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Abstract

ASCARI is a simulator dedicated to distributed and cooperative mobile robotics systems. ASCARI has been
designed to be a generic framework for implementing and testing multi-agent collaborative algorithms, especially
suited to evaluate algorithms performances with a non-perfect communication channel (e.g. delayed, limited
bandwidth, limited range). The design process has taken into account state-of-art robotics simulators but was
mainly driven by a complex new requirement: inter-agent communication has to be integrated in the simulation
loop.
The core of the project is a server with a simple dynamic engine, a synchronization facility and an API
(Application Programming Interface) to control simulated communication which is used by server plugins to
provide implementations for the characteristics of the communication channel. Different channel requirements
can be added by users through the dedicated plugin. Beside the server, there are the agents involved in the
simulation.The only custom code required from the user is the agent control law.
The control law has to be written as a plugin which receives sensors data and control actuators using an API
as an abstraction layer from hardware. As in every mature simulator, the abstraction layer quickly enables the
developer to use the desired control law directly on a real robot by changing only hardware drivers.
Finally, the inter-agent communication is provided in a transparent way to the user by some template
communication classes. The user can exchange information between agents by simply creating senders
and receivers classes with their custom data type. Simulated communications and filters are all handled
automatically. The simulator is completed by a 2D viewer and a simple GUI (Graphical User Interface) that
allow the user to intuitively follow the simulation evolution and to start the various processes (simulator, agents,
viewer), controlling the number of agents involved in and the simulation speed.
In this paper we first describe the ASCARI simulator and we then validate it on a distributed traffic control
and a distributed task assignment algorithm.

1 Introduction

Simulations are widely used in multi-robot systems as
a validation method, yet most of the software simu-
lators are usually developed to target a specific ap-
plication/algorithm, thus they lack the capabilities to
become a general and stardardized tool for researchers
in this field. While, for generic robotics applications,
there exist some simulators that are recognized as
standard tools, these softwares are not very suited
to multi-robot systems. Here we will briefly exam-
ine the features of some of the most known robotic
simulators from the point of view of multi-agent ap-
plications. Specifically, our aim is to build a system
that allows easy testing of communication-based dis-

tributed algorithms, where the communication chan-
nel and equipment can be specified by the user. The
most inspiring simulator for our work was Stage, from
the project Player/Stage/Gazebo. The Player/Stage
(P/S) [1] project is an open-source software for rapid
development of robot control code. Player [3, 2] is
based on a set of simple interfaces for communicating
and controlling sensors and actuators, while Stage is
a 2D simulator for multiple robots that includes a
simple physical simulations. Stage uses a set of simu-
lated devices that are compatible with standard Player
interfaces. Thus the interface that is presented to the
user by Player can be used unchanged from simulation
to real hardware.



For example, a program that drives a simulated laser-
equipped robot in Stage will also drive a real laser-
equipped robot, with no changes to the control code.

Stage software architecture was designed with multi-
robot systems in mind, the resulting software is capa-
ble of handling thousands of mobile agents with simple
dynamics and an arbitrary control code. The main lim-
itation of P/S is the communication between robots: it
was not designed for simulating a communication, and
the Wifi interface has been only declared as a possible
sensor, but it was not implemented.

We believe that not taking into account the capability
of simulating communications among agents during
the design of Stage makes it very hard to add that
feature now. Anyway, the project is no longer devel-
oped since some years, maybe due to the focus of
open source robotics community on Gazebo. Gazebo
has recently evolved as a standalone project integrated
with ROS, and lost its old Player interface coupling.
The main difference between Gazebo and Stage is the
quality and the precision of the dynamic integration:
Gazebo is a 3D environment with accurate body colli-
sions and joint simulations, focused on a single robot
hardly interacting with the environment. Since one
year Gazebo provides an 802 wireless simulated sensor
with Hata-Okumara propagation model. This sensor
can be used as a starting point for developing other
type of wireless communication sensors. Gazebo is not
suited for thousands of robots because of the com-
putational complexity of the simulation: simulating
thousands of robots in Gazebo would require too much
time and usually researchers in distributed control
algorithms for multi-robot systems are more interested
in fast approximated simulations than in realistic ones.
The same considerations stand for similar simulators
such as V-rep [9], USARSim [8] and Microsoft Robotics
Studio [7].

MatSim [4] uses a totally different approach to multi-
agent simulations: by ignoring agent dynamics it is
capable of simulating more than 1 millions of agents
in the same environment. It is a grown and stable
software easy to use, but as such, it appears complex
to understand and edit in its simulating capabilities.

Webots [5] is a commercial closed-source 3D mobile
robot simulator. The robot controllers can be pro-
grammed with the built-in IDE (Integrated Develop-
ment Environment) or with third party development
environments. The robot behavior can be tested in
physically realistic worlds. The controller programs
can optionally be transferred to commercially available
real robots. A simulated wifi-communication module is
implemented inside the simulator but, since Webots is
not expandable by the user, the communication model
cannot be changed or improved.

Argos [6] was inspired by Stage. The main differences
can be found in the simulation speed (Argos is faster)

and in the decoupling of the physics engine from the
simulated world. Argos suffers the same design prob-
lem of Stage related to the possibility of simulating
communication channels. The user cannot influence
the simulator side, meaning that he/she can’t write a
communication module integrated with the simulated
world. As in Stage, the wifi sensor exists but it has an
empty behavior, meaning that it was not implemented.

Mason [10] is a multi-agent simulation suite written
in Java to be portable on different operating systems.
It was not built as a complete simulator, but as
something to be easily adapted by other researchers
into a custom simulator. Mason is focused on agents
in a wider sense, so it does not provide any mobile
robotics facility such as communications, sensors or a
realistic dynamic.

It is worth noting Swarm [11], which is probably one
of the oldest multi-agent simulators and served as
inspiration for Mason, Argos and Stage.

Finally, two new simulators have been growing in
the last years: RoboRobo! [12] and Morse [13]. They
are both inspired by the need of new fast simulators
dedicated to multi-agent research and developed with
state-of-the-art technologies. Roborobo! can be pretty
useful as a base for developing a custom simulator for
a particular application (e.g. a specific swarm mobile
robotics environment and simulation), but not as sim-
ulator capable of providing a platform for testing many
different algorithms. Morse is built with interoperabil-
ity as a priority: it supports most known middlewares
(ROS, YARP) and uses a script to set up simulations.
Robot models inside Morse are controlled through
interprocess communication, new models can be added
by writing sensors and actuators simulation code as
python scripts. At the moment of writing, there are
no simulated communication sensors in the simulator
sensor library.

Although the state of art of simulators is mature and
fulfills almost every research requirements, we believe
that a generic communication system integrated in the
simulation loop is a missing feature. We will propose
a design capable of providing this new feature while
keeping the best practices from state of art simulators.
We believe that our communication system design can
successfully be added to newborn simulators such as
RoboRobo and Morse.

Our work aims to have a completely application–
independent simulator suited for distributed mo-
bile robotics with simulated communication network,
which can be used together with simulated robots and
real ones, see figure 1.

This paper is organized as follows. In section 2 we
describe the requirements which our simulator was
designed for. The global software architecture is ad-
dressed in section 3, here the communication facilities



Figure 1: The ASCARI simulated communication.

are introduced, a more detailed description is in section
4. The hardware integration is addressed in section 5.
We describe two application that use our simulator in
section 6.

2 Design requirements

ASCARI has been developed with a set of require-
ments that were identified as main features from state
of art simulators. In fact, we believe that building a
simulator primarly around novel features would lead
to a custom non-generic software, our target is instead
to set a new standard for multi–robot systems simula-
tions (as Stage did in 2008).

One of the major features of modern simulators is the
possibility to use the same code for both simulated
and real agents. The only changes required should be
the input/output drivers, not the control law or its
implementation.

A difference between custom simulators and the
widespread ones is their modular and expandable de-
sign. A simulator should never have hardcoded as-
sumptions on the system that will be simulated, new
modules with new features should be easily integrated
into the simulator, even core features should be built
as modules. Argos and Gazebo fully represents this
approach by using interfaces and plugins.

Usually, simulators support multi–process systems
where each robot controller runs in its own process
or computer, while the simulation handles dynamic
integration and model collisions. This approach is a
limitation when simulating thousands of robots, and
the solution is the capability of integrating the robot
controllers directly into the same simulation process,
as Stage does. Designing ASCARI, we chose a mixed
approach where controllers can be wrapped in a stan-
dalone process or run in a different thread of the sim-
ulator process itself. In the next section we will show
how this capability emerged naturally from ASCARI
software architecture design.

Following the Gazebo plugin approach, ASCARI sup-
ports any kind of dynamic law required by the user.
Dynamic laws can be expressed directly as code or as a
set of equations: ẋ = f(x, u) where x ∈ Rn is the state
of the agent, u ∈ Rm is the controller output and f is,
in general, a non-linear function.

Finally, our main target is the design of a communi-
cation system integrated in both the simulation loop
and the real robots. The implementation of the com-
munication between agents is based on communication
primitives. Such primitives manage any kind of mes-
sage data and hide the simulator to the user providing
the same API for real and simulated agents. The
communication module inside the simulator has been
designed as a plugin that may be changed to model
various communication channels with different char-
acteristics such as ranges, signal noises and visibility.

3 Software Architecture

In this section we describe some of the main ASCARI
software components, focusing in particular on the
design choices related to the communication facilities.
From an high level point of view, ASCARI has a
server that acts as a world simulator, a set of clients
(simulated agents) and a simple 2D/3D visualizer.
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Figure 2: The ASCARI server architecture.

The important server sub-modules are shown in figure
2. The server parses a configuration file where the
world and the agents are described. A database with
each agent state is then created and updated by a
dynamic integration module at each simulation step
after receiving commands from clients. A user code
is loaded as a communication module, it has reading
access to the agent state database, and updates an
agent communication filter database, which is used
to allow or block inter-agent communications. At the
moment, two dynamic modules are available, a simple
fixed step forward integration (default) and an exter-
nal robot state receiver, which can receive updated
states from any external dynamic integration system
or real hardware sensors, allowing hardware in the loop
simulations (see details in section 5). The server basic
loop flowchart is shown in figure 3.

It sends the updated state to each agent, receives new
actuator controls from them, integrates the dynamic,
executes the communication module update function,
forwards all the inter-agent communications, based on
the agent communication filter database, and starts
again.

The agent structure is represented in figure 4. As
already said, ASCARI is based on many little building



Figure 3: The ASCARI server flowchart.

blocks, so many client sub-modules are similar to
their respective ones in the server. Hardware and
inter–agent communication module are connected to
the server modules. The configuration file is read by
the parser and it is used to provide initialization
parameters to the agent control loop.
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Figure 4: The ASCARI client architecture.

The control loop handles sensors and actuators, pro-
viding the data to the custom control loop as it was
local and not remotely simulated. The custom loop
interface is where user code is running. It has access to
the agent state and to the inter-agent communication
primitives that allows the user to create distributed
algorithms. The parser results are given also to the
custom loop, so that user can specify additional pa-
rameters in the same agent configuration file. The
client basic loop flowchart is shown in figure 5.

Figure 5: The ASCARI client flowchart.

It receives the updated state from the server, executes
the user custom code, and sends the resulting com-
mands to the simulator.

Configuration file structure and options

An example of a configuration file is reported. The
structure is the classic one of the yaml files. The user
can use the provided parser to get the information from
the file in his/hers custom code.

Inside the tag WORLD (where we can define addi-
tional variables) there are the two main tags: BEHAV-
IORS and AGENTS.

- WORLD:

BEHAVIORS:

- name: unicycle

states: [x,y,theta]

control_commands: [v,w]

DYNAMIC_MAP:

- x: ’v*cos(theta)’

y: ’v*sin(theta)’

theta: ’w’

AGENTS:

- agent: Agent1

COMMUNICATION_AREA: circle(50)

INITIAL:

- x: ’3’

y: ’3’

theta: ’0’

BEHAVIOR: unicycle

SIMULATED: 1

Inside the BEHAVIORS tag the user can define many
agent types with different states and dynamics.

Inside the AGENTS tag the user can define as many
desired agents with their own parameters and be-
haviours. In the example, the variable COMMUNICA-
TION AREA is used by a communication filter mod-
ule to filter all the messages outside a circle centered
in the robot and with a radius of 50 meters. The
SIMULATED tag allows to use the same configuration
file for real and simulated agents, which can also be
mixed together to obtain an hardware in the loop
simulation.

Finally, a 2D/3D visualizer and a simple GUI to
start both the server and all the agents specified in
a configuration file complete the ASCARI software
architecture. The visualizer reads the network traffic
generated between the server and the clients in a
transparent way, so that zero or many viewers can be
attached to the same simulation.



4 Communication Facility

The core of our system is a set of communication mod-
ules and interfaces organized as generic basic building
blocks, usually a sender and a receiver. Both the com-
munication between clients and server and inter-agent
communication modules are implemented using these
blocks. Messages are strongly typed and can be any
complex c++ structure, including any STL container.
Receiver and sender are c++ classes template–ized on
the type of message they work with, they are initialized
with an IP address, as 1-to-1 or 1-to-N connections,
and they can have an optional topic name similar to
ROS topics used to filter messages. Usually a developer
uses both classes and creates a transceiver made with
a pair of receiver/sender. The agent code can use the
transceiver to communicate with other agents without
caring about the presence of a simulator. In fact, if a
simulation is running, communications are automati-
cally synchronized with the simulation loop among all
the agents, while in the case of real agents, the same
transceiver creates direct inter–agent connections, thus
the agent code does not require any changes in the
communication part when switching from simulated
to real hardware. The only changes required are inside
the configuration file, by editing the SIMULATED tag.
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Figure 6: : The ASCARI custom Communication
Module.

