZIL+. On the other hand, the sub–
path from Q to V has been considered in point b) (rV , rQ �
r2). Hence, from the graph in Fig. 8(b), to reach Z, the
infimum length sub–path is of type S+IL+ ⇤ Z or of type
S+⇤S�. The sufficient optimal language is finally described
by the graph represented in Fig. 8(c).

d) Same reasoning used in c), switching the roles of P and
Q, can be done for rQ  r2  rP leading to the sufficient
optimal language described in Fig. 8(d). Notice that the
switch between IR� (IL+) and Z may occur only once in
any infimum length path.
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