Grasp Analysis Tools for Synergistic Underactuated Robotic Hands

Marco Gabiccini'?#, Edoardo Farnioli'*, Antonio Bicchi»?*

' Research Center “E. Piaggio”, Universita di Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy

2Department of Civil and Industrial Engineering, Universita di Pisa, Largo Lucio Lazzarino 1, 56122
Pisa, Italy

3Department of Information Engineering, Universita di Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
4Department of Advanced Robotics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy

E-mail: {marco.gabiccini, edoardo.farnioli, antonio.bicchi} @iit.it

Keywords: grasp analysis, compliant grasps, underactuated robotic hands, soft synergies, structural
properties, grasp taxonomy.

ABSTRACT

Despite being a classical topic in robotics, the research on dexterous robotic hands still stirs a lively
research activity. The current interest is especially attracted by underactuated robotic hands where a high
number of degrees of freedom (DoFs), and a relatively low number of degrees of actuation (DoAs) co-
exist. The correlation between the DoFs obtained through a wise distribution of actuators is aimed at
simplifying the control with a minimal loss of dexterity. In this sense, the application of bio-inspired
principles is bringing toward a more conscious design. This work proposes new, general approaches for
the analysis of grasps with synergistic' underactuated robotic hands.

After a review of the quasi-static equations describing the system, where also contact preload is
considered, two different approaches to the analysis are presented. The first one is based on a systematic
combination of the equations. The independent and the dependent variables are defined, and cause-effect
relationships between them are found. In addition, remarkable properties of the grasp, as the subspace
of controllable internal force and the grasp compliance, are worked out in symbolic form. Then, some
relevant kinds of tasks, as pure squeeze, spurious squeeze and kinematic grasp displacements, are defined,
in terms of nullity or non-nullity of proper variables. The second method of analysis shows how to
discover the feasibility of the pre-defined tasks, operating a systematic decomposition of the solution
space of the system. As a result, the inputs to be given to the hand, in order to achieve the desired
system displacements, are found. The study of the feasible variations is carried out arriving to discover
all the combinations of nullity and/or non-nullity variables which are allowed by the equations describing
the system. Numerical results are presented both for precision and power grasps, finding forces and
displacements that the hand can impose to the object, and showing which properties are preserved after
the introduction of a synergistic underactuation mechanism.

1 INTRODUCTION

The design of robotic hands was directed for long time to obtain a better dexterity and capability
in manipulation tasks. This goal was sought by increasing complexity and number of degrees of
freedom, with remarkable examples of robotic hand designs following this trend represented by the

! The term synergies in human hand control studies refers to various phenomena and in ways that reflect the level at which the
analysis is performed, ranging from the common divergent inputs to multiple neurons at the neural level, the activity of concurrently
active motor units at the muscle level, to covariation patterns among digit joints during reach-to-grasp and manipulation tasks at
the kinematic level [Santello et al., 2013]. In the present paper, as usually common in the robotics community, we will adopt the
kinematic level definition of synergies, e.g., finger joint covariation patterns in grasping and manipulation tasks.



UTAH/MIT hand [Jacobsen et al., 1984], the Robonaut Hand [Lovchik and Diftler, 1999], the Shadow
hand [Shadow Robot Company Ltd., 2009] and the DLR hand arm system [Grebenstein et al., 2012].
One of the main issues of this approach is that a large number of degrees of freedom implies many
actuators, with a consequent growth of size, weight and cost. With such kind of devices, another
disadvantage is the difficulty in control. Finding a joint control law, able to perform a given task,
may become a difficult job, mainly due to the complex kinematic structures of the hands. Starting
from these observations, different kinds of underactuation strategies were introduced and studied
[Bicchi, 2000, Birglen et al., 2008]. In this direction, a recently considered approach is to take inspiration
from the human hand, not just from a biomechanic point of view, but also for the control aspects.

Despite significant differences in the definitions and in the requirements of the investigated
tasks, many neuroscience studies such as [Fish and Soechting, 1992], [Angelaki and Soechting, 1993],
[Soechting and Flanders, 1997], [Santello et al., 1998], [Latash et al., 2005], [Thakur et al., 2008] and
[Castellini and van der Smagt, 2013] to mention only a few, share a main observation: simultaneous
motion of multiple digits occurs in a consistent fashion, even when the task may require a fairly high
degree of movement individuation such as grasping a small object or typing.

One of the main quantitative results is that a large variety of common grasps that humans can
do is well described by just five synergies, being the first two important enough to explain 80% of
the variance in grasp postures. This suggests the possibility to change the basis of the description,
from the joint space to the human-inspired postural synergy space. In [Ciocarlie et al., 2007] this
idea was implemented via software to control the hand for grasp planning, interrupting the rigid
coordination of a finger when it arrives in contact with the object to be grasped. A second way,
proposed in [Brown and Asada, 2007], follows the road of an hardware implementation, where two
kinds of synergies can be achieved by changing the set of actuation pulleys. In this case, when a
first contact with the object achieved, either stable or not, the hand has to stop its motion. Differently
from the previous one, the soft synergies approach [Gabiccini et al., 2011] avoids the problems due
to a strict correlation between joint motions. In this case the synergistic movement is imposed to a
virtual hand, attracting the real one via a generalized spring. The influence of synergies in motion
and forces is investigated in [Prattichizzo et al., 2011]. The contact force optimization problem was
investigated in [Gabiccini et al., 2011], taking into account the limitation imposed in the controllability
by the underactation. Recently, the possibility to obtain a soft synergy like controllability using adaptive
synergies was studied in [Grioli et al., 2012, Catalano et al., 2012], in order to achieve both the results to
get human-inspired movement and an easier mechanical implementation.

This paper, based in part on [Gabiccini et al., 2012], deals with the quasi-static analysis of synergistic
underactuated grasps, and proposes an approach where the set of equations describing the system
is treated as a whole. Results are not limited to provide the controllable system variations by
synergistic actuation. In addition to this, systematic ways to discover relevant properties of the grasp
are provided, even in symbolic form, and a method to define and study the feasibility of some tasks
is given. In Section 2 a review of the analytical description of the problem, based on the screw
theory [Murray et al., 1994, Davidson and Hunt, 2004], is presented. Since also the derivative terms of
the Jacobian matrix are taken into account, configurations with contact force preload can be rigorously
analysed by the proposed method. Our choice is to use an object-centric formulation, obtaining a constant
grasp matrix and some simplifications to describe rigid object displacements. The resulting system of
equations is treated with two different approaches. The first, in Section 3, presents a systematic way
to elaborate the system of equations. Input and output variables are defined and used in an algorithm
of Gauss-Jordan elimination, extended to act on block partitioned matrices. In consequence of this,
the relationships between the controls and the consequent hand/object configurations are given, both for
displacements and forces, in two different ways, one more effective for numerical applications, the other
more appropriate with symbolic forms of the equations. This leads to find relevant properties of the
grasp, e.g. a basis for the controllable internal forces, controllable object displacements and the grasp



compliance, discussed in Section 4. In Sections 5 and 6, the main categories of tasks are defined in
terms of nullity or not-nullity of some variables. These definitions can be used to suitably apply the
reduced row echelon form (RREF) to the solution space of the system, ascertaining their feasibility and
the necessary inputs to be applied in order to perform them. The idea to distinguish different kinds
of solutions is expanded in Section 7, where the equations describing the kineto-static behavior of the
system are analyzed to discover which combinations of nullity or non-nullity are allowed, until a complete
classification of the solution space is obtained. In Section 8 some words are spent to describe how the
methods proposed in the paper could be applied to the study of robotic hands characterized by other
types of (under-)actuation. To conclude, in Section 9, numerical examples are presented for tip and
power grasps. Both cases are firstly studied as if the hand were completely actuated, finding out the hand
manipulation capabilities. Then, the synergistic underactuation is introduced verifying which possibilities
are lost and which other still persist.

2 SYSTEM DESCRIPTION

A basic assumption in the paper is that all bodies are modelled as rigid. Thanks to this, it is possible
to use the wide variety of mathematical tools developed to describe rigid body motions. However, the
presence of compliance in the system is allowed in a lumped way. For example, as we will further discuss
later, the softness of the contact fingertip and/or the grasped object can be described by introducing
contact virtual springs.

It is worth observing that, as usually done in literature, we separate the investigation of the system
capabilities, e.g. the contact forces on the object actually controllable by the hand, to the restriction
imposed by the friction limits, assuming that a subsequent classical force optimization procedure can
lead to a feasible solution.

With reference to Figure 1, we model a hand as a collection of serial robots manipulating an object. An
inertial frame { A} ={O4; T4, Ya, 24 } is attached to the palm. On the 7" of the p contact points we place a

frame {C'} = {OC;_L SToh Yohs zch} attached to the finger link, and a frame {C?} = {Oce; @co, Yoo, 2c0 }
attached to the object. A reference frame {B} = {Oy; 1, ys, 2} is fixed on the grasped object: later

Figure 1: Compliant grasp by an underactuated robotic hand.



in the text we will refer to it as the body frame. With the symbols {7, we indicate the twist of the
frame {Y'} w.r.t. {X}, as described by an observer attached to {Z}. Denoting with g;, € SFE(3) the
posture of frame {Z} with respect to {T'}, according to [Murray et al., 1994], we define the adjoint
matrix, Ad, € R%%:se(3)— se(3), as an operator able to transform twists by the law

:tvy = Adgtz ;y (l)
Indicating with w¥ the wrench that the frame {X} exerts on the frame {Y'}, and in {Y'} components,
we introduce the co-adjoint matrix operator, Ad;T € R6%6: 5¢*(3) — se*(3), transforming wrenches
according to the law

wk = Ad;j wY. 2)
For reader convenience, the explicit form of the homogeneous and adjoint operators is given in Appendix
A. Other definitions and the notation used in the text are summarized in Table 1.