From the simulator point of view, the user needs to
inherit a simple filterModule that represents a com-
munication channel and to create a custom commu-
nication module (figure 6). We chose to give the user
maximum freedom on the channel behaviour but, in its
simpler form, the inherited class has just to implement
an updateFilter(...) method. The updateFilter inputs
are the simulation states of all the agents, defined as
states variables (e.g. planar coordinates of agents).
This method updates a filtering table that tells the
simulator if two agents are able to communicate to
each other at each simulation step. If the user wants
more control, he can also override the receive(...) and
forward(...) methods. These two methods are the ones
used by the server in order to receive and transmit
inter–agent messages by acting as a gateway. If they
are reimplemented, advanced behavior such as delays
on the channel, random packets drop, bandwidth lim-

itations and so on can be obtained. Note that receive
and forward methods have access to the messages
content, while the updateFilter has, as input, only the
agents state.

5 Hardware Integration

All the code written in ASCARI can be reused on the
real hardware thanks to the communication facility.
During the execution, if in the configuration file an
agent has been declared as not simulated, instead of
sending the commands to the simulator, these are
sent via serial communication directly to the hard-
ware through a serial communication block that fully
complies with the standard messages that the clien-
t/server exchanges during the simulation. Basically
instead of using the actuation commands to simulate
the dynamics of the robot, these are used to move the
real robot. With this configuration the only thing a
user, that want to pass to the hardware, has to care
about is to have something that can receive via serial
bus the actuation commands and execute them. The
commands for the robots currently used are linear
acceleration and angular acceleration.

An example of the hardware we used is shown in figure
7.

Figure 7: A mobile robot, equipped with a Raspberry
Pi and an Arduino Uno

In this robot there is a Raspberry Pi, which is the
core of the robot. On board there are a wireless key
to communicate with the other agents and a Linux
system on which the various algorithms run. Plugged
to it via serial bus there is an Arduino Uno which
receive the actuation commands from the Raspberry
and send them to the motors via a shield board (wires
have been omitted for the sake of clarity).

One advantage to have this architecture is that we
can work with real and simulated robot as well just
defining the type of the robots in the configuration file.
For example we can run a collision avoidance algorithm
on two real robot and a simulated one. In the real



scenario we will see the real robots steering ‘near’ the
simulated one, even if there is nothing in front of them.

6 Applications

Many applications have been developed thanks to AS-
CARI, both on the software and on the hardware
side. These applications concern for example: colli-
sion avoidance, agents localization using webcams and
markers and classical distributed robotics algorithm
such as rendez-vous and distributed consensus.

Two of the most interesting applications are a dis-
tributed task assignment algorithm and a distributed
traffic control one.

In the task assignment application a subgradient
method based algorithm allows to assign various tasks
to heterogeneous robots optimally, [15]. Concerning
ASCARI, it has been used to simulated the various
robots’ dynamics and to coordinate them during the
scenario evolution. Thanks to the communication facil-
ity the agents exchange through the network their local
subgradient, allowing the other robots to compute the
total subgradient until the algorithm converges. In the
simulated scenario, the simulator takes into account
the dynamicity of the tasks, making them appearing,
evolving and expiring during time. The tasks’ state
is sent through the network by the simulator, so the
various agents can know if a task is already taken,
or expired, or if some new tasks are available. In
the real scenario the tasks are the classical industrial
ones, such as putting material on a conveyor belt, or
move pallets across a warehouse. In this application
the robot recharging is seen has a high priority task,
depending on the amount of charge of the robot, which
appears if the amount of a robot’s charge goes below
a certain value. In Figure 8 a frame of a simulation of
the algorithm in an industrial scenario is depicted.

Figure 8: Distributed task assignment algorithm in
ASCARI.

In [14], a distributed traffic control protocol has been
proposed. The algorithm uses communication to fore-
see and avoid agents collisions on a topological map
represented with a graph (see Figure 9). The messages
exchanged by agents are a set of future nodes and arcs

that each agent would like to cross, a resource locking
algorithm ensures that agents will not try to cross the
same node in the same future time and hence ensure
the safety of the system. The algorithm was tested
with different communication ranges and with random
packets drop to assess its robustness. In the single-
process version of ASCARI 30 agents with a simple
unicycle dynamics were simulated at around 50x real
time with an integration step of 0.001 s.

Figure 9: Distributed traffic control algorithm in
ASCARI.

Notice that ASCARI can be used to implement and
test any robot control algorithm, but it is especially
suited for multi–agent collaborative algorithms also
with a non–perfect communication channel. A user
must define the agents’ control law and a dedicated
communicator if particular data exchange between the
agents (or between the agents and the simulator) is
needed.

To view the original videos please go to the AS-
CARISimulator channel on:

http://www.youtube.com/user/ASCARIsimulator.

7 Conclusions

In this paper the ASCARI distributed mobile robotics
simulator with simulated communication network has
been presented. The simulator is suited to develop
many applications, and in particular it has been de-
signed to be scalable and hence it is able to handle
many robots. The hardware integration is straight-
forward and the user can use real robots and simu-
lated ones as well. Future works include: export the
communication facilities to Argos and RoboRobo! and
real object simulation (as done in the task assignment
application).
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