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Abstract

In the present work we have designed and implemented a modular, robust and user-friendly Pilot Interface
meant to control humanoid robots in rescue scenarios during dangerous missions. We follow the common
approach where the robot is semi-autonomous and it is remotely controlled by a human operator. In our
implementation, YARP is used both as a communication channel for low-level hardware components and as an
interconnecting framework between control modules. The interface features the capability to receive the status
of these modules continuously and request actions when required. In addition, ROS is used to retrieve data
from different types of sensors and to display relevant information of the robot status such as joint positions,
velocities and torques, force/torque measurements and inertial data. Furthermore the operator is immersed into
a 3D reconstruction of the environment and is enabled to manipulate 3D virtual objects. The Pilot Interface
allows the operator to control the robot at three different levels. The high-level control deals with human-like
actions which involve the whole robot’s actuation and perception. For instance, we successfully teleoperated
IIT’s COmpliant huMANoid (COMAN) platform to execute complex navigation tasks through the composition
of elementary walking commands (e.g. [walk_forward, 1m]). The mid-level control generates tasks in cartesian
space, based on the position and orientation of objects of interest (i.e. valve, door handle) w.r.t. a reference
frame on the robot. The low level control operates in joint space and is meant as a last resort tool to perform fine
adjustments (e.g. release a trapped limb). Finally, our Pilot Interface is adaptable to different tasks, strategies
and pilot’s needs, thanks to a modular architecture of the system which enables to add/remove single front-end
components (e.g. GUI widgets) as well as back-end control modules on the fly.
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1 Introduction

A number of recent calamities, such as the Deepwater
Horizon oil spill and the Fukushima Dai-ichi nuclear
disaster, have highlighted the enormous potential of
robots capable to perform hazardous activities in fu-
ture disaster response operations !, thus producing a
growing interest in Urban Search And Rescue (USAR)
robotic research worldwide. In this context, initiatives
such as the DARPA Robotics Challenge (DRC) intro-
duced the idea of using humanoids to manage disas-
ter situations. Although several robot typologies (e.g.
wheeled [1] or snake robots [2]) have been considered
to cope with USAR missions, humanoid robots can
take advantage of a natively superior suitability to deal
with environments and tools designed for humans.

On the one hand, despite the increasing low-level
capabilities of humanoid robots, teleoperation is still
essential to exploit the human competence in terms of
decision making, strategic thinking, perception capa-
bilities and overall awareness of a task [3]. On the other
hand, telecommunication problems like intermittent
availability, low-bandwidth and latency of the con-
nection can occur in disaster scenarios and make the
need for a certain degree of autonomy undeniable. The
mentioned remarks enforce the ever increasing trend
towards a semi-autonomous or supervisory control [3].
We hereby present ideas to build a semi-autonomous
framework for the control of a humanoid robot in
disaster scenarios and describe features of our tele-
operation Pilot Interface. Among the main desirable
functionalities recognized, we require that the human
operator is able to issue symbolic commands to the
robot, select the level of autonomy with which the
robot performs each task and receive visual and sta-
tus information feedback. In addition, the interface is
designed to be modular and reconfigurable based on
the peculiar needs for the task or the environment
conditions and is thought to be general in order to be
used by different kinds of robots performing in disaster
scenarios.

This paper is organized as follows. We introduce the
main concepts related to robot autonomy in section 2.
In section 3 we address our Pilot Interface software
architecture, while a few implementation details are
provided in section 4. The main GUI components
are depicted in section 5. Finally in section 6 some
applications are shown.