Notation | Definition

ov | variation of variable v
v | value of variable v in reference configuration
fv | dimensions of vector v
{A} | palm (inertial) frame
{Ch} | i™ contact frame attached to the hand
{C?} | i contact frame attached to the object
{B} | object frame
q € R%¥ [ joint variables
¢, € R | joint reference variables
7 € R¥ | joint torques
o € R | synergy variables
o, € R¥ | synergy reference variables
n € R | synergy generalized forces
p | number of contact points
c | number of hand/object interaction constraints
u € R® | position and orientation of the object frame
%, € R® | in the motion of the frame {Y} relative to { X}, it
represents the twist of the frame {Z} as attached to {Y'},
with components expressed in {Z}

f5i | contact force/torque exerted from {C}} to {C?} with components

and moments relative to the frame {C?}

wY € R® | wrench exerted by { X} on {Y'}, with components
and moments relative to {Y'}

@] € R®*% | hand Jacobian matrix in inertial frame

¢’J € Re*# | hand Jacobian matrix in object contact frames

S € RF>4o | synergy matrix

®G € R6*¢ | grasp matrix in body frame

Table 1: Notation for grasp analysis.

2.1 Equilibrium Equation of the Object
Let w? € RS be the external wrench acting on the object with components expressed in {B}.
Similarly, we indicate with wz, the wrench that the hand exerts on the i" contact point on the object,
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with components in {C?}. The equilibrium of the frame { B} requires that the sum of all force/moment
contributions, with components in { B}, is null. This condition can be written as

P

wl+ > Ad,” i, = 0. 3)
i=1

The hand/object interaction can be described as a six-dimensional constraint for the position and

orientation of the local contact frame. Usually, however, depending on the nature of the contact type,

the constrained directions are less than six. In this way, we assume to describe the contact interaction

with a vector fj € R%, with ¢; < 6, that takes into account only the directions constrained. More

details will be provided in Section 2.5. For each contact point we introduce a matrix B; € R®*¢ able to
map the local interaction in a complete wrench as follows

W' = BifSi. 4)
Substituting (4) in (3), we obtain
p o
w?+ > Ad," Bifi =0. (5)
i=1 )

Defining ¢ = _Y_, ¢; as the total number of contact constrain acting on the object, we define the grasp
matrix in body frame, * G € R6%¢, as

b — {Ad’T B, --- AdCT B, .- AdT Bp} , 6)

Jve§ be? 9o
Equation (6) allows us to express the object equilibrium equation in the form

wy + G fe =0, (7)

ch

° oT
where ff,n = Z,ET, RPN Z,’f ]T € R¢ is a vector collecting all the actions performed by the hand on
the object. It is important to underline that the grasp matrix in body frame is a constant matrix if the
object contact points do not change. In consequence of this, to find a law relating small perturbations of
the variables involved, we can calculate the differential of (7). It follows that the perturbed equilibrium
equation can be written as

Sw? 4+ °G8 S = 0. (8)

2.2 Congruence Equation of the Object
The twist of the i contact frame {C?} on the object can be described as a function of the twist of the
object frame { B}. To do this we use the adjoint matrix, presented in (1), as follows

€ab = Ady,,, &5y, ©)

As briefly discussed before, usually the contact constraints do not involve all the displacement
directions. As explained in [Bicchi, 1994], the matrix B;T is able to select the terms of velocity violating

the contact constraints, as well as the matrix B; in (4) can expand the force/moment vector in a complete

wrench. Introducing the vector va € R, containing only the terms of the i velocity violating

constraints, the equation relating the body frame twist and the velocity of the i™ contact point frame
can be expressed as
¢ _ pTeci _ pT b
v, =B &, = B Ad . (10)

9e2b Sab



: o oT oT 0T T . .
Defining v$, = {U((E) T U;Z } € R¢, using (9) and (10), we can write

o0 T T ",
v = | (BT Adyy,) - (BT Adyy,) - (BT Ady,,) | € (11)

By a direct comparison between (11) and the definition of the grasp matrix in (6), immediately follows
that
var = "GT &gy, (12)

Remembering that the rotational part of the term fgbdt does not represent a variation of coordinates,
we have to introduce a vector u € R® able to parametrize SFE(3). A possible approach is to choose a
parametrization vector composed by the same translational part of £2, and Euler’s angles in the rotational
part, as described in [Sciavicco and Siciliano, 2000]. A convenient approach is to introduce a virtual
kinematic chain, describing the object configuration with respect to the absolute frame. In this case the
object Jacobian matrix, that is the Jacobian of the virtual chain, can be used to parametrize the object
twist, as follows

&by = Jo(u)i. (13)

Defining the variation of the contact frame of the object as SCgZ = ngdt, we can substitute (13) in (12).
Introducing the matrix *GT (u) = *G™ J,(u), we can write the congruence equation of the object as

6C<, =1GT (u)du. (14)

ac®

2.3 Congruence Equation of the Hand
Letting the vector {7 , € RS be the twist of the frame {Cf} with respect to { A}, with components

expressed in { A}, as described in [Murray et al., 1994] and summarized in Appendix B, we introduce the
spatial Jacobian matrix “J;(q;) € R8**%  where fig; is the number of joints that precedes the i hand
contact point in its own serial chain. This allows us to write the relationship

Eaer = Ti(ai)gs- (15)

An object-centric description is obtained mapping (15) from the inertial frame { A} to object frame {C?},
thus using the adjoint operator as follows

Caer = Ay, ) Ean = Adgp, )7i(a1)di- (e

Y
(lCl

The selection matrix BiT can be used, as in (10), to maintain the terms of velocity in the directions
violating contact constraints. This results in

voin = B Ady o Yilai)di = “Jiai, w)di- (17)
T T oT T
. . . . o o o C .
Similarly to what previously done, defining v¢_, = ,UZ:/ _ UZZC _ Uaf:;; € R€ and collecting all

the joint parameters in the vector ¢ € R%, from (17) we can write

v = “T(g,u)dg, (18)

ach —

where ¢J(q, u) is the hand Jacobian referred to the object contact frames. Multiplying (18) by dt, we
find the congruence equation of the hand as

605; = Ci](q,u)éq. (19)



2.4 Equilibrium Equation of the Hand
From the kineto-static duality, coherently with the expression of the hand Jacobian, the map from the
forces exerted by the hand fccho to the joint torques 7 € R is given by

=T (q,u)f5 . (20)

C

Small perturbations of the system can be described by differentiation of (20), obtaining

o c"JT(q, u)fC,: o c‘:]T(q’ u) c: o c‘:]T (q’ u) c: .
o7 = <5 <5 s pe. 21
T 9 q+ B u+ of oh (21
Defining the matrices
Q= 9 wJTgZu)fz;z c Rﬁqxﬁq, U— 9 COJT((‘;iju)fS;Z c Rﬁqx(s7 (22)

the equation describing the perturbed equilibrium of the hand can be expressed as
6T = Q3q + Udu + Vs f5,. (23)

Evaluating (23) in an equilibrium configuration, the terms ) and U become negligible if the initial contact
forces are small or null. In Appendix C we present a method to compute the derivatives in (22), based only
on the knowledge of the elements composing (17), that is the spatial Jacobian and adjoint transformations,
in an algorithmic way. From a practical point of view, this implies that symbolic calculations are not
required to compute (22).

2.5 Hand/Object Interaction Model

The contact between the hand and the object can be interpreted as a motion constraint. Typically,
depending on the nature of materials involved, not all the directions of motions are limited. As an
example, for the case of contact point without friction, only the direction normal to the contact surface
is forbidden. This contact type is equivalent to having only one constraint, thus the dimension of the
vector fcc: is ¢; = 1. Similarly, the contact point with friction, or hard finger, allows the presence of
three corﬁponents of force, on the contact, but no moment, ¢; = 3. As a last example we cite the soft
finger case. With respect to the hard finger, it adds the possibility to transmit a moment around the normal
vector to the contact surface, ¢; = 4.

In general, we are not justified to assume that the total number of motion constraints imposed by the
interaction with the hand is equal to the degrees of freedom of the grasped object (six in 3D case, three
in a planar case). On the contrary, we usually have more constraints that degrees of freedom, and this
makes the problem hyperstatic, aka statically indeterminate. In these cases, the equilibrium equations are
not sufficient to univocally determine the contact forces. To tackle this problem, we introduce a contact
force model which is linear in the interference between the hand and the object. More specifically, for the
i contact point we introduce a stiffness matrix K., € R%* containing the characteristics of the virtual
contact spring. Accordingly, the i" force that the hand exerts on the object can be expressed as

5f5 = K. (6C, —8CCL,). (24)

Introducing K. = blkdiag(K.,,...,K.,) € R*¢, as a block diagonal matrix, where the i™ block
element is K,,, the constitutive equation of the contact forces becomes

5f = K.(8CC, —6CC.,). (25)



2.6 Joint Actuation Model
For the i joint we introduce an elastic model relating the real configuration with a reference value,
gr, € R, described by a torsional spring with constant stiffness k,, € R

7i = kg, (r; — Qi) (26)

Defining K, = diag(k,,) € R#9>#4 a5 the matrix collecting all the joint stiffness, and introducing
¢, € R¥ as the vector collecting the joint reference variables, by differentiation we can write the quasi-
static actuation law as

51 = Ky (5q, — 0q). 27)

2.7 Underactuation of the Hand

The equations presented up to here allows the description of a hand with elastic joints, but with an
equal number of degrees of actuation and freedom. However, it is possible to extend the problem to
include underactuated systems as well. To this end, we impose that the joint reference positions ¢, evolve
on a manifold S C R as a function of some postural synergy values o € R, where fio < #g. Thus, in
general we can write

qr = f(U)v (28)
where f: R S C R is the synergy function. Calculating the differential of (28), and defining the
synergy matrix as S(o) = % € R#¥>89 the joint reference displacements are described as follows

dqr = S(o)do. (29)

Again, by virtue of the kineto-static duality, we can find that the vector 1 € R#® of the generalized forces
at the synergy level is related to the joint torques by the relationship

n = ST(o)r. (30)

85T(o)r

50— € R¥9%89 _for the actuation forces we

Differentiating (30) and introducing the matrix X(o, 7) =
obtain

on = ST(0)é1 + B(o, 7)d0. 31)

For the sake of generality, we can introduce an elastic model even for the synergistic underactuation,
similarly to what done before for the joints. Defining the synergy stiffness as the matrix K, = diag(k,,) €
R %7 and introducing the vector of synergy references o, € R the actuation law appears as

on = K,(d0, — d0). (32)

2.8 The Fundamental Grasp Equation
The set of equations composed collecting (8), (14), (19), (23), (25), (27), (29), (31) and (32) is
able to describe a linear approximation of all the possible system displacements around an equilibrium



configuration. The result is the Fundamental Grasp Equation (FGE) and it appears as

i [ oafa ]
Iy 0 0 0 -K. K. 0 0 0 0 0 6T
-<Jr L, 0 U 0 0 —-Q 0 0 0 0 on
o ST L, o0 0 0 0 0 - 0 0 Su
‘G0 0 0 0o 0 0 0 0 Iw O 0Ce
0 0 0 0 Lien 0 =T 0 0 0 0 5C¢. | =0, (33)
0 0 0 -*GF 0 Lico O 0 0 0 0 dq
0 Iy 0 0 0 0o K, -K, 0 0 0 5qr
0 0 0 0 0 0 0 L, -S 0 0 o
|0 0 L, 0 0 0 0 0 K, 0 -K,]||l oub
do, |

where we indicated with © the value of the variable v in the starting equilibrium point, and with the
symbol Iy, an identity matrix of dimension fv.

Equation (33) is a system of linear and homogeneous equations in the form Ady = 0, where the
coefficient matrix A € R"=*¢ is called Fundamental Grasp Matrix (FGM), and the vector y € R¢
collecting all the variable is the augmented configuration.

It is trivial to note that the constraint identified by (33) does not change its physical implications
using a different order of both the equations and the variables. For reasons that will be clarified in
Section 3.2.4, the chosen order of the equations and of the augmented configuration components derives
from the specification to have square blocks on the main diagonal. However, it is always possible to obtain
this characteristic from any other order of equations and variables, simply applying suitable permutation
matrices.

3 CONTROLLABLE SYSTEM PERTURBATIONS

It is easy to find that the dimensions r, and ¢, of the Fundamental Grasp Matrix in (33) correspond
to
rq = fw + 347 + 34 f + 240,
ca = 2tw + 387 + 34f + 3fo.

In the very general cases of interest, it results rank(A) = r,, and we will assume it in the rest of
the text. Exceptions are analytically possible but they refer to pathological situations of poor practical
relevance.

All the solutions of (33) can be written by a basis for the nullspace of the Fundamental Grasp Matrix.
We indicate this with the symbol I' € R™ *¢v, Taking into account (34), it immediately follows that

(34)

Ty = Cq,

Cy =Cq —Tq = fw + fo. (35)

This implies that we can find an unique solution of (33) when it is known a number of independent
variables, or inputs for the system, equal to ¢, = fw + fo.

In continuity with the grasp analysis literature, we choose to consider the external wrench variation
Sw? as known or measurable. Moreover, we consider the synergy references as position-controlled. This
corresponds to the practical case of an actuation by servo motors to control the synergy displacements
do .. Other choices are possible, maintaining constant c.,, for example by substituting the external wrench
Sw? with the object displacement Ju, or the reference synergy positions do,. with synergy force actuation
on. The results of our analysis can be easily adapted to the above mentioned situations as well.

Next sections will show two different methods to obtain the complete configuration of the system
as a function of the input variables. The first method, called Find-X, presented in Section 3.1, has the



advantage of a simple and versatile application, very effective from a numerical point of view. On the
contrary the second one, called GEROME-B, in Section 3.2, has the advantage to produce input/output
equations with relevant physical sense, more effective when presented in symbolic form. Furthermore,
it results an useful systematic method to merge some subspaces of interest in the grasp analysis, and we
will better discuss these in Sections 4.2 and 4.3.

3.1 Find-X Method

From previous considerations, it follows that all the solution of (33) can be obtained as a combination
of the columns of the solution space I'. Thus, introducing a vector of parameters z € R every
augmented configuration variation such that

oy =Tz (36)

will be a solution of the system.
As well as dy is composed by a set of variables, we can divide the matrix I" in the corresponding
portions as follows

- s Cc: - T,
oT T,
on r,
ou T,
0Ce Lon
0Co | = | Too | =, (37)
dq Iy
5(]r qu
oo T's
Sw? Ty
L 6UT J L FUT J

where, for the block relative to the variable v, it results T, € R#*¢v,
Under the assumption that the inputs of the system are the external wrench and the synergy references,
it is possible to calculate the vector z in (37), responsible of the column combination of I, simply as

-1
Iy Swb
o= | ] 38)
The perturbed configuration of the system can be found by substituting (38) in (36) obtaining
-1
Iy Sw?
wer £ ][]

The invertibility of the matrix [Fg F?;T] Tis acceptable with the same generality of the assumption that
the coefficient matrix in (33) is full rank. In the eventuality of different inputs, it is immediate to find the
corresponding portions of I' to calculate vector x in the same way as in (38).

3.2 GEROME-B: the Gauss Elementary Row Operation Method for Block Partitioned Matrix

Since the system in (33) is linear and homogeneous, we can act on the coefficient matrix performing
a Gauss-Jordan elimination. To do this maintaining the integrity of the sub-matrices composing the
fundamental grasp matrix, we need to extend the Gauss Elementary Row Operations to process a block
partitioned matrix. We can write the three Gauss elementary block operations as:

+ exchanging the i™ block row with the j™ block row,

10



« pre-multiplying the i™ block row for a full column rank matrix A,

+ adding the j® block row, eventually multiplied for a suitable matrix A to accord dimensions, to the
i block row.

As well as the original elimination method, we need to apply these rules without affecting the solution
space of the system. To this aim, we remind the following

Theorem 1. Given the matrices P € R™* and M € R"™™ > with ¢, = rp, it results N(MP) =
N(P), if and only if M is full column rank.

More details about this can be found in [Meyer, 2000]. In next sections, we will get three full rank
matrices able to translate the Gauss elementary operations, as pre-multiplication matrices of a generic
block partitioned matrix P, coefficient matrix of linear and homogeneous system of the type Pz = 0.
Thanks to Theorem 1, we can guarantee the integrity of its own solution space.

3.2.1 First Gauss Operation

To translate the first rule, considering P composed by m block rows, we start from a partitioned
identity matrix , € R"»*"», such that the i™ of m blocks, I;, has the same number of rows of the
corresponding i block row of P, Vi € {1,...,m} . To obtain the effect of exchanging the " and the
4™ block row of P, we have to pre-multiply it for a matrix in the form

L 0 0 0 0 O 0 0 0 0
0 0 0 0 0 0O 0 0 0 0
0 L.y 0 0 0 0O 0 0 0 0
0 0 0 0 0 0 0 I 0 0
0 0 0 Iy O 0O 0 0 0 0
0 0O 0 0 . - 0 0 0 0 0

ML= 0 O 0o 0 0 I 0 0 0 0 0 (40)
0 0 0 0 0 .0 0 0 0
0 0 0 0 0 0 I, 0 0 0
0 0 L, 0 0 0O 0 0 0 0
0 0 0 0 0 0 0 0 Iy 0
0 0 0 0 0 0O 0 0 0 0

L0 0 0 0 0 0O 0 0 0 I |

3.2.2 Second Gauss Operation

A matrix performing the second rule is obtained starting again from the partitioned identity matrix 1,
and substituting the i identity block with a full rank matrix A. The searched pre-multiplication matrix
appears as

I 0 0 0 0
0 0 0 0 0
0 Ly 0 0 0
MZ(A)=1| 0 0 A 0 0 41)
0 0 0 I 0
0 0 0 0 0
|0 0 0 0 Ln |
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3.2.3 Third Gauss Operation
At last, to sum two rows, we place a matrix A, of appropriate dimensions, at the intersection of the 7™
row and j" column of I, obtaining

I 0 0 0 0 0
0 0 0 0 0 0
0 I, 0 0 A 0
0 0O . -~ 0 0 0
M2E(A) =] 0 0 0 I 0 0 0 (42)
0 0 0 0 0
0 0 0 0 I 0
0 0 0 0 0 0
L0 0 0 0 0 I, |

3.2.4 The GEROME-B Algorithm
In the scalar case, the Gauss-Jordan elimination acts using pivots to eliminate the other elements on
the same column. Similarly, our extension needs block pivot elements. They must follow the next

Definition 1. A block of the matrix P can be a pivot if and only if

* itis a full-rank square block,
* it is the only pivot in its row and column,

* it does not multiply an independent variable of the system.

The block elimination procedure, called GEROME-B: Gauss Elementary Row Operation Method for
Block Partitioned Matrix, is explained in Algorithm 1. Without losing generality, we suppose to act on a
particular permutation P of the initial matrix P, obtained using matrices of the type (40), where P has all
the pivots on the main diagonal, and the blocks multiplying the input variables in the last columns. When
the algorithm is completed, the permutation can be inverted to replace pivots and variables in the starting
order.

Algorithm 1 GEROME-B

forh =1 —m do
é = P};LI )
P = M,fh(A)P
fork=1— mdo
if i # k then
A=—Py,
P =M}, (AP
end if
end for
end for

In order to apply Algorithm 1 to the Fundamental Grasp Matrix in (33), permutations are not needed
if we take the elements on the main diagonal as pivots. In fact, in this case all the blocks on the main
diagonal are square and full rank matrices. The only exception is the fourth row, where a null pivot
element appears. Unfortunately, this is an obliged choice, because that is the only square matrix in its
own column. To tackle this problem, we can consider the following steps:
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1. pre-multiplying the Fundamental Grasp Matrix for M3, (—°Q), this is equivalent to substitute the
fourth row with the fourth row minus ®G times the first row,

2. applying the matrix M3;(—"GK.), this is equivalent to substitute the (new) fourth row with the
fourth row minus G K. times the fifth row,

3. applying the matrix M3;(°GK,), this is equivalent to substitute the (new) fourth row with the
fourth row plus °G K. times the sixth row.

Applying these operations, from (33) we obtain the form

o -

Sfo
[ Ly 0 0O 0 K, K, 0 0o 0 0 07| o6r
—<Jr L, 0 -U 0 0 -Q 0 0 0 0 on
0 ST I, 0 0 0 0 0 - 0 0 Su
0 0 0 LGKG] 0 0 'GKST 0 0 I 0 | 0Ce,
0 0 0 0 Lew 0 T 0 0 0 0 6C, | =0, (43)
0 0 o0 -=*GT 0 ILico 0 0 0 0 0 5q
0 L, O 0 0 0 K, -K, 0 0 0 5qy
0 0 0 0 0 0 0 Iy, =S 0 0 o
L0 0 I 0 0 0 0 0 K, 0-K,]|| ouwb
do, |

briefly indicated as A,y = 0.

3.3 The Fundamental Grasp Matrix in Canonical Form
The new coefficient matrix A; in (43) satisfies all the necessary hypothesis to apply Algorithm 1, in
terms of pivots collocation and rank. Before seeing the final result, we want to underline the following

Remark 1. GEROME-B allows us to obtain a new suitable form of the coefficient matrix. This
corresponds to a new set of equations, where each dependent variable is a function only of the independent
ones. If the pivots are on the main diagonal, the result is a quasi-diagonal matrix, or, otherwise, a general
permutation of a quasi-diagonal matrix.

From previous considerations, it is clear that applying the Algorithm 1 to the coefficient matrix in
(43), we obtain the form

] C[are T
Ly 0 0 0 0O 0O 0 0 0 W Ry ot
0O I 0 0 0 0 0 0 0 W R o
0 0 Iy, 0 0 0 0 0 0 W, R, Su
0 0 0 Iz O 0 0 0 0 W, R, 0Cen
0 0 0 0 L O 0 0 0 Wem Ren| |0, |=0. (44)
0 0 0 0 0 Lo 0 0 0 W Reo 8q
0o 0 0 0 0 0 Igz 0 0 W R 5y
0 0 0 0 0 0 0 Iy 0 W, R, 6o
00 0 0 0 0 0 0 L, W, R, || oul
do, |

Equation (44) is briefly expressed as A.0y = 0, where A, € R"* is the Canonical Form of the
Fundamental Grasp Matrix (cFGM). For the reader convenience, we refer to the Appendix D for the
complete expression of the matrices W, and R,,.
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It is worth observing that the previous results are relevant especially considering an application in
symbolic form. In fact, similar conclusions are not difficult to achieve with a numerical approach. In
this sense, using the subscript d indicating portions relative to the dependent variables, and ¢ to the
independent ones, we can observe that (33) can be expressed even as

Aby = [Aq A { f;‘zd } =0, (45)

where Ag € R7e*7a A, € Rre*(ca=ra) §y, € R’ §y; € R(¢~7a)  Under the same previous
hypothesis, the canonical form of the system can be numerically obtained premultiplying (45) for A;l,
as follows
A;l [Ad Ai] [ (;Z’j ] = [I A;lAi] [ (;Z(: } = Ay = 0. (46)
4 RELEVANT PROPERTIES OF THE FUNDAMENTAL GRASP MATRIX IN CANONICAL
FORM
In the next sections, we will analyse the relevant properties of some blocks in (44). For the sake of
completeness, in Appendix D the cases of a grasp performed by (i) a fully actuated hand, (ii) a hand
equipped with elastic joints and (iii) a soft synergy underactuated hand are considered. The expression
of the elements of the canonical forms of the Fundamental Grasp Matrices are presented there for all the
cases.

4.1 Controllable Internal Forces
From (44), we consider the expression of the contact force variation, that is

£ + Wy ouw? + Rydo, = 0. (47)

Defining as internal the solutions of (44), or equivalently of (33), not involving the external wrench
variation, it immediately follows that the span of the matrix 2y is the subspace of controllable internal
forces.

4.2 Contact Force Transmission Caused by an External Wrench

Again from (47), we note that W} is a map from the external wrench to the contact forces, when the
inputs on the hand are kept constant. Therefore, —W} represents the contact force transmission of the
external wrench.

Both controllable internal forces and contact force distribution have great relevance in problems as
the contact force optimization and the evaluation of the force closure properties of the grasp.

4.3 Controllable Internal Object Displacements

Especially in the case of underactuated hands, it could be tricky to find what kind of motion the hand
can impose to the object. This problem is solved by considering the fourth equation of (44), that give us
a description of the object displacements as

ou + W, dw? + R d0, = 0. (48)

Easily we can deduce that the range space of the matrix R, represent the subspace of the controllable
internal object displacements.
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4.4 Grasp Compliance

Again from (48), we can find that —W,, is the grasp compliance. In other words, Cy; = —W,,
represents the compliance that a 6D spring should have to behave like the hand, maintaining the same
object displacement consequent to an external wrench variation.

It is worth observing on passing that, applying Algorithm 1 to (33), substituting the displacement du
to the wrench dw? as input variable, we would have dually found the grasp stiffness.

5 MAIN CATEGORIES OF MANIPULATION TASKS

In the previous sections, we have shown how to describe the system and to determine a perturbed
configuration consequent to an input variable variation. Algorithm 1 conducted us to find some particular
subsets of solutions of the system, e.g. the controllable internal forces. This suggested the idea to search
other possible relevant solution subsets. In this way, we will show how to define some relevant types of
grasps, based on the nullity or non-nullity patterns of the system variables. However, the given definitions
involve only some variables. In Section 7, we will proceed to discover all the nullity patterns that could
be present inside the solution set of (33).

To help us in a clear exposition of reasoning and results, we introduce a specific notation. For a
variable variation v € R#” we could have the cases:

e v = 0, if all the elements of the vector are null,

e Jv = x, if at least one element of the vector is non-null,

* dv = ®, if the vector can be indifferently null or not.

5.1 Internal Forces and Displacements
As explained in Section 4, a variation of the augmented configuration is called internal ? if it does not
involve any variation of the external wrench acting on the object, that is

Sub = 0. (49)

5.2 External Forces and Displacements

On the contrary, a perturbation dy is called external if it involves a variation of the external wrench
acting on the object, that is

5w2 = *. (50

5.3 Pure Squeeze

We define the pure squeeze case as the situation in which the hand perform a contact force variation
on the object, without moving it. Synthetically, the pure squeeze occurs when

Swt =0
5fS = (51)
ou = 0.

2 It is worth remarking that our definition of internal forces implies the use of object frame components for the external wrench.
This choice allows to filter out the influence of object motions that, otherwise, would have come across in a spatial description of
the same quantity.
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5.4  Spurious Squeeze
If the contact force variation is accompanied by an object displacements, we will talk of spurious
squeeze. This case corresponds to have

Swt =0
55 = (52)
ou = *.

5.5 Kinematic Grasp Displacements

Still inside the subspace of internal forces and displacements, we identify those perturbations Jy that
do not involve any violation of the (rigid) kinematic contact constraints. Equivalently, those perturbations
that do not involve any variation of the elastic potential energy stored in the contact springs, with respect
to the reference configuration. This effect is obtained with solutions involving object displacements, but
no contact force variation. Synthetically, we look for solutions in the form

Swt =0
5fe =0 (53)
ou = *.

It is worth observing that, if we regard the displacements of the extremities of the contact springs as
descriptive of elastic deformation of the grasped object and of the fingertip, the kinematic grasp, requiring
a null variation of contact forces, implies a null variation of the object shape after the displacement. In
this interpretation, the definition of rigid object displacements can be recovered. We want to remark that,
in order to give consistent definitions, it is necessary to describe the contact forces in the object reference
frame. Otherwise, describing forces in the absolute frame, not all the contact force variations necessarily
corresponds to contact spring (or object shape) deformations. A simple example of this fact is the pure
rotation of the grasped object. To preserve its shape, the initial contact forces have to rotate with it. Thus,
if contact forces were expressed in an absolute frame, a variation would have occurred just because of the
relative rotation.

5.6 Redundant Motion of the Hand
It could be in interest to find the motions of the hand not involving the object, e.g. to move the joints
away from the limit values. This corresponds to the conditions

Swt =0
5fo =

ou=20
0q = *.

(54)

For the hand, this kind of movements represent to the so-called nullspace motions. Nevertheless, in
the rest of the paper, we will not use this name in order to avoid confusion with other definitions.

5.7 External Structural Forces

In the subspace of external actions, it is possible to look for perturbations dy that are characterized
by variations of contact forces d fg: , but do not involve any modifications of the synergistic actions and
references. This can be equivalently described as

6w2 = x
i
o, = 0.
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5.8  Resultant Decomposition of the Solution Space

The previous definitions correspond to particular forms of solutions for the system (33). Since the
basis I' in (36) contains all the solution of the system, even this particular forms can be searched there.
This corresponds to obtaining a decomposition of the solution space as follows

C s T - -

ch

0T

on
ou
50

agh

0C¢ =

5q4
dqr
oo

b
dwy

oo,

(56)

POPPR®R®R®®®®®
POP®P®R®R®®O®® *
®O®P®P®R®® *x ®® *
®O®B®®®® *x ®® O
OB * ®®O®® O
O * B B®B®B®B®®o® *
@ *PPRRP®P®P®R®®
8

As we can see, each column (from the 2" one to the 6™ one) corresponds to a definition given above.
Exceptions are the first and the last column, that are introduced to complete the space of internal and
external forces respectively.

The careful reader will observe that from some nullity patterns previous defined, taking into account
(33), it can follow that other variables are necessarily null or non-null. This fact will be analysed in
Section 7, where all the constraints expressed by (33) will be taken into account to define a complete and
consistent taxonomy (classification) of the solution space. Here we want to focus the attention only on
the necessary conditions on which the definitions hold.

6 BLOCK DECOMPOSITION OF THE NULLSPACE MATRIX

From linear algebra, it is known that every matrix C' € R"<*¢ with p. = rank(C), can be expressed,
by a Gauss-Jordan elimination, in its reduced row echelon form (RREF), via a suitable permutation matrix
II € R"<*" such that

U

where U € RP<*¢ is a staircase matrix, and the zero block has consequent dimensions. It is worth
recalling that the reduced row echelon form of a given matrix is unique. The reader can find other details
about the RREF in [Meyer, 2000].

As explained in [Bicchi et al., 1995], this particular form can be used to search nullity patterns, as in
(56), inside general matrices. In order to explain the method, we show operatively the details of each step
to find a basis for internal solution of the system.

In later discussion, we will use the assumption to have access to a function rre£(X) able to return
the reduced row echelon form of its argument X 3. The procedure to define a basis for the internal system
perturbations (6w2 = 0), consists of the steps: (i) partitioning the basis of the solution space I', isolating
the portion relative to the variable that we want to nullify (or not nullify). In the example of internal
actions, from (37), we obtain

oy = Iy |z, (58)

3This is a typical situation using the most popular computational platforms, e.g.: rre £(X) in MATLAB and RowReduce (X)
in Mathematica.
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where the symbols I'p, and I'y, correspond to blocks that are not relative to the external wrench
variable. From this, we extract the block T',, € R¥”*¢ relative to the external wrench; (ii) obtaining a
permutation matrix. As a consequence of the properties of the RREF, detailed in [Meyer, 2000], running
% Hw:| £
where U,, € RP»*#% with pw = rank(I",,). The block IT,, € R *¢v is the permutation matrix such that
I1,I'L = U,; (iii) using these results to find the new form !T" € R"»*¢v for the basis " as

the function rref([I'Y | I.]), where I, € R® > is an identity matrix, the result is [

1Fu71
r=rnf=1| 1, [ 0
11’\71)2

) (59)

where, in detail, 'T",, = UL, Tz, = [z, 1L, and 1T, = [, 112,

By the way, we observe that the matrix ' T is essentially a permutation and combination of the columns
of I'. This assures that the two matrices have the same column space, or, in other words, that both are a
solution basis for the system (33).

With simple considerations, it is evident that (59) can be written as

1F = [1Fext 1Fim] y (60)

where 1T € R™*Pw and T, € R™*(¢v=Pw)  that result a basis for external and internal solution
respectively. Thus we have obtained the desired result.

Similarly, the procedure can be iterated to discover other subspaces defined in previous sections,
searching nullity or not-nullity of the variable of interest each time.

7 COMPLETE TAXONOMY OF THE GRASP

In Section 5 some relevant kinds of system configuration variations are defined by imposing to some
variables to be null or non-null. This approach can be further investigated, arriving to discern all the
combinations of null or non-null variables, which can compose a feasible solution of the system (33).

To this aim, we will use a sort of sieve of Eratosthenes [Cojocaru et al., 2005]: starting from all the
possible combinations, we will proceed eliminating those forbidden by the equations composing (33).

To easily identify the forbidden solutions, it is useful to reorganize the system variables in levels as
follows:

e object level, involving the external wrench 5w2, and the object displacement du,

* hand/object interface level, involving the contact forces § ff: , the displacement of the object contact

frame 5C§Zo, and the displacement of the hand contact frame & C’;Zh,

* hand level, involving the joint torques &7, the joint configuration dg, and the joint reference
configuration §¢.,

o synergy level, involving the synergy forces d7, the synergy configuration do, and synergy references
oo,.

7.1 In-Level Constraints

Since a grasp performed by a synergistic underactuated hand is described by eleven variables,
restricting the discussion to consider the possibility that they can only be null or non-null, all the
possible combinations are 2! = 2048. However, each equation composing (33) can be interpreted
as a constraint that the feasible nullity patterns have to satisfy. In other words, as we will show shortly,
some combinations of null or non-null variables are forbidden by the equations of the system. These
combinations can be found and eliminated in order to bring out all the combinations allowed.
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swb  du
0O.A * *
O.B * 0
o0.C 0 *
0.D 0 0

Table 2: Object level combinations.

In Table 2 we present all the possible (non-)nullity combinations involving the object level variables.
By comparison with equations grouped in (33), it results that no combination is forbidden.

In Table 3, we represent all the possible combinations for the variables at the hand/object interface
level. Taking into account (25), from an algebraic point of view, under the assumption that the contact
stiffness matrix K. is square and full rank, it results that it is not possible to have a contact force without
any contact frame displacements. Similarly, it is not possible to have a displacement of only one contact
frame, without contact forces.

In other terms, from a physical point of view, the combination I.D corresponds to a contact force
variation that appears without a corresponding deformation of the virtual contact spring. On the contrary,
the combinations /. F and I.G describe situations where the contact spring is necessarily deformed, since
one contact frame is fixed but the other moves; despite this fact no contact forces are there. Therefore it
is clear that the combinations I.D, I.F, and I.G, corresponding to situations without physical meaning,
are not allowed (highlighted in grey in Table 3).

5fo  6CS. 6C<,
I.A * * *
1.B * * 0
1.C * 0 *
I1.D * 0 0
1.E 0 * *
I.F 0 * 0
1.G 0 0 *
I1.H 0 0 0

Table 3: Hand/object interface level combinations.

Even for the hand level, whose (non-)nullity combinations are in Table 4, similar considerations hold.
Equation (27) enables us to eliminate the cases H.D, H.F and H.G, if the joint stiffness matrix is square
and full rank. As similarly discussed for the hand/object interface level, the combinations forbidden
by (27) correspond to the presence of a joint torque variation without changing neither joint nor joint
reference configuration (H.D), and, on the contrary, a variation of the joint actuation spring length,
without a corresponding torque variation (H.F' and H.G). With a similar physical motivation, we can
eliminate the cases S.D, S.F' and S.G from Table 5, under the assumption that the synergy stiffness
matrix in (32) is square and full rank.

7.2 Intra-Level Constraints

With the previous discussion, we have considerably reduced the number of acceptable combinations.
In fact, only four possibilities for the object level and five for all the other three levels remain. The total
amount is now 4 x 53 = 500 possible combinations. But also the other equations of the system (33) can be
taken into account, bringing us to eliminate some interconnection between the levels. In fact, from (8), we
can observe that, if the grasp matrix b@ is full row-rank, as it is usually the case, it is not possible to have
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ot 6q Oqy
HA | % * *
H.B | % * 0
HC | % 0 *
H.D | x 0 0
HE | 0 * *
HF | 0 * 0
HG | 0 0 *
HH| O 0 0

Table 4: Hand level combinations.

om o do,
S.A | % * *
S.B | x * 0
S.C | % 0 *
S.D | * 0 0
SE | 0 * *
SF | 0 * 0
SG | 0 0 *
S.H | 0 0 0

Table 5: Synergy level combinations.

an external wrench variation and a null variation of the contact force. This means that the groups O.A
and O.B can be present in combination with the groups I.A, I.B, I.C' and I.D (the last one eliminated
already in Table 3), but not with the others. The cases eliminated correspond to situations in which an
external wrench would not have an effect on the contact. In other words, we restrict our analysis just to
the cases of isostatic and hyperstatic equilibrium of the object, thus to situation in which the number of
independent constraints imposed on the object by the interaction with the hand is equal or greater than
its degrees of freedom. Similarly, from (14) it follows that, in the presence of an object contact frame
displacement § Og;}, , there is always an object displacements du. This corresponds to assuming that every
object displacement has effect on at least one virtual contact spring.
From these considerations, it results that

¢ the group O.A can occur only in conjunction with I.A or I.B,

* the group O.B can occur only in conjunction with I.C,

¢ the group O.C can occur only in conjunction with I.A, I.Bor [.E,

¢ the group O.D can occur only in conjunction with I.C' or I.H.

The variables of the interface and the hand level are related by (19). To satisfy this relationship, it
is necessary that, if the variable 6C’gzh is non-zero, also dg be non-zero. This is equivalent to impose
that every hand contact frame displacements is caused by a hand configuration variation. Instead, the
possibility to have a joint movement not involving a hand contact frame displacement is allowed. This
situation corresponds to reconfiguration motions of the hand. Then it follows that

* the group /.A can occur only in conjunction with H.A, H.B or H.E,

¢ the group I.B can occur in conjunction with H.A, H.B, H.C, H.E or H.H (all the hand level
combinations allowed),
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¢ the group /.C' can occur only in conjunction with H.A, H.B or H.E,
* the group I.FE can occur only in conjunction with H.A, H.B or H.FE,

* the group I.H can occur in conjunction with H. A, H.B, H.C, H.E or H.H (all the hand level
combinations allowed),

Equations (29) and (31) relate the hand level with the synergy level variables. Assuming that
the synergy matrix is full column rank, we eliminate all the combinations in which a joint reference
displacements is present without a synergistic variation, and vice versa. The connections admitted can be
summarized as

* the group H.A can occur only in conjunction with S.A4, S.B or S.E,
* the group H.B can occur only in conjunction with S.C or S.H,

¢ the group H.C can occur only in conjunction with S.A, S.B or S.E,
¢ the group H.FE can occur only in conjunction with S.A, S.B or S.F,

* the group H.H can occur only in conjunction with S.H.

Finally, equation (23) relates three levels and impose that, if §7 is non-null, the variables du, & ff: and
dq cannot be null at the same time or, in other words, impose that the presence of a joint torque variation
needs an explanation in a contact force or in a change of configuration. Taking into account the previously
found constraints, it follows that it is not possible to get the condition O.D in conjunction with I.H and
H.C at the same time.

The total amount of the remaining combinations is 57, or 56 without considering the trivial solution
composed by the combination O.D, I.H, H.H and S.H, where no displacement of the system actually
exists.

7.3 The Taxonomic Labyrinth

The set of all the acceptable combinations of the groups presented in Tables 2-5 define the complete
taxonomy of the grasp with soft synergy underactuation, sketched in Figure 2. Despite the fact that the
figure appears as a labyrinth, it is not difficult to read it. It is possible to start indifferently from a group
located at the top or at the bottom level. From this, one can move toward the next level, downward or
upward respectively, moving from the bubble containing the starting group (e.g. O.B or S.FE). Each of
these bubbles has a square door that allows to access another bubble, in the next level, containing all the
admissible groups that can be chosen. From the new group, all the bubbles containing it define a new set
of possible doors one can use, considering that it is forbidden to go back to the previous level.

From the chosen door, we can access to a new bubble, where a new group can be chosen. The process
is then repeated, until arriving to the last level, with the sole limitation that it is not possible to have
together all the elements O.D, I.H and H.C (in a dotted box in Figure 2).

As a simple example, let us explain how to search the redundant motion of the hand, defined in (54).
From the conditions on the external wrench (§w? = 0) and on the object displacement (§u = 0), by a
direct comparison with Table 2, it follows that we can start from the element O.D, on the top level of the
Figure 2. The square door, connecting to the hand/object interface level, allows the access to the groups
I1.C'and I.H. By their definitions, in Table 3, we note that the group I.C' requires a contact force variation
@ fc“: = x), while for the group I.H holds that § fc": = 0. By the definition in (54), the condition on the
interface level (§ fgo = 0) is satisfied only choosing the group I.H. Considering the bubble containing it,
the door allows to choose every element of the hand level. Again from (54), for the hand level variables
we have to guarantee that a non-null joint displacement (dg = *), thus only the groups H.A, H.Bor H.E
are acceptable. To make things clearer, we take the group H.FE, corresponding to a particular redundant
motion of the hand that does not require to change the joint torques. If no other condition is needed,
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Figure 2: Complete taxonomy of the grasp.

finally we find that we can connect to S.A, S.B or S.E. By a comparison with Table 5, we can give an
interpretation of these three cases. While the group S.A correspond to the most general case, where all
synergistic actuation is involved, the other two cases deserve a more detailed discussion. A solution of
the system including the group S.B indicates the presence of an equilibrium configuration of the system
where the synergy reference configuration is held changing the generalized forces at the synergy level.
The situation can occur in the case the force transmission ratio between the joint torques and synergistic
forces can vary with the synergy configuration. The presence of a solution including the group S.F,
indeed, points out the possibility to reconfigure the synergy actuation, without changing the generalized
forces provided at the synergy level.

8 OTHER TYPE OF (UNDER-)ACTUATION

The soft synergy underactuation mechanism is currently attracting much attention and interest.
However, we cannot ignore that it is not the only actuation mechanism worth studying. Over the
obvious interest to study fully actuated robotic hands, other actuation approaches deserve attention and
need suitable analysis tools, as for instance eigengrasps [Ciocarlie et al., 2007], parallel structure based
[Birglen et al., 2008] and adaptive synergies [Catalano et al., 2012]. Despite the fact that some parts of
this paper concern strictly the soft synergy underactuation, the framework presented is general enough to
cope with the above mentioned underactuated situations.

The basic requirement to apply the methods we propose, is to write all the equations describing the
kineto-static behavior of the particular system under investigation. Casting together all the relationships,
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we basically obtain a new type of Fundamental Grasp Matrix, for which it is straightforward how to
apply GEROME-B and Find-X methods. Similarly, the decomposition of the nullspace by using the
RREF, can be performed. However, it is necessary to pay attention when classifying the main categories
of manipulation tasks. The definitions proposed, basically involve the variables from the object to the
hand level, and these can be used for any kind of (under-)actuation considered. One exception is the
subspace of the external structural forces. We can simply recover this concept considering instead the
conditions

6wg = x

5fS =

550 D)
dq* =0,

where d¢* and §7* are the generalized displacements and forces at the (under-)actuation level for the
present case.

As a simple example, the FGM for the case in which no underactuation is considered on the hand
can be obtained taking (8), (14), (19), (23), (25), as in (121). The presence of elastic actuators can be
introduced in the previous model, restoring (27), as in (125). For these examples, the block elements
composing the canonical form of the FGM are described in the Appendix D. As a final example,
the eigengrasp case can be considered adding, to the system describing the fully actuated case (121),
expressions of the type (29) and (31), but involving the joint displacements dq instead of the references
4q,, that is in the form

dq = S(o)do
on = ST(o)61 + (o, 7)d0.
After the proper FGM for the system in interest is built, taking into account the previous considerations,
the approaches proposed in this paper can be adopted to obtain symbolic relationships from the input and
the output variables (GEROME-B). Computationally efficient methods to find whole system perturbations
(Find-X), and main categories of the manipulation tasks (nullspace block decomposition by the use of the
RREF) can again be applied.

(62)

9 NUMERICAL EXAMPLES

9.1 Precision Grasp

Let us consider the 2D example shown in Figure 3, where a two fingered hand is grasping a circular
object of radius R with its fingertips. Each finger is composed by two links of length L. Globally, the
hand has four revolute joints [j1, . . ., ja]. Attached to the palm we fix an inertial frame { A} with origin on
the intersection between the axis of j; and the plane of the figure. On the k" contact point we introduce
two reference frames {C} } and {C} fixed with the hand and the object, respectively, aligned with { A}
in the reference configuration. Attached to the object we pose a frame { B} with origin in the center of
the circle, initially parallel to {A}. The generic displacement of { B} with respect to {A} is described
by the vector du” = [ul, du , dul]”, where the first two elements indicate a linear displacement along
the axes = and vy, respectivelj/, and the last one an angular displacement around the axis z. It is worth
observing that the displacement of the object is described in coordinates expressed in { A}. As numerical
values for the parameters of the problem we consider L = R = 1 m, k;=10 N/rad, k.=10 N/m,

ks=10 N/m, and we assume the preload _Ccuh:[l, 1,—1,17 N, as sketched in Figure 3. By the definition
of the grasp matrix in body frame (6), we need to consider the contact model. In the case of planar hard
fingers we can admit that the hand can exert only forces along the axes x and y, without moments. In
other words, the vectors describing the interaction at the contact is composed by two elements only. This
implies that, to transform the local interaction in a complete wrench, for each contact we need a matrix

10000 01"

B=10100 0 0

(63)
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Figure 3: Grasp of a circular object by a two-fingered robotic hand.

The co-adjoint matrix in (6), by its definition in (91), can be computed considering the rotation matrices

Ryco = Rpeg = I3, (64)
where I3 is an identity matrix of dimension 3, and the vectors
—R R
dpes = 0 1, dpeg =1 0 |, (65)
0 0

describing the position of the object contact frames {C¢} and {C$}, respectively, in frame { B}. Selecting
only the components of the grasp matrix describing actions lying on the plane, the grasp matrix in body
frame for the parameters values we choose, finally appears as

1 01 0
‘G=10 1 0 1. (66)
0 -1 0 1

In order to compute the hand Jacobian, we basically need to compute the spatial Jacobian matrices of the
two contact frames, indicated as ¥; and %5 respectively. Considering the vector w = [0,0, 1] of the
joint axes, and the geometry of the system, from (102) we obtain the twists

0 L 0 L
0 0 —L—-2R —L—-2R
0 0 0 0
51 - O ’ 52 - 0 9 53 - 0 ) 54 - O . (67)
0 0 0 0
1 1 1 1

Setting to zero the value of the joint parameters ¢ in the reference configuration of Figure 3, from (101) it
follows that &, = &5 and & = &4. Finally, from the transformation in (17), for the geometric parameters
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that we are using, the hand Jacobian matrix in object contact frames results in

—1.866 —0.866 0 0
;| 0.500  0.500 0 0
7= 0 0 —1.866 —0.866| " (68)
0 0 —0.500 —0.500

The derivatives of the Jacobian matrix, defined in (22), can be easily computed by (111) and (120),
obtaining

0 0 0 O 1 -1 3.366
1 0 00 1 -1 2.366

@= 0 0 0 0|’ U= 1 1 3.366|° (69)
0 010 1 1 2366

9.1.1 Perturbed Configuration for Fully Actuated Hand

The aim here is to characterize some of the structural properties of the fully actuated grasp. Therefore,
we perform the decomposition of the nullspace matrix as in (56). All the above definitions hold defining
a synergy matrix S = Iy4, or equivalently using the Fundamental Grasp Matrix for a fully actuated
hand in (121). In this case, all the previous definitions given in Section 5 can be recovered, with the
only exception of the external structural forces, where we have to impose the nullity of the hand level
variables dg and J, instead of do,- and é7. In this example, the nullspace of the FGM has dimension
fw + #g="7. Within this 7-dimensional subspace the subspace of kinematic grasp displacements has
dimension three, the pure squeeze subspace has dimension one: together they complete the subspace of
internal system perturbations (no spurious squeeze and redundant motion of the hand are present). The
external structural force subspace has null dimension, meaning that every external perturbation needs
a counterpart on the hand actuation to preserve the equilibrium of the system. For the kinematic grasp
displacements, a finite displacement of the object du, = 0.001 in the x direction, as in Figure 4(a), is
possible with the corresponding variations in joint torques and angles

v =[0.001 0 0.001 0],

(70
g =[-0.001 0.001 —0.001 0.001]". )

For an object displacement du, = —0.001, Figure 4(b), the corresponding variations in the joint
torques and joint angles are

§r = [—0.0010 —0.0027 0.0010 0.0027]",

71
§g = [0.0017 —0.0037 —0.0017 0.0037]" . 7n

For an object rotation du,, = 0.001, Figure 4(c), the variations in the joint torques and joint angles are

then
T
b

o = [0.0033 0.0040 0.0033 0.0040
r=1 I (72)

0qg = [0.0017 —0.0037 0.0017 —0.0037]
Finally, the variations of joint torques and joint angles for the squeeze, represented in Figure 4(d), are
T

57-:[—0.0018 —0.0010 0.0018 0.0010] (73)
T

8¢ = [-0.0001 0.0001 0.0001 —0.0001]
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Figure 4: Graphic representations of numerical results for the internal precision grasp variations. The Figures (a-c)
represent the kinematic grasp displacements, i.e. the object movements that the hand can impose to the object without
modifying the contact forces. The Figure (d) represent a pure squeeze, i.e. a contact force variation obtained without
moving the grasped object.

9.1.2 A Synergy in the Precision Grasp

Having inspected the properties of the fully-actuated system, we can then evaluate the effect of
underactuation on the system properties by introducing only one synergy. The synergies proposed both
here and later in section 9.2.2, are generated (by a reverse-engineering process) after the nullspace
decomposition for the fully-actuated system with elastic joints has been carried out, by properly
combining some solutions in order to synthesize a desired task. GEROME-B or Find-X can be profitably
employed here to verify the results.

Introducing a single column synergy matrix as follows

S= [~0.2866 0.0034 0.2866 —0.0034]7, (74)

we can write the FGM introduced in (43), for the synergistic underactuated case. Decomposing the
nullspace we can verify that are left one pure squeeze, and three external forces and displacements,
which together complete the basis of the nullspace. To elicit the nature of this synergy, we can evaluate
the system response to a predictable input. To this aim, we can use the Find-X method or GEROME-
B, obtaining, of course, the same results. Since the pure squeeze still exists for this system, with the
above synergy it is always possible for a certain do, to keep the object in its starting configuration
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(Su = 0) for a null external perturbation sw? = [0,0,0]7. In fact, by applying do,, = 1, we get
§f. = [0.9039,0,—0.9039, 0] with Su = [0,0,0]7. This because S was defined as proportional to
the (single) column of the pure squeeze found for for the fully-actuated system.

9.2 Power Grasp
As a second test case, we consider a square of side 2L grasped by a spider-like hand composed by
two fingers, and a total of 8 joints [j1, ..., js]. The notation is similar to the previous example. Figure 5

f,y vh,

~—
A=
~
lv°]
—
\J;

h

| L2
@ D J3 Jr6 D

L L/2
i i {A} :
T 7,

L L/2

Figure 5: Grasp of a square by a two fingered spider-like hand.

shows the starting configuration of the hand and the initial contact preload. All the force vectors have unit
lengths and the directions depicted. We consider every contact frame initially parallel to the frame {A}.
The contact points, with respect to the frame { B}, are placed respectively in

—L —L L L
dbci’ = —L ) dbcg = L ) dbcg = —L ) dbcfL = L . (75)
0 0 0 0

As in the previous example, we consider the numerical values L = 1 m, k,=10 N/rad, k,=10 N/m,
ks=10 N/m. For hard finger-like contacts, for which we can use (63), the grasp matrix in body frame
results in

10 1 0 10 1 0O
b‘G=10 1 0 1 0 1 0 1 (76)
1 -1-1-111-11
From the geometry in Figure 5, considering that every joint has w = [0, 0, 1]7, we obtain the twists

0 L L (5/2)L

0 0 —L (1/2)L

0 0 0 0

51 - O I 52 - 0 I 63 - 0 9 54 - 0 I
0 0 0 0
1 1 1 1
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0 L L (5/2)L

—3L -3L —2L —(7/2)L
0 0 0 0
55 - 0 9 66 - 0 9 57 - O b 58 - 0 N (77)
0 0 0 0
1 1 1 1

From (77), considering a null value for the joint parameters g in the reference configuration, according to
(17), the hand Jacobian results in

[—1.500 —0.500 —0.500 0 0 0 0 0
0.500 0.500 —0.500 O 0 0 0 0
—3.500 —2.500 —2.500 —1 0 0 0 0
7 0.500 0.500 —0.500 1 0 0 0 0 (78)
0 0 0 0 —1.500 —0.500 —0.500 O
0 0 0 0 —0.500 —0.500 0.500 O
0 0 0 0 —3.500 —2.500 —2.500 —1
| O 0 0 0 —0.500 —0.500 0.500 —1]
The derivatives of the Jacobian matrix, computed by the rules (111) and (120), appear as follows
0 0 0 0 0 0 0 O [0 —2 3]
0o 0 0 00 0 00 0 -2 3
22 0 0 0 0 0 O 0 -2 1
3-2-3 0 0 0 0 O -1 -1 2
@= 0 0 0 0 0 0 0 O0f U= 0 2 3 (79
0 0 0 00 0 0O 0 2 3
0o 0 0 0 2 2 00 0 2 1
0o 0 0 0 -3 -2 -3 0] -1 1 2]

9.2.1 Perturbed Configuration for Fully Actuated Hand
By employing the matrices presented in the previous section, we can build the FGM for the fully
actuated case as in (121). In this case we obtain that A € R*3*54 and, consequently, the basis for
the N(A) is T' € R5*! Performing the decomposition of the nullbasis I, as in (56), we obtain that
the kinematic grasp subspace has dimension three, the pure squeeze subspace has dimension five, and
together they complete the subspace of internal forces and displacements. Conversely, the subspace of
external forces and displacements has dimension three. For the kinematic grasp displacements, simulation
results show that it is possible to have a finite displacement of the object du, = 0.001, as in Figure 6(a),
with no torque variations, but with a joint angle displacement of
Sg=103[-1 1 0 0 -1 1 0 0]". (80)
For éu, = 0.001, the corresponding variations in the joint torques and joint angles are
sr=103[-2 -2 0 0 2 2 0 0" s
s¢g=10"2[0 1 -1 0 0 —1 1 0],

with pictorial representations sketched in Figure 6(b). For an object rotation du, = 0.001, Figure 6(c),
the variations in the joint torques and joint angles are then
sr=103[3 3 0 0 3 3 0 0],

(82)
§g=10"2[-1.5 1 15 0 —1.5 1 1.5 0]".
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Figure 6: Graphic representations of numerical results for the internal power grasp variations. The Figures (a-c)
represent the kinematic grasp displacements, i.e. the object movements that the hand can impose to the object
without modifying the contact forces. The Figure (d) represent the pure squeeze. In this case the two diagonals of

the square and three of the four sides (left, bottom and right one) of the object can be individually squeezed, without
moving the object. This is not possible for the top side one.

The five possibilities for the pure squeeze are sketched in Figure 6(d), where the i couple of forces s;
and —s; correspond to the i achievable squeeze.

9.2.2 A Synergy in the Power Grasp
Underactuating the hand with the following single-column synergy matrix

[-0.6500 0 —0.3200 —0.4000

= 0650 0 0.3200 0.4000]7,

(83)
we get one possibility for the squeeze and three external solutions. To unveil the properties of this synergy
we can study how the system responds to different inputs. In the absence of an external interaction,
Sw? = 0, and with an unitary synergistic actuation, do, = 1, contact forces and object displacements
become

s~ (0504305043 05043 —0.5043 )
T _0.5043 05043 —0.5043 —0.5043]7,
su=1[0 0 0], (85)
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indicating that we are purely squeezing the object along both diagonals. It is worth noting that the above
synergy was constructed by summing two columns of the pure squeeze relative to the fully-actuated
system.

10 CONCLUSIONS

In this work, we presented a framework to model and study the structural properties of a grasp,
performed by a general robotic hand, in a quasi-static setting. Synergistic underactuation is included
in the analysis, as well as compliant characteristics at various levels, in the fingerpads and in the actuation
system, both for joints and synergies. The mathematical model presented considers also the derivatives of
the Jacobian matrix and employs an object-centric formulation of the grasp matrix, since other definitions
may lead to potentially misleading conclusions. Considering all the system equations, the Fundamental
Grasp Equation and the Fundamental Grasp Matrix are defined. An extension of the Gauss-Jordan
elimination method, called GEROME-B, able to act on block partitioned matrices, is presented. Thanks
to this, the Fundamental Grasp Matrix in canonical form is found, corresponding to a new set of equations
where each dependent variable of the system is a function only of the independent ones. Main relevant
properties of the grasp can be discovered in this form, as a basis for the controllable internal forces and
the grasp compliance. It is important to note that their expressions can be found even in symbolic form,
as a functions of the basic matrices of the system, such as the Jacobian matrix, the grasp matrix, and so
on. As GEROME-B acts in symbolic form, another method, called Find-X, is presented as a numerical
efficient counterpart to find input-output relationships between the variables of the system.

Other more specific categories of system perturbations are later defined, in terms of nullity or non-
nullity of some variables, such as the pure squeeze, when the hand acts on the object without changing its
configuration, or kinematic object displacements, when the object is rigidly moved. An algorithm based
on the extensive employment of the reduced row echelon form (RREF) has been presented, that allows
to discover them inside the solution space of the system, and even to find the particular inputs that the
system needs to perform them.

The search of feasible solutions was further discussed, considering all the equations of the system as
constraints for the feasible (non-)nullity patterns of variables, until arriving to a complete taxonomy of
the grasp performed by synergistic underactuated hands. In order to assess the validity of the proposed
method, some numerical tests have been presented for two different grasps: a precision grasp and a power
grasp. These demonstrated (i) the importance of the terms originated by the derivatives of the Jacobian
matrix in the presence of a preload contact force to obtain physically meaningful results, and (ii) the
influence of the synergistic actuation on the structural properties of a grasp configuration.

ACKNOWLEDGMENTS

This work is supported by the European Commission under the CP-IP grant no. 248587 “THE Hand
Embodied”, within the FP7-2007-2013 program “Cognitive Systems and Robotics”, ERC Advanced
Grant no. 291166 “SoftHands” - A Theory of Soft Synergies for a New Generation of Artificial Hands -
and by the grant no. 600918 “PaCMan” - Probabilistic and Compositional Representations of Objects for
Robotic Manipulation - within the FP7-ICT-2011-9 program “Cognitive Systems”.

A HOMOGENEOUS TRANSFORMATIONS AND ADJOINT OPERATORS
Given a point p € R3, we define its homogeneous form as

ﬁ[ﬂ. (86)

Considering two reference frames {A} = {O4; T4, Ya, 24} and {B} = {Oy; x4, Y, 25}, let dyp € R3 be
the vector going from O, to Oy, and R,; € R3*3 be the rotation matrix describing the configuration of
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{B} with respect to { A}. The descriptions of the point p in the two reference frames are related by the

expression
_ Rop dap | _
Pa= { o } Pb 1= GabPb, (87)

where we implicitly defined the homogeneous transformation matrix as
Rep d
Gab = [ o } : (88)

With the symbol & we indicate the cross product matrix, thus such that, for z,y € R3, it holds
Ty =z Xy. (89)

The adjoint matrix and the co-adjoint matrix, which properties are explained in Section 2, have the
following expressions

a Rll
dg,, [ b b } 7 (90)
Ad,T = . 91
Gab |: abRab ab :| ( )
Introducing the operator (@) such that () = z, by direct calculation, from (89) it follows that
x Xy = (2§ — §z). (92)

Expanding the definition of the operator ® to act on twists £ = [vT, w7 € se(3) as
2 w v

in analogy with (92), we define the Lie bracker as an operator acting on two elements of se(3) according
with the rule . o

[€1:&2] = (&1&2 — &261) (94)
It is worth observing that the result of the Lie bracket of two twists it is also a twist. The operation
described in (94), can be realized by a proper multiplication operation in the form

. _ L:Jl ’[)1 V2 L
[€1a 52] - |: 0 (:}1 :| |: W :| E ad(§1)§27 (95)
where we introduced the adjoint matrix (in lower case), also called Lie adjoint hereafter, as
w
ad(§) = { 0 o ] . (96)

For later use, we show that between the adjoint matrix (Ad) and the Lie adjoint (ad), the following
relationships hold
Adeg = ead(f), (97)

Ad g, &) A} = ad(Ad ¢, &). (98)

More details about the exponential of a twist are presented in the next section.
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B SPATIAL JACOBIAN MATRIX
For the reader convenience, we briefly present how to compute the spatial Jacobian matrix of serial
manipulator, that is a matrix °.J(¢) € R®*# such that

ae = J(0)q, 99)

where the vector £2, € RS is the twist, with components in { A}, of a frame of reference that is instantly
superimposed to the absolute frame, but moves rigidly with the movement of the end-effector. It is useful
to remind that the Jacobian matrix can be written as

Ya)=[& & ... & ], (100)

where
& = Ad(eélql,“eék—lqk—l) k- (101)

It is worth noting that the terms & in (101) correspond to the the k™ joint twist, and &), are their
transformation imposed by the robot configuration. The twists for a prismatic and a revolute joint have

the forms
§P = |:%p:| ) ST = |:_wzd:< pT:| = |:Z::| ) (102)

where v, € R is a unit vector pointing in direction of the axis of the prismatic joint, w, € R? is a unit
vector identifying the axis of the revolute joint and p,. is a point on this axis. It is possible to demonstrate
that the exponential of the twists in (102), necessary to compute (101) and (100), are given by

3 I v 3 e@rtr ([ — %) (w, X v) + wpwlv
Epdp — pdp Erdr — T T rWy UrQyr
e [O . } e { . 1 .a03)
where A
et = I + &, sing, + @2(1 — cosgq,). (104)

Equation (104) corresponds to a rotation of an angle g, around an axis identified by the vector w,., and it
is known as Rodrigues’ formula.

C DERIVATIVE TERMS OF THE JACOBIAN MATRIX

C.1  Derivative of the Jacobian matrix with respect to the hand configuration

The definitions given in Appendices A and B are useful now to calculate the derivatives of the
Jacobian matrix, seen in (22). Other details about the results provided in this section can be found
in [Murray et al., 1994, Hall, 2003] and in [Selig, 2005]. For the seek of simplicity, but without loss
of generality, in this section we will find the derivatives of a Jacobian matrix of a serial robot, such, for
example, a finger of the hand. The reader will easily extend the results to the whole hand Jacobian matrix.

Let’s consider first the derivative with respect to the hand configuration, that is the variable ¢, of the
Jacobian matrix describing the twist of the ith contact frame, as defined in (17). In other words we are
looking for a direct calculation method for

0 Il (q,u) f5
Qi = 8—1’ (105)
q
or equivalently

5 cOpT < 97T < o cOrT e

Q; = 0% (qu)f 857 (qu)f p 9 % (qu)f

7 I3 3 i3
q1 9q2 ‘e 8(171,;

. (106)
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where n; is the number of joints affecting the motion of the contact frame. From (17) it follows that the
4™ term in (106) can be even expressed as

T o

9 (BTAdg . Adg,. () ‘U-(q)) fa ro9(q)\"
7 9 a ? ci 7 Q) T c;

0q; < dq; > Adgegat Bilp aon

where we used the fact that the operations of transposition and derivative with respect to a scalar quantity
commute. Considering (107), the problem is now reduced to find the derivative of the spatial Jacobian
for a serial robot, as in (100).

It is possible to approach the problem searching the derivative of the twists composing it, that is

& _ 0o ) _
e = oq (Ad(eélql,,,esmm) fk) =

(108)
-2 (Adeglql A, Adg gk) .
Remembering the property in (97), from (108) it directly follows that
o &, e(€5)a;
des = Adgeyyy - TG A, G =
(109)
= Ad ¢, -+ ad(&)e @) A ¢, G
where the last term can be easily rewritten as
Adggy - Ad g, o), ad(gj)Ade,éj_lqj_1
(110)
ce Ade—éun Adeglq1 .. 'Adefk—1%—1 §k =ad (Ad(eélh,,_eéjlqjl) €j> €II€ = ad(f;)g;e
The results can be finally summarized as
ad(¢l)g, if j<k
04 0 otherwise.

Thanks to (111), using the definition (96), it is now trivial to compute (107), thus also (105).

C.2  Derivative of the Jacobian matrix with respect to the object configuration
Let’s consider now the problem of calculating the derivative of the Jacobian matrix of the i contact
frame with respect to the object configuration u, that is the term

U7 (q,u) £
U= —+. (112)
ou

As first step, considering that (112) can be equivalently written as

o @ fS 0T (qu)fe 0 <7 (qu) f°F
Ui:|: R LR ! } (113)

Bul 6712 e aua

by virtue of (17), we reduce the problem to the calculation of

T o
0 (B;T Adg op Adgb (u) ‘Ul(q)) fc;b 0 Ad T i
o Gy ()T [ e ) AqT B, S 114
(’9uj (Q) < 8’11,3' 9e2b fcf ’ ( )
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that is finally
8 Adgba(u) _ a Adg;bl(u)
6Uj (9Uj ’
As seen in (13), a parametrization for the object twist is needed. We can obtain it introducing the
Jacobian of a virtual kinematic chain described by a suitable Jacobian matrix of the form

Jow=[% &, - & 1,

(115)

(116)
Egk = Ad<eéