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Abstract— Incorporation of human motor control principles
in the motion control architectures for humanoid robots or
assistive and prosthesis devices will permit these systems not
only to look anthropomorphic and natural at the body ware
level but also to generate natural motion profiles resembling
those executed by humans during manipulation and locomotion.
In this work, relying on the observations on human bimanual
coordination, a novel realtime motion control strategy is pro-
posed to regulate the desired Cartesian stiffness profile during
the execution of bimanual tasks. The novelty of the proposed
control scheme relies on the use of common mode stiffness
(CMS) and configuration dependent stiffness (CDS) to regulate
the size and directionality of the task space stiffness ellipsoid.
Thanks to the CDS control, the proposed scheme is not only
proved to be effective in regulating the desired stiffness ellipsoid
but also permits to resolve the manipulator redundancy in a
natural manner. The effectiveness of the controller is evaluated
in an experimental setup in which two cooperating robotic
arms are executing an assembly task. Experimental results
demonstrate that the proposed dual-arm CDS-CMS controller
is effective in tracking the desired stiffness ellipsoids as well as
in producing human-like natural motions for the two robotic
arms.

I. INTRODUCTION

In recent years, the fast growing interest in versatility and
flexibility of robotic systems working closely and interacting
with humans in co-operative tasks or acting as assisting or
prosthesis systems had led to the development of a wide
range of systems: from full body humanoid robot co-workers
to anthropomorphic manipulator prosthesis and exoskeleton
systems aiming to aid and improve the life of humans with
special needs. Apart from resembling the human body in
terms of kinematics and physical appearance, and to increase
their acceptability and compatibility, such systems should be
also capable of generating motions that look natural and
demonstrate similarities with those executed by humans.
To achieve this, it is profitable therefore to incorporate in
the motion control architecture of these systems human
principles of motor control [1].

The goal is to obtain a good performance, while rendering
a human-like natural motion, which is deemed to emerge
as a consequence of the stabilization of some task-related
criteria. To illustrate the underlying concept, examples of
natural postures of the human while holding a cup or using
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Fig. 1: Examples of acquired natural postures in humans as a
consequence to the redundancy resolution for (A) minimum effort
and (B) impedance control.

a screwdriver are depicted in Fig. 1. A and B, respectively.
In these particular examples, subtask criteria are rooted
in the concepts of minimum effort (1. A) and impedance
control (1. B), which lead to the generation of corresponding
configurations. Inspired by similar observations, the problem
of redundancy resolution has been extensively addressed in
the field of robotics by establishing task-related artificial
potential fields [2], [3], [4], while, only few studies have
drawn attention to the acquired human-like natural motion
[5], [1], [6].

With the advent of higher demands on dual-arm mani-
pulation, interaction with the environment using impedance
control [7] became the focus of many studies in dual-arm
systems. In this direction, object-level impedance control
of cooperating robots has gained great attention due to the
feasibility of controlling task forces/velocities while avoiding
the occurrence of high internal forces [8]. In [9], an internal
force based impedance controller has been proposed and
its effectiveness was evaluated in an assembly task in a
planar setup. Following that, Bonitz et al. [10] extended the
aforementioned concept to a condition in which the dynamics
of the object is not known. In [11], a decentralized impedance
controller is proposed and its contact efficiency is evaluated
in an industrial setup, in which two cooperating manipulators
carry a common object. The authors in [12], [8] have presen-
ted object-level impedance controllers with coupling stiffness
which is defined by a potential function. Even though such
well-established techniques have successfully demonstrated
their effectiveness through reliable handling of the contact,
only few have highlighted the efficiency of the Cartesian
impedance control through redundancy resolution [13], [14].



In this paper, relying on the major contribution of the
arm configuration to effectively regulate the directionality
of the realized endpoint stiffness ellipsoid, and its low-cost
nature [15], [16], [17], we explore the role of configuration
dependent stiffness (CDS) control [18], for dual-arm object
manipulation. Therefore, the joint variables are controlled in
redundant space to realize a task-specific Cartesian stiffness
profile. In addition, with the purpose of obtaining a good
tracking performance while rendering natural movements, we
incorporate the optimality principles in human motor control
in the development of proposed impedance controller. In this
direction, given the growing body of evidence in support of
coordinated stiffening behavior of the arm joints in humans
(e.g. see [19], [15], [16]), we utilize the concept of common
mode stiffness (CMS) control. To establish this concept, we
assume a correlated stiffening behavior among the joints
of each robot. A realtime optimization technique is then
proposed to adjust the CMS and CDS variables and realize a
desired Cartesian stiffness profile of the tool, w.r.t the object:
While the CMS variations contribute to the modifications
of the size of the realized stiffness ellipsoid (analogous to
the role of co-contractions in human arm), CDS control
will orient the realized stiffness ellipsoid toward the desired
Cartesian profile.

The effectiveness of the proposed controller is evaluated
in a dual-arm assembly task. The acquired good tracking
performance and similarities between the natural postures
of the human operators and the ones realized by the robots
illustrate the contact efficiency of the proposed algorithm,
while highlighting the advantages of the integration of hu-
man motor principles in redundancy resolution of dual-arm
manipulation. Therefore, utilization of similar motion control
strategies in humanoids co-operating with humans or upper
limb assistive exoskeleton or prosthesis devices can result
in the generation of more natural motions improving the
acceptability and compatibility of such devices.

The rest of the paper is structured as follows; section II
describes the development of the proposed controller. The
experimental setup and results of the implementation of the
controller for a dual-arm assembly task are presented in
sections III and IV, respectively. Finally, section V addresses
the conclusions.

II. CONTROLLER DESIGN
A. Dual-arm kinematics

Observations on human bimanual coordination suggest
that the central nervous system (CNS) stabilizes the first
synergy of the two cooperating arms to a larger degree
(higher control levels) than if it did for control of each arm
joints, separately. Indeed, as regards the human dual-arm
activities in its most natural way, two hands cooperate in
a way that they form a kinematic chain [20]: while the first
synergy stabilizes the relative position/orientation of the two
hands (as a dominant task requirement), lower hierarchical
levels of control stabilize remaining task variables by con-
trolling the redundant degrees of freedom [21], [22]. Above
observations promote the idea of utilizing a similar kinematic
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Fig. 2: Dual arm manipulation diagram.

representation in dual-arm robotic manipulation of the object
to accommodate the stabilization of the task variables as well
as rendering a natural redundancy resolution.

To that end, in our setup, a relative Jacobian is used which
creates a unified, coordinated control between the two arms.
Normally, the expression of the relative Jacobian combines
the individual Jacobians of each arm, such that the resulting
Jacobian maps the joint velocities of the two arms to the
relative velocity between the end-effectors [23]. This allows
users to directly specify the relative trajectory between the
two end-effectors such that coordinating the trajectories of
the two arms becomes an easy task. Such representation
have been incorporated with force-guided control [24] and
impedance control [25] as well.

The dual-arm manipulation setup is shown in figure (2).
In our setup, qG ∈ RnA and qT ∈ RnB denote the joint
variables of the manipulators A and B, respectively. Here,
we assume that manipulator A is rigidly holding the object,
while manipulator B is executing the defined task with the
tool. The position vectors of the origins of gripper frame
(ΣG) and the tool frame (ΣT ) with respect to the base frames
of the two manipulators (ΣA and ΣB) are denoted as ArG
and BrT , respectively. In addition, the position vectors of the
origins of the tool and the object frame with respect to ΣA and
ΣB are denoted as objrT and objrG, respectively. According to
[23], the transformation of the joint velocities q̇= [q̇T

G q̇T
T ]

T ∈
Rn, onto the task space linear and angular velocities υ =
[objṙT

objωT ]
T ∈ R6 is performed by the relative Jacobian,

JR, as follows

υ = JR(q)q̇, (1)

with n = nA + nB, where nA and nB denote the number of
DoFs of the two manipulators.

B. Impedance control of dual-arm

To establish the mapping between the forces acting on
the tool, objFT , referenced from the object frame, and the
required joint torques, τ , we can exploit the principle of



virtual work. Therefore, we can write

∆Wτ = τ
T

∆q,

∆WF = objFT
T

∆
objxT .

(2)

with ∆Wτ and ∆WF , denoting the work done by the joint
torques and displacements, and forces acting on the object
and relative displacement of the tool w.r.t. object frame of
reference, ∆objxT , respectively. By combining the Eqs. (1)
and (2), we acquire

τ = JT
R (q)

objFT = JT
R (q) Kc ∆

objx̃T .

with ∆objx̃T = objxT d − objxT . On the other hand, to esta-
blish the stiffness mapping between the joint and Cartesian
spaces, we employ the following expression [26],

KJ =
∂τ

∂q
=

∂ (JT
R (q) Kc ∆objx̃T )

∂q
,

The above equation can be written as follows, around the
equilibrium position,

Kc = [JR(q)(KJ−Kg)
−1JR(q)T ]−1, (3)

where the diagonal elements of the joint stiffness matrix
KJ ∈Rn×n are formed by the diagonal elements of the joint
stiffness matrices of the two robots (KJG and KJT ). Here, we
assume that all joint stiffness matrices do not have coupling
terms, i.e. they are always of diagonal shape. The stiffness
matrix Kc specifies the Cartesian stiffness profile which is
defined with respect to ΣG, and Kg =

∂JT
R (q)
∂q

objFT ∈ Rn×n,
captures the effect of geometry in presence of external forces.

A very interesting outcome of the above relation is the
definition of the desired Cartesian stiffness (the Cartesian
stiffness between ΣT and Σobj)1 in relative coordinates.
This means that the need for transferring the configuration-
dependent, desired Cartesian stiffness matrices of the two
robots with respect to the world frame to the task coordinates
is simplified, thanks to the definition of the relative Jacobian.
Such realization will be profitable for dual-arm asymmetric
manipulation tasks using tools (e.g. carving, peeling, peg-in-
hole, etc) [20], since the specification of the task parameters
in relative coordinates is more intuitive.

C. CMS and CDS Optimization Algorithm

To realize the desired Cartesian stiffness matrix (by trac-
king 21 elements in the symmetric matrix Kcd), in absence
of preload forces (i.e. Kg = 0), we differentiate the Eq. 3
w.r.t. time as follows2:

K̇c =−Kc[
dJR(q)

dt
K−1

J JR(q)T + JR(q)
d(K−1

J )

dt
JR(q)T

+ JR(q)K−1
J

dJR(q)T

dt
]Kc,

(4)

with the first and the last terms of the above equation
being the transpose of each other. To that end, if we take

1since ΣG is considered rigidly attached to Σobj, the components of the
stiffness matrix are expressed in Σobj.

2By taking into account that for a square and invertible matrix X, ∂X−1 =
−X−1(∂X)X−1.

into account that q̇ is allowed to vary in the null-space of
the relative Jacobian, while complying with the prescribed
relative motion of the two end-effectors, we can write

q̇ = J+R υ +NJ γ̇, (5)

where J+R denotes the pseudo-inverse of the relative Jacobian,
dJR
dt = dJR

dq q̇, and NJ ∈ Rn×n−6 is a basis of the nullspace
projector (I − J+R JR) of the relative Jacobian. γ̇ ∈ Rn−6 is
the vector of nullspace velocities, and I ∈ Rn is the identity
matrix. Now, by combining Eqs. (5) and (4), and defining

P1 =
dJR(q)

dq
[J+R υ ]K−1

J JR(q)T

P2 =
dJR(q)

dq
[NJ γ̇]K−1

J JR(q)T

P3 =JR(q)
d(K−1

J )

dt
JR(q)T

=JR(q)K̇−1
J JR(q)T ,

we can write

K̇c =−Kc[P1 +P2 +P3 +P1
T +P2

T ]Kc. (6)

Now, if we decompose the nullspace velocity vector, we
can write

γ̇ =

[
1

0̄n−7

]
γ̇1 + · · ·+

[
0̄n−7

1

]
γ̇n−6,

=Iγ1 γ̇1 + · · ·+ Iγn−6 γ̇n−6.

(7)

Here, relying on the observations on coordinated stiffening
behavior of the arm joints in humans (e.g. see [19], [15],
[16]), we explore the concept of common mode stiffness
introduced in [18], in our dual-arm setup. Therefore, we
assume that the joint stiffness values are controlled in a
coordinated manner. To replicate similar behavior, we choose
a constant diagonal scaling matrix, Kscales, (in descending
order from base joint to the end-effector [27]) for each
arm while introducing two independently controlled common
mode stiffness values, kcms1 and kcms2 . Therefore we write:

K̇J = Kscales1 k̇cms1 +Kscales2 k̇cms2 . (8)

By combining Eqs. (6), (7) and (8), while factoring
w.r.t. the scalar nullspace velocities, γ̇i, and common mode
stiffness changes, k̇cmsi , we define

Jγi =vec{dJR(q)
dq

[NJIkJi
]JR(q)T+∼T}γ̇i

JKcmsi
=vec{−JR(q)K−1

J KscalesiK
−1
J JR(q)T+∼T}k̇cmsi

where the operator vec extracts the 21 independent elements
of 6× 6 symmetric matrix, and the symbol ∼ denotes the
same term, placed in the same set of brackets. Now, by
defining ˙̃Kc = K̇c +Kc[P1 +P1

T ]Kc, we can write

vec{ ˙̃Kc}=
[

Jγ JKcms

][ γ̇

k̇cms

]
=: Jyẏ. (9)

with Jγ = [Jγ1 · · · Jγn−6 ], JKcms = [JKcms1
JKcms2

], γ̇ =

[γ̇1 · · · γ̇n−6]
T , and k̇cms = [k̇cms1 k̇cms2 ]

T .



The above equation resembles the structure of inverse
kinematics problem, in which we are dealing with the
tracking of ˙̃Kc ∈ R21 by using common mode stiffness
values, kcms, and degrees of kinematic redundancy in a dual-
arm setup. Now, by defining the vectorial stiffness error
es = vec{Kcd −Kc}, we can set up classical update laws.
Consequently, by exploiting the update law based on the
pseudo-inverse of Jy we get

ẏ = Jy
+
[
vec{ ˙̃Kc}+K pses

]
, (10)

where K ps is the gain associated to the stiffness error es.
Eq. 10 synchronously updates the CMS (kcms) and CDS
(γ) values through corresponding Jacobians, JKcms and Jγ ,
respectively. Therefore, iterative optimization of the CMS
and CDS values will result in the realization of a desired
Cartesian stiffness profile in realtime. In the meantime,
the desired motion of the tool w.r.t. the gripper frame of
reference will be assured due to the Eq. 5.

D. Task Prioritization

To execute a dual-arm manipulation task, the object must
be held in a reasonable position, inside the workspace,
w.r.t. the world frame of reference. This is accompanied
by the desired relative motion of the tool w.r.t. the object
frame, and cost-efficient motion of the remaining degrees
of freedom in dual-arm kinematic chain. Therefore, the task
can be decomposed into subtasks with prioritized order of
occurrence.

An efficient solution for stabilization of the task variables
in prioritized order is presented in [4]. Following that, to
preserve a desired position of the object w.r.t. the world
frame, the first priority subtask is established as follow

q̇G = J+1 ṙ1, (11)

where J1 ∈R3×nA is the first-priority task Jacobian and ṙ1 ∈
R3 is the velocity vector of the origin of the gripper frame3.
Our secondary subtask establishes the relative movement of
the two end effectors and its kinematic relationship is defined
by the relative Jacobian of the two cooperative manipulators
(Eq. 1). Now, given the two subtasks, we setup the task-
priority based kinematic control [4], as follows4

q̇ = J+1 ṙ1 + Ĵ+2 (ṙ2− J2J+1 ṙ1)+(I− J+1 J1)(I− Ĵ+2 Ĵ2)γ̇, (12)

where I is the identity matrix, J2 = JR, ṙ2 =υ , and Ĵ2 = J2(I−
J+2 J2). To ensure robustness against kinematic singularities,
we use the damped least squares inverse solution which is
defined by B+ = BT (BBT +λ I)−1, with λ ∈ R denoting the
damping factor [28].

The third term in above equation projects the vector γ̇

(Eq. 9), into a subspace (C ∈Rn−9, assuming n> 9) which is
formed by remaining DoF that do not affect neither one of the
subtask variables, while, at the same time decreases the error
between the desired and realized relative stiffness profile.

3here we do not consider any constraints on the orientation of the first
subtask.

4such representation accommodates the incorporation of additional
subtasks such as joint and torque limit avoidance and etc.
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Fig. 3: Dual-Arm assembly (peg-in-hole) setup.

Due to the fact that the proposed algorithm incorporates
human impedance regulation principles in realization of the
desired Cartesian stiffness profile, we expect to obtain similar
performance and natural redundancy resolution as compared
with the humans.

The proposed CDS controller can also be utilized for
humanoid robots or upper body assistive devices with joints
with fixed-passive stiffness values to fairly realize a desired
Cartesian stiffness profile w.r.t. the object frame. In addition,
once the concept of common mode stiffness is integrated in
the hardware5, the CDS controller can be adopted to further
reduce the error between the realized and desired Cartesian
stiffness profiles.

III. EXPERIMENTAL SETUP

The efficiency of the proposed approach to cope with
contact stability issues while generating natural motions in
redundant space is evaluated in a Peg-in-Hole task, a classical
benchmark for spatial planning with uncertainties.

The dual-arm setup incorporated two seven DoF KUKA
LWR, with DLR’s Fast Research (FR) Interface [29]. A
peg and a hole were designed and mounted on the end
effectors of the two robots. To illustrate the capabilities of
the proposed controller in effective modulations of the size
and directionality of the realized endpoint stiffness in task
coordinates, the hole was mounted along different (x, y and
z) directions of ΣG. Then, three different desired Cartesian,
Kcdes , stiffness profiles (stiff along the direction of the hole,
while realizing a compliant profile along other directions to
avoid generation of high interaction forces) were defined
and tracked by our proposed controller. The task-required
value of the desired Cartesian stiffness matrix along the hole
axis (in which there is friction) was chosen from the human
endpoint stiffness measurements [19]. A 6–axis force and

5by designing robotic arms with n+1 actuators, with n being the number
of joints and 1 corresponding the actuator for modifying the stiffness of all
joints in a coordinated manner.
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Fig. 4: A. Human performing a bimanual peg-in-hole task. Initial
configuration (B), and realized configuration as a result of proposed
controller (C). Human and robots’ ending configuration coincide
which gives evidence to the similarity in control principles.

torque (F/T) sensor (ATIMini-45) was mounted in between
the peg and the robot end effector to monitor the interaction
forces. Performance analysis of the proposed algorithm was
carried out considering the realized stiffness matrix error and
normalized to the norm of Kcdes as follows

eK =
‖Kc−Kcdes‖
‖Kcdes‖

.

In addition, to provide a graphical representation of the
stiffness profiles, the translational part of the realized and
desired stiffness matrices were projected into xy, xz and yz
planes of the object frame of reference, Σobj, resulting in
three stiffness matrices (Ki j ∈ R2, [i, j] = [x,y,z]). Following
that, the major, αmax, and minor, αmin, axis of the ellipsoids
along with the major axis direction, ϕi j, were determined
using singular value decomposition:

ϕi j = atan2(Umax j ,Umaxi)

αmaxi j = [Emax(KT
i j Ki j)]

1
2

αmini j = [Emin(KT
i j Ki j)]

1
2 ,

with E denoting the eigenvalue operator and Ki j =Ui jSi jV T
i j .

The joint damping values were all considered fixed Di =
0.7Ns/m. The control and synchronization interface between
the KUKA controllers and the six axis F/T sensor were
developed in C++.

IV. RESULTS

Figure 4. A demonstrates the natural posture of the human
operator executing an assembly task. As observed here, the
redundant DoFs in both arms are adapted to orient the
stiffness profile in the direction of the hole, to overcome
the frictional forces, while rendering a compliant behavior in
remaining directions to avoid generation of high interaction
forces.
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Fig. 5: Desired (red, dashed) and realized (black, solid) translatio-
nal stiffness ellipsoids, corresponding to configuration C in Fig.
4. In this experiment, the translational stiffness matrix Kcdes =
[300,300,1000]N/m, is defined in relative coordinates. All off
diagonal elements are set to zero. The hole is mounted along the z
axis of ΣG.
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Fig. 6: Common mode stiffness parameters of the two robots (left
and middle plots) are adapted in addition to the CDS to decrease
the error between the desired and realized stiffness ellipsoids (most
right plot), in realtime. The error at the begging of the experiment
can be though of a case in which only CMS optimization was
taken into account. While, synchronous optimization of the CMS
and CDS parameters results in an effective reduction in the stiffness
error profile

The proposed algorithm establishes the realtime tracking
of the desired stiffness profile in relative coordinates through
the optimization of the CMS and CDS. Starting from an
initial configuration (Fig. 4. B), the CDS control drives the
redundant joints to a configuration which is depicted in Fig.
4. C.

The desired (red, dashed) and realized (black, solid) el-
lipsoids are projected into the object’s frame of reference
and are depicted in Fig. 5. As seen in the plots, efficient
elongation of the stiffness ellipsoid is perceived due to
the CDS control. Fig. 6 illustrates the adaptation of the
CMS values of the two robots (most left and middle plots),
synchronized with CDS control of the dual-arm setup. The
error (Fig. 6, most right plot) at the begging of the experiment
can be though of a case in which only CMS parameters’
optimization was taken into account. While, synchronous
optimization of the CMS and CDS parameters result in
effective reduction in the stiffness error profile.

In another experiment, the hole was mounted along the
y axis of ΣG and the desired stiffness ellipsoid was de-
fined to render a stiff behavior along the direction of the
hole, while being compliant along other directions. Starting
from an initial configuration depicted in Fig. 7. B, the
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A

Fig. 7: A. Human performing a bimanual peg-in-hole task. Initial
configuration (B), and realized configuration as a result of proposed
controller (C). The hole was kept in a fixed position (subtask one),
while the orientation was allowed to change due to the CDS. Human
and robots’ ending configuration coincide which gives evidence to
the similarity in control principles.
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Fig. 8: Desired (red, dashed) and realized (black, solid) translatio-
nal stiffness ellipsoids, corresponding to configuration C in Fig.
4. In this experiment, the translational stiffness matrix Kcdes =
[300,1000,300]N/m, is defined in relative coordinates. All off
diagonal elements are set to zero. The hole is mounted along the
Y axis of ΣG.

CDS control drives the redundant joints to a configuration
which is depicted in Fig. 7. C. Since the position of the
hole is considered fixed, the CDS controller has maximally
adjusted the configuration of the manipulator on the left,
not to violate the constraints on the position of the hole.
At the same time, efficient control of the configuration of
the manipulator on the right has been achieved. Similarities
between the natural posture of the human operator (Fig. 7.
A), and the one realized by the proposed controller, once
again, give evidence to the analogy between incorporated
control principles. The normalize error between the realized
and desired task stiffness profile was eK = 27%. This error
includes all 21 elements of the stiffness matrices. Projected
stiffness ellipsoids of this experiment are brought in Fig. 8.

Fig. 9 illustrates the projected stiffness ellipsoids, as
results of the tracking of different elongation of the desi-
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Fig. 9: Desired (red, dashed) and realized (black, solid) trans-
lational stiffness ellipsoids with different elongation w.r.t. Fig.
5. In this experiment, the translational stiffness matrix Kcdes =
[1000,300,300]N/m, is defined in relative coordinates. All off
diagonal elements are set to zero.

red stiffness ellipsoid in relative coordinates (the hole was
mounted along x in this experiment). The CDS and CMS
values are adapted to effectively align the realized stiffness
ellipsoid with the desired one. This lead to the normalized
error of eK = 30%.

Effective modulations of the size and the directionality of
the realized stiffness ellipsoid in above examples illustrate
the capabilities of the proposed controller in realization of the
desired Cartesian stiffness profile. In addition, our proposed
CDS controller achieves a natural redundancy resolution of
the dual-arm setup, which highlights its application in control
of the humanoids or upper body assistive or prosthesis
devices.

V. CONCLUSIONS
The paper proposed a new on-line motion controller

which regulates the Cartesian stiffness ellipsoid in a manner
inspired by human motor control and impedance regulation
principles. The presented scheme not only achieves effective
task space stiffness control but also intrinsically perform
redundancy resolution of the manipulator arm in a manner
that results in the generation of natural motion resembling
those executed by human in similar tasks. In particular,
relying on the observations on coordinated stiffening beha-
vior of the human arm joints, two common mode stiffness
(CMS) controllers were utilized. The CMS concept was
introduces in our dual arm controller by changing the joint
stiffness values of each robotic arm in a correlated manner.
This allows to regulate the size of the realized Cartesian
stiffness ellipsoid for each arm. Simultaneously, to align the
realized stiffness ellipsoid with the desired one, we explored
the concept of configuration dependent stiffness (CDS) in
dual arm impedance control. Effectiveness of the proposed
algorithm in efficient modifications of the realized size and
directionality of the task stiffness ellipsoid, while generating
natural movements, was evaluated in three assembly experi-
ments. Implementation of the CMS-CDS controller resulted
in good tracking performance, in addition to the generation
of natural movements, similar to the ones realized by human
operators.

It is worth to point out that, here, the naturalness of the
robot motions were mainly determined based on the visual



comparison with human postures making similar tasks as the
ones commanded to the robot. Future works will be devoted
to the establishment of more solid metrics to measure the
naturalness of the robot motions and compare them to a “non
natural” redundancy resolution.
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