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Abstract— Despite some prematurely optimistic claims, the
ability of robots to grasp general objects in unstructured
environments still remains far behind that of humans. This
is not solely caused by differences in the mechanics of hands:
indeed, we show that human use of a simple robot hand (the
Pisa/IIT SoftHand) can afford capabilities that are comparable
to natural grasping. It is through the observation of such
human-directed robot hand operations that we realized how
fundamental in everyday grasping and manipulation is the role
of hand compliance, which is used to adapt to the shape of
surrounding objects. Objects and environmental constraints are
in turn used to functionally shape the hand, going beyond its
nominal kinematic limits by exploiting structural softness.

In this paper, we set out to study grasp planning for hands
that are simple - in the sense of low number of actuated degrees
of freedom (one for the Pisa/IIT SoftHand) - but are soft,
i.e. continuously deformable in an infinity of possible shapes
through interaction with objects. After general considerations
on the change of paradigm in grasp planning that this setting
brings about with respect to classical rigid multi-dof grasp plan-
ning, we present a procedure to extract grasp affordances for
the Pisa/IIT SoftHand through physically accurate numerical
simulations. The selected grasps are then successfully tested in
an experimental scenario.

I. INTRODUCTION

During the past thirty years, the problem of autonomous
robotic grasping has been one of the most widely inves-
tigated. For well known scenes and object models, pre-
programming of autonomous grasping and manipulation
tasks may be an option. Toward this goal, several approaches
have been proposed to define the optimal finger placement on
the object, either based on some geometric [1] or force [2],
[3] grasp quality measures, specifically tailored to convex
objects [4], with optimal on-line contact adjustments [5],
and also generalized to non-convex objects [6]. Perhaps
because of the fragility of the mechanics of most robot
hands, a multitude of the planning methods were thought
for interactions between the hand and the object that only
occurred at the fingertips, limiting contacts with other parts
of the hand and avoiding contacts with the rest of the
environment at all.

This “timid” approach to manipulation generated by rigid-
ity and fragility of the hand has been recently challenged
by the introduction of adaptable, underactuated and/or soft
hands. Devices such as the underactuated RobotiQ hand [7],
the RBO and RBO 2 hands [8], [9], the iHY hand [10] and
the Pisa/IIT SoftHand [11], are designed to be much simpler,
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(a) Rigid Manipulation Paradigm (b) Soft Manipulation Paradigm

(c) Rigid Manipulation example (d) Soft Manipulation example

Fig. 1. Paradigm shift in manipulation, from rigid manipulation (left) to soft
manipulation (right). Primary colors identify the scenario main actors: red
for the robotic hand, blue for the environment, green for the target object.
Secondary colors codify simple interactions between the actors: yellow for
hand-object, cyan for object-environment and magenta for environment-
hand. Finally, complex interactions, which involve all the three actors at
the same time, are white colored. Refer to text for a deeper description.

and much more robust with respect to the whole interaction
process. This allows to use these hands in more “daring”
interactions with the objects in the environment, using their
full surface for enveloping grasps, and exploiting objects and
environmental constraints to functionally shape the hand,
going beyond its nominal kinematic limits by exploiting
structural softness.

The differences between a rigid and soft approach to
manipulation are sketched in Fig. 1. In the classical paradigm
(cfr. panel (a)), the planner searches for suitable points on the
object that generate a nominal grasp of good quality, and for
trajectories that can bring there the fingertips while avoiding
contacts of the hand with the environment. In the example of
panel (c), to grasp the green cup while avoiding the wall on
the left the planner has to find a path in a narrow passage.
However, soft manipulation subverts this scheme (panel (b)).
In the example of panel (d), hand-object, object-environment
and hand-environment contacts are not avoided but rather
sought after and exploited to shape the hand itself around
the object.

The set of all possible physical interactions between
the hand, the object and the environment, which define
the hand-object functional interaction, will be referred to
as the set of Enabling Constraints. The analysis of such



possibilities constitute a rather new challenge for existing
grasping algorithms: adaptation to totally or partially un-
known scenes remains a difficult task, toward which only
some approaches have been investigated so far. Some of
them are model-free and propose geometrical features which
indicate good grasps [12], [13], some others evaluate also
topological object properties such as holes [14]. Typically,
grasps are ranked on a fixed list of suitable hypotheses,
do not require supervised learning, but do not adapt over
time. Other methods are based on learning the success rate
of grasps given some descriptor extracted from sensor data,
either evaluated on a real robotic system [15], [16], or on
simulated sensor data [17], [18].

Moreover, beside vision-based methods, hand compliance
offers the real possibility to use tactile exploration for 3D
reconstruction of unknown environments and objects. Tactile
sensing can solve some severe limitations of computer vision,
such as sensitivity to illumination and limited perspective.
As an example, a combined procedure based on dynamic
potential fields, that aims at reconstructing 3D object models,
which are then used for grasp planning and execution was
presented in [19] and recently extended in [20].

In this paper, we consider planning grasps with hands that
are simple – in the sense of low number of actuated degrees
of freedom, e.g. one for the Pisa/IIT SoftHand – but are soft,
i.e. continuously deformable in an infinity of possible shapes
through interaction with objects. We present a first approach
to the study of this novel kind of manipulation, based on
an accurate simulation tool for the SoftHand, developed
using the multi-body system software ADAMS [21]. A
batch simulation set-up was created and used to perform
the automatic creation of a database of grasp affordances
for the Pisa/IIT SoftHand and a set of kitchenware objects.
The method is related to that followed with simulators such
as GraspIt! [22], Open-Rave [23] and OpenGRASP [24],
although the softness of the hand introduces a new vista on
the problem.

To stress the differences between the rigid and soft manip-
ulation paradigms, Section II presents some of the benefits
of using Soft Hands to grasp objects. Section III recalls
the mathematical model of the SoftHand after which the
simulation tool, presented in Section IV, has been developed.
Section V presents the automated simulation batch environ-
ment, that led to the results presented in section VI. Finally
conclusions are drawn in Section VII.

II. A NEW SET OF POSSIBILITIES

By observing the way humans use their real hands, it is
possible to realize that, in everyday grasping and manipu-
lation, the role of hand compliance is fundamental. In the
first place it is used to adapt to the shape of the hand
surroundings: both the target object and the rest of the
environment. On the other hand, it is important to notice
how the objects and the environment constraints are used,
in turn, to functionally shape the hand, going beyond its
nominal kinematic limits by exploiting its structural softness.

Although one could ascribe such levels of dexterity to the
high levels of sensory-motor capabilities of the human hand
itself, it is astounding to compare the performance of the
human naked hand with that of a person using a simple robot

Fig. 2. A human hand grasping a cup with three different approaches (top
panels) and the same grasps reproduced with the Pisa/IIT SoftHand (bottom
panels).

Fig. 3. The Pisa/IIT SoftHand mounted on an a human arm.

hand, as the Pisa/IIT SoftHand arm-mounted device shown
in Fig. 3.

Thanks to its under-actuated mechanisms the SoftHand
is capable to grasp several number of objects by matching
to their shape. These combination of simplicity, adaptivity
and robustness lets the person experiment in a very natural
way with the robotic hand, and soon achieve a level of
performance comparable, often similar, to that obtained with
their true hands. This achievement is obtained despite the
presence of just one degree of actuation on the mechanism
and an almost total lack of tactile feedback. Fig. 2, shows
three very different ways to grasp a cup, implemented with
both the naked hand and the SoftHand.

The SoftHand can substantially match the grasping perfor-
mance of the human hand thanks to its possibility of explor-
ing and exploiting the Enabling Constraints that define, at a
very basal level, the problem of grasping and manipulation.

As a further example, consider Fig.s 4, where the com-
bined action of adaptability and robustness allow the user
to manipulate and interact with both the environment and
the object at the same time, in a complex way (refer also
to Fig. 1). Exploiting all the physical constraints that are
external with respect to the hand itself: walls, surfaces and
edges, force closures of the object between the hand and the
environment can be obtained and used to generate simple and
effective manipulation tasks, in this case sliding and pivoting



Fig. 4. A person with the arm-mounted SoftHand can seamlessly execute also difficult manipulation tasks which involve combined interactions between
hand, object and the environment.

a book.

III. MODEL OF THE PISA/IIT SOFTHAND

As an example of the new advantages introduced for
the soft manipulation paradigm, we investigate how to plan
grasps for the Pisa/IIT SoftHand.

Fig. 12 shows that despite the fact the hand is always
driven by the same closing command for any object, the final
grasps are characterized by different joint configurations,
automatically obtained thanks to the adaptability of the
hand. The only variables needed to synthesize grasp remain
those ones describing the wrist pose. In next sections we
will present a randomized investigation method, in order to
discover sets of hand/object configurations bringing to the
grasp. As follows from previous discussions, the dynamic
evolution of the system play a key role, from the pre-grasp
phase until a stable grasp is achieved. Hence, starting from
the kinematic model of the hand, extensively presented in
[11], we developed a dynamic simulation tool in ADAMS.
The main equations to be considered in the simulator come
from the kineto-static model of the Pisa/IIT hand, which can
be described by the following

s = Rq, (1)
τ = RT η −Kqq. (2)

In eq. (1) variable s ∈ R describes the displacement of
the extremities of the actuation tendon, while q ∈ R19 is the
joint displacement vector, comprising 5 revolute joints for the
abduction movement, and 14 soft roll-articular (SR) joints for
the flex/extension movement of the fingers. The map between
the two variables is the so called adaptive synergy matrix
R ∈ R1×19. From eq. (1), by kineto-static duality, eq. (2)
follows, where η ∈ R is the motor torque, and τ ∈ R19

is torque vector at the joint level. The joint stiffness matrix
Kq ∈ R19×19 is introduced to properly consider the effect
of the joint elastic band on the net torque.

IV. SIMULATOR IMPLEMENTATION

After the CAD models of the parts composing the hand
have been imported, a virtual link is placed between the
two real ones, Fig. 5(a). Each real part is connected to the
virtual one by virtue of a revolute joint, Fig. 5(b). Finally, the
coherence between the movements of the simulated SR joint
and the real one is assured by introducing a gearwheel-type
constraint, Fig. 5(c).

In order to properly describe the behavior of the Pisa/IIT
SoftHand, it is important to take also into account: (i) the
kinematic constraints imposed by the tendon routing, (ii) the

Fig. 5. Implementation of the SR joint in ADAMS: a virtual link is
introduced between the two elements (a); a revolute joint connects the virtual
link with each real parts (b); a gear-wheel constraint is imposed between
the two revolute joints (c).

effects of the elastic bands at the joints since, as follows
from (2), both the terms contribute to the net joint torques.
The effect of the motor torque was introduced in ADAMS
by imposing the desired torque on each joint, considering
both the motor torque curve versus time, and the adaptive
synergy matrix R. The contribution of the elastic bands is
introduced in the model using the ADAMS rotational springs.
By properly tuning the damping term in the ADAMS model
of springs, the Coulomb friction at the joints is modeled,
this has also the the beneficial effects of avoiding unphysical
oscillations of the simulation if not present.

Regarding to Fig. 1, the Enabling Constraints exploited
in the next set of simulations are contacts and reactions.
It means that all contact interactions among object, table
and hand geometries are enabled. In order to reduce the set
of possible grasp configurations to explore, the inclusion of
driving constraints is kept as a future work.

V. BATCH SIMULATION SETUP

In order to perform a large set of simulations for the
Pisa/IIT SoftHand, the ADAMS model was fully parame-
terized via a template script. Design parameters like object
inertia, contact parameters and joint stiffness and friction,
were properly chosen to mimic the real hand as closely
as possible, they do not need to be modified during the
simulation campaign. The sole parameters to be modified
are those defining the pose of the hand with respect to the
object. To this aim, and to keep the number of simulations
reasonably low, without sacrificing the quality of the results,
a certain strategy had to be devised.

The first strategy we attempted was an extensive inves-
tigation sampling four of the six DoFs necessary to define
the position and orientation of the palm frame with respect



to the object frame. More in detail, the position of the
origin of the palm frame was parameterized in spherical
coordinates (radius, azimuth and elevation). The normal to
the palm frame always points toward the center of the sphere
which coincides with the origin of the object frame. The
remaining DoF is the rotation of the hand frame around the
normal. With this strategy a large number of attempts were
unsuccessful because, in the starting configuration, the hand
was either already interpenetrating the object, or excessively
far from it. In the first case, the simulation was skipped,
because of the non-feasible condition, while in the latter the
object was out of reach or the ejection of the object occurred.
The main reason is that a sphere is not a good generalization
of many object geometries, such as a pot or a cup.

Fig. 6. A flow chart of the use of ADAMS and MATLAB for running
batch simulations. In MATLAB, a .cmd file is used to define the hand
configurations in which attempting the grasp. By loading this file in
ADAMS, together with a .bin file containing the object/hand model, we
can obtain a file (.adm) for each configuration. Running the .acf file, the
.adm ones are read, performing the simulations in batch mode. Simulation
variables (joint angles, contact forces, etc...) are available in the exit files
(.msg, .res, .req, .gra) for post-processing operations.

This suggested us to redesign the strategy taking into
account the geometry of the object, focusing the attention
on the mesh describing the shape of the object.

The mesh of the object to be grasped was imported
in MATLAB, and the points of and the normal vectors
to the surface were extracted. For 50 randomly selected
points of the mesh, the pose of the hand frame was chosen
positioning its origin 5 mm (coming from observations of
real experiments) outside the surface mesh along the outward
normal. The normal to the palm was aligned with the normal
to the object at the point, but with opposite direction (the
palm always faces the object). Finally, 8 configurations were
selected rotating the hand around its normal axis. The 400
palm configurations obtained were put on a test for achieving
a stable grasp. Fig. 6 represents a scheme of the flow chart
for running batch simulations.

The results achieved after this first investigation step are
represented, for the case of the pot, in Fig. 9, where green
frames represent successful configurations (stable grasp
achieved), red frames the unsuccessful ones. In order to
evaluate if a grasp is stably achieved, all the simulations
were split into two parts. In the first part the object to be
grasped lies on a plane, orthogonal to the gravity vector, in
order to hold it on without over-constraining it. No contact

was set up between the hand and the table to do not preclude
any possible approach direction. This simulation part is three
seconds long, that is approximately one second longer than
the time of free closure of the hand. Later, starting from
the final configuration of the first simulation and keeping
active the hand motor torque, a two seconds long simulation
is performed removing the table. Afterwards, the velocity
of the object is read from the output files, and the grasp is
rated as achieved and stable if the velocity is smaller than a
tolerance value.

From the results of the first set of simulations, the points
that brought to a stable grasp were extracted, and their
neighbourhood was further investigated. This research was
performed by randomly choosing 10 of the 40 closest points
on the mesh, around the successful one. For each new point,
again 8 rotations around the palm normal were considered
to attempt the grasp.

VI. SIMULATION RESULTS

The free closure movement of the Pisa/IIT SoftHand
obtained with ADAMS is shown in Fig. 7. As explained in
Sec. IV, the hand model considers both the tendon routing,
eq. 1, and the elastic bands at the joints, eq. 2. The reader
can find a deeper analysis about the kineto-static model of
the hand in [11].

In our simulation campaign we used everyday objects: a
cup, a pot, a colander and a plate, see Fig 8. For the cup
example, Fig. 9 shows: a) the points composing the object
mesh, b) successful (green) and unsuccessful (red) grasps
configurations after the first 400 simulations, c) the result for
all tested hand postures and d) all successful configurations.

In order to validate the dynamic behaviour of the simulator
and to put the obtained results on a test, some successful hand
palm configurations were also implemented with the Pisa/IIT
SoftHand prototype. A KUKA lightweight robot was used to
exactly replicate the hand/object configuration suggested by
the simulation. A comparison snapshot sequence for the pot
and the colander is shown in Fig.s 10 and 11.

In TABLES I and II some numerical results of the
simulations are summarized. Specifically, in TABLE I, for
every object we list: (i) successful postures, the number of
palm frame configurations bringing to a stable grasp, (ii)
successful points, the number of unique origin positions
of the hand frame with possibly multiple orientations, (iii)
clouds, number of neighbourhoods investigated, (iv) best
cloud, maximum number of successful grasps in a cloud.
As we can see, the best result in terms of number of grasp
achieved, as well as in terms of individual successful points,
is obtained for the pot. However, the best cloud is found for
the plate.

In TABLE II, some simple quality indices are listed. In
particular, the cloud quality (CQ) index reports the highest
percentage of stable grasps achieved in the tested clouds. The
CQ index is computed as

CQ =
gb
cb
100, (3)

where gb is the number of stable grasp achieved and the
cb is the number of hand palm configurations tested, both
considered for the best cloud. The closure index (CI) is a
measure of how much the hand is closed at the end of the



successful
postures

successful
points clouds best

cloud

Cup 30 13 8 10

Pot 138 41 16 35

Colander 21 6 2 14

Plate 112 29 10 37

TABLE I
Simulation results: (i) number of initial postures leading to a successful
grasp, (ii) number of successful individual starting points for the hand

placement, (iii) number of clouds studied and (iv) maximum number of
successful configurations found in a cloud (best cloud).

CQ Index
%

Closure Index
(min-max)%

Net Force
(N)

Cup 11.3 40-73 1-57

Pot 39.7 48-68 2-36

Colander 15.9 54-67 11-52

Plate 42.1 57-69 6-28

TABLE II
Simulation results and quality measures. Cloud Quality (CQ) index is the

percentage of stable grasp achieved, with respect to the number of
postures attempted, in the best cloud. Closure index (CI) is how much the

hand is near to the complete closure configuration, minimum and
maximum values found for all the successful grasps are reported. Net

Force (NF) measures the amount of contact forces exceeding the weight
of the object (minimum and maximum).

simulation. In TABLE II the minimum and maximum values
found for each object are shown. This index is computed as

CI =
100

nqc

nqc∑
i=1

qfi
qci

, (4)

where qfi is the final configuration of the ith joint during
the grasp, qci is the maximum reachable value allowed by
the mechanical constraints for the ith joint, and nqc in the
number of flex-extension joints.

The Net Force (NF) is a measure of the amount of internal
forces produced in the grasp by the finger limbs. It is
computed as

NF =

(
c∑

i=1

fTcifci − w
T
o wo

) 1
2

, (5)

where c is the number of contact points, fci is the force at
the ith contact point, and wo is the weight of the grasped
object.

As it is evident from table II, the best cloud quality (CQ)
index is achieved for the plate. However, also high values
of closure index are realized when grasping the plate. This
result can be explained by taking into account that all the
tests were performed with the same torque vs time motor
curve. In same cases, especially for the plate, results show
that the amount of motor torque is enough to overcome the
friction and to bring the hand in a closure configuration.
The greatest amount of the NF index, is realized to grasp

the colander. The explanation for this result is, again, an
excessive level of motor torque, in particular with respect to
the low weight of the object. The relevant difference between
the minimum and the maximum value of the NF index for
all the objects can be explained considering that the palm
force is not measured in the simulator. This implies that high
values of the NF index correspond to grasps in which the
interaction forces are primarily executed by the fingers, low
values correspond to grasps that mainly involve the palm.

Generally speaking, the not excellent results of the colan-
der (just 2 clouds and 21 successful configurations) can be
explained with the difficulty of randomly selecting points
near to the upper edge or the handles. Moreover, the meshes
of the objects, obtained from CAD files, are characterized
by the presence of (nominally) normal vectors that, indeed,
are not orthogonal to the object surface. In some cases, an
hand/object interpenetration can occur, caused by a palm
normal orientation not orthogonal to the object surface, and
the selected point (potentially good) is discarded. For similar
reasons, we can consider the cup and the pot as being
penalized. Potentially, more points could be have been found
on their handle having a better representation of the mesh
points and of the normal vectors to the surface.

VII. CONCLUSION

This paper moves a first step in the direction of studying
grasp planning for simple soft hands, imbued with the
capabilities of comply with the manipulated object within,
and together with, the environment.

Some considerations extracted from the observation of
humans to execute simple and more complex tasks, using
both their hands and an arm-mounted robot hand, led us to
suggest a possible change of paradigm in grasp planning that
this setting brings about. After that, we presented a procedure
to extract grasp affordances for the Pisa/IIT SoftHand, built
upon a physically accurate numerical simulations system
that was purportedly implemented. This allowed to select
a set of possible grasps that were then successfully tested
in an experimental scenario. Despite this early results, much
work remains to be done to sharpen the grasp search and to
abstract learned grasps between different objects. Although
the reported results only scratch the surface of the wholly
new problem of soft manipulation planning, however, our
results indicate that soft manipulation can be a viable solution
for obtaining stable and robust robot grasps.
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