2 The need for semi-autonomy

Due to the relatively low autonomous capabilities of
state-of-the-art humanoid robotics, teleoperation still
turns out among the most popular control solutions. In

L http://spectrum.ieee.org/automaton /robotics/industrial-
robots/fukushima-robot-operator-diaries

fact, literature includes examples of fully-teloperated
robots able to perform complex tasks like driving lift
trucks [4] with ad-hoc cockpits. At the forefront of this
field, NASA’s Robonaut humanoid can be reliably pi-
loted to perform Extravehicular Activities [5] through
haptic interfaces, predictive displays and telepresence
devices, while in recent works motion capture technol-
ogy substitutes master-slave systems for whole-body
motions [6] and power tools manipulation [7].
However, despite the practical effectiveness of such
methods, they embrace the paradigm of direct control,
which neglects telecommunication problems and is not
feasible to deal with disaster scenarios addressed in
this work.

In order to tackle communication problems, literature
proposes examples of semi-autonomous control archi-
tectures. The semi-autonomous control is a scheme
which effectively integrates teleoperation with the in-
creasing low-level robot autonomy. It allows a robot to
focus on low-level tasks (e.g. terrain traversing), while
leaving the human operator in charge of high-level
control and supervisory tasks such as specifying the
direction of motion or a point to be reached [8]. Basi-
cally, in semi-autonomous control “the remote is given
an instruction that it can safely do on its own [9]”.
In particular, adjustable autonomy allows the opera-
tor to choose the level of autonomy of the robot on
the fly and according to the task, thus letting the
operator continuously and transparently adjust it in
order to meet the imposed performance expectations.
Additionally, this approach can significantly reduce
the amount of bandwidth needed [10].

In humanoid robotics, examples of semi-autonomous
controllers have been presented recently to reduce the
high-DOF humanoid control problem to the command
space of a three axis joystick exploiting the improved
low-level capabilities of robots. This approach is fol-
lowed in [11], where an intelligent joystick for biped
gait control is proposed, while a single joystick tele-
operation system for whole body control is described
n [12]. Both works refer to the HRP-2 robot.

A significant step towards the reduction of control
complexity is found in [13]. In this work, symbolic
command interfaces through mouse or keyboard are
exploited - among other applications - to let the oper-
ator indicate a target object to be grasped on a graphic
interface, whereupon the approach-grasp operation is
autonomously carried out by the robot.

In a recent survey [3], Goodrich offered an overall view
of Teleoperation for Humanoid Robotics, stressing par-
ticularly on the challenges that make teleoperation still
essential for humanoids:

e object recognition,

e interpretaion and understanding of scenes and
semantic spatial reasoning,

e prediction and planning.



In a recent survey on Urban Search And Res-
cue (USAR) robotics [8], various examples of semi-
autonomous controllers are presented as trade-off so-
lutions to combine the recent improvements on low-
level robot autonomy and the necessity to include
a human-in-the-loop in the control systems, showing
better performances in terms of area coverage, number
of victims identified, number of collision and decreas-
ing the workload of the operator.

As mentioned in [14], in a well performing teleop-
eration system, the Human-Robot Interaction (HRI)
must be as efficient and capable as possible, and “max-
imize the information transfer while minimizing cog-
nitive and sensorimotor workload of the operator”. It
should be noted that “the importance of the operator
interface does not diminish as the level of autonomy
increases”. In a supervisory control context, as the
robot becomes more autonomous, the interface must
“provide a mechanism for the operator and the robot
to exchange information at different levels of details or
abstraction”, moving toward a supervising interface.
In [15], Yanco defined the design guidelines for an
effective HRI interface, based on a multi-year study
during USAR, Competitions:

e Use of a single monitor for the interface with large
video windows,

e Include a third-person view of the robot,

e Use a map of the reconstructed environment using
sensor fusion,

e Use graphical representation of information rather
than textual or numerical,

e Reduce cognitive fatigue, context switching and
negative effect of neglect and at the same time
improve situational awareness,

e Design of the interface based on the intended user
rather than the developer.

2.1 Motion Description Languages

The problem of connecting the implementation of au-
tonomy in tele-operated robotics and behavior-based,
hybrid control methods emerged in [16]. One solution
to this problem was provided by Roger Brockett, who
first introduced the MDL approach in [17]. MDL is a
formal language used to abstract different types of con-
trol into a simple set of basic control laws (atoms) that
can be chained together in order to obtain behaviors.
MDLe (extended MDL) [18], enriches the approach
introducing the concept of a reactive behavior using
triggers.

In humanoid robotics the attempt of simplifying the
control problem and composing parallel whole-body
primitives has been tackled with the operational-space
or task-function approach, introduced in [19]. In this
framework, the whole-body motion control problem of
a humanoid robot is simplified considering the carte-
sian space instead of the state space of the robot. This
solution eases the design of control laws, making it

more intuitive, with the additional possibility to use
the sensor space, thus closing the control loop in a
more robust and accurate way.

A task in the task-function approach can be seen as an
atom in the MDL, consisting in the lower level motion
primitive of the robot behavior; tasks can be combined
sequentially or simultaneously, thus defining behaviors
in the MDL framework. Examples of this approach are
the whole-body control introduced by Sentis [20] and
the stack of tasks presented by Mansard in [21].

2.2 Semi-autonomy via MDLs

By means of a library of parameterized motion primi-
tives (atoms) and behaviors based on the MDL frame-
work, we implemented an adjustable semi-autonomous
control with three different levels of autonomy, accord-
ing to the classification proposed in [3]:

e Traded Control,
e Shared Control,
e Direct Control.

Every control level acts in a particular level of the
MDL hierarchy. This gives to these levels a new
meaning oriented to MDL: the operator can issue in
the highest level of the control MDL plans, while in the
middle level, atomic actions or behaviors. Finally, in
the lowest level, the operator controls the robot at the
joint level. Figure 1 depicts how the different levels
of operation work. In Direct control, the operator
regulates the joint displacement, in Shared control he
can issue atoms or behaviors (depicted as segments),
in Traded control he selects a point in the environment
requesting a plan (on a wheel valve or a point in the
ground).

Shared Traded

Direct

Figure 1: Graphical representation of control levels

3 Software Architecture

We developed a pilot control interface consistent with
the three different levels of possible controls. The high-



level (Traded) control deals with the computation and
execution of plans composed by primitives. Shared
control is constituted by a set of 3D Interactive Mark-
ers that represents body parts of the robot or objects
of interest to be positioned in the cartesian space. The
operator can thus issue associated primitives or stan-
dalone primitives. Finally, we used RobotMotorGui (by
YARP) to access each joint in Direct control.

As the control level gets lower, the robot loses auton-
omy but acquires more safety. It is reasonable that the
operator could seamlessly switch between the levels of
autonomy, depending on the task and on the environ-
ment condition.

The Pilot Interface is designed to provide both visual
feedback to the user for validation purposes (or confir-
mation if needed) in a high level of autonomy, e.g. the
planner shows the planned path before execution, and
as a display control apparatus in the middle level, e.g.
the operator can adjust the position of a 3d model of
an object superimposing it onto a point cloud.

Our Pilot Interface is used to control IIT’s COm-
pliant huMANoid (COMAN) [22], which is a torque
controlled robot with 31-DOFs equipped with two
Pisa/IIT - SoftHands ? . The robot will have a Carnegie
Robotics MultiSense S7 sensor® mounted as a head,
but we are currently using a RGB-D camera (Asus
Xtion Pro Live) mounted above the torso.

Modularity in complex systems is needed for ro-
bustness and reconfiguration. In our overall architec-
ture many control modules have been developed us-
ing YARP as a middleware. These modules perform
manipulation, locomotion, planning, perception and
whole-body loco-manipulation tasks.

Each module is a standalone process that runs on
the robot and interacts through messages with the
Pilot Interface, from which it can receive a start/stop
message and custom commands.

Due to the large number of different tasks that a
USAR robot might perform, a modular and recon-
figurable Pilot Interface is needed. Since each robot
control module is an independent process, we want its
respective operator widget to be an independent Ul as
well. With our approach we can run each individual
control module widget as a standalone GUI, so that it
can be tested or used without starting the whole Pilot
Interface.

Our architecture (figure 2) easily allows the addition
and removal of single graphic components into the
main GUI window, and each component can be en-
abled or disabled from the Pilot Interface main control
bar.

2 http://softhands.eu
3 http://carnegierobotics.com/multisense-s7/

View .
3D Display Status
Control Manipulation Planning
SOT Locomotion
Model Control Interface

Switch Interface

Status Interface

Figure 2: Architecture

4 Implementation

Similarly to most of our software, the Pilot Interface
uses YARP as a communication facility. Nevertheless,
while most of the control modules rely on YARP
mainly to command the robot boards (or the simu-
lated ones) through the low level library Robolli, the
Pilot Interface uses YARP to send commands to the
modules and receive feedback of their statuses.

As an implementation priority, we enforce into the
modules some behaviours and structures specifically
designed to ensure consistency, robustness and con-
tinuous monitoring of the software execution. There-
fore, the communication between our Pilot Interface
and the modules is wrapped into a number of stan-
dard interfaces shared by all the software components.
Namely, we use a switch, a status and a command
interface.

The switch interface makes it possible to start, pause,
resume and stop modules. A practical advantage of-
fered by a switch interface is the capability to re-
cover the robot control in unforeseen situations. For
instance, if the robot gets stuck in some position
while performing a manipulation task, the operator
can stop the manipulation module (such that actuators
do not receive instructions), perform a reset procedure
through a dedicated module and then restart the ma-
nipulation module.

The status interface is used to receive the module
statuses at a constant rate. This offers the ability to
visually check through the pilot interface that each
module is running and possibly stream additional
details of the operation being performed (e.g. percent
progress of a computation, time left to complete a
task).

The command interface is used to send custom com-
mands to the modules.

In addition, the popular Robotic Operative System
(ROS) framework is heavily relied on both as a bridge



with perception hardware (e.g. the 3D Camera sensor)
and to visualize the state of the robot and a 3D recon-
struction of the environment in the Pilot Interface, by
means of the RViz displays and interaction utilities.

In figure 3 some uses of ROS and YARP in the
communication layer are shown.

ROS

00:00:00
° ©

ROS CORE

YARP SERVER

The usage of YARP and ROS in the

Figure 3:
communication layer

5 GUI Components

Our Pilot Interface is being used to tele-operate the
robot COMAN to execute a number of practical tasks
that can be encountered in disaster scenarios, some of
which are described in the sequel.

One of the most basic tasks of a humanoid is walking
on a flat ground. The currently implemented flat walk-
ing skills of our robot encompass four parametric mo-
tion primitives: forward, backward and side walk, speci-
fied with a distance parameter and turn in place, which
comes with an angle amplitude parameter (figure 4).

t O
- L 5 - (@)

0.03 0.03 5

Fwd / Bwd [m] Left / Right [m] RotL / RotR [deg]

Figure 4: Walking widget

Coherently with the need for multiple control levels,
walking can be performed through the pilot interface
with two levels of autonomy. In the Shared control
mode, the pilot can manually choose among walking
primitives and navigate the robot through the environ-
ment by sending elementary commands one by one.
In the Traded control mode, shown in the figure 5,
the pilot selects a destination pose (green arrow) on
a sensed 2D map of the environment, thus delegating
the generation and online correction of an obstacle-
free control sequence of walking primitives to a flat
walk planner.

We developed a dedicated widget for a valve turning
behaviour (section 6).

Motion Planning and Locomotion | Manipulation = Valy;

Goal: [5.447,1.608,0.133]

" selectgoal | #iter. commands cost
» 700 23 1676 o
7 .
v 3400 27 11.68
[rotr, 39.73deg]

dify path
moclypa fwd, 0.65m ]

clear

stop planning

Figure 5: Planning widget and display
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Figure 6: Valve Turning control widget

Every single pre-computed action can be triggered by
clicking the related button (see figure 6).

The main rViz feature we use is 3D object visualization
and interaction. We use a 3D display to represent the
robot status as shown in figure 7.

Figure 7: Robot Status

rViz 3D Interactive Markers are also widely used. The
widget depicted in figure 9 collects various tools to
manipulate 3D objects (e.g. a valve, in figure 8) or
elements of the robot (e.g. hands, feet, COM, head,

).

A significant issue we encountered on our robot CO-
MAN is that when an overcurrent happens, the board
related to the actuator that caused it will stop the
control on the motor.

To reset the boards singularly and remotely we devel-
oped the widget shown in figure 10 that gives us the
various information of the boards periodically or by
request. The ‘clear errors’ button resets the state of the
boards so that the standard work-flow can continue.



Figure 8: Valve 3D object
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Figure 9: Object manipulation widget

Get Status
Get Status Each 0.0 ms

Clear Errors

Board ID: 19
Control Mode: ERR

Figure 10: Control Boards Status widget

As mentioned in section 4, we can use the switch
interface for single control modules through the Pilot
Interface. In figure 11, we show the widget used to
send the start and the stop commands to the various
control modules.

Simple Homing Start Stop
Manipulation Start Stop
Locomotion Start Stop
Locomotion Planning Start Stop
SOT Start Stop

Figure 11: Module Manager widget

We decided to separate the start/stop commands from
the pause/resume ones because the first ones are more
‘dangerous’, since they can actually stop the thread
related to the control module.

6 Applications

The first practical task addressed has been the capa-
bility to turn a valve. In this task the robot is required
to reach, grasp and turn a few valves of various sizes
and orientations.

Figure 12: The Valve Turning

The current approach for this task is to first walk the
robot towards a location close to the valve. Once a
suitable proximity location is reached, the operator
performs an estimation of the valve radius and pose by
visually superimposing a 3D model of the valve on the
point cloud. This operation is performed by moving
and scaling a rViz 3D interactive marker. Eventually,
a first guess of this estimation will be provided by
a fully autonomous vision algorithm and confirmed
or fine-tuned by the pilot. Once validated, the valve
data is sent the manipulation module, which then
computes suitable end-effector and joint trajectories.
Finally, the operator can execute the computed task
related commands, namely: reach, approach, grasp,
turn, ungrasp, move away.

In the snapshots in figure 13 we display all the different
steps of a valve-turning task.

Figure 13: The Valve Task

Our team developed a Stack of Tasks (SOT) appli-
cation to perform cartesian trajectories minimizing
some loss function (to not work near joints limits for
example).
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Figure 14: The Stask Of Tasks

As shown in figure 14 we use 3D rViz Interactive
Markers to move a hand as said in section 5. The
pilot can choose wether the command should be sent
continuously or upon request. Furthermore, we can use
the SOT to control the COM and a foot in a static
equilibrium configuration.

7 Conclusions

In this paper, the design of a Pilot Interface for hu-
manoid robots in USAR scenarios has been presented.
We described the most relevant capabilities of our
current implementation and showed its effectiveness
during a demonstration based on the DRC wvalve-
turning task. This task was fulfilled by sole means of
a semi-autonomous Shared control level.

As a part of our future work, we plan to improve the
capabilities of our robot by developing increasingly
complex behaviors to address tasks that can be en-
countered in disaster scenarios. Our aim is to simplify
the interface while reducing the pilot’s cognitive fa-
tigue and gradually move towards a more autonomous
framework.

In addition, while the Pilot Interface can be seam-
lessly used to control the real and a simulated robot
thanks to the Gazebo-Yarp Plugins [23] developed by
our team, it appears desirable to embed simulation
capabilities into the pilot interface, thus allowing a safe
validation of planned actions prior to the execution on
the real platform.
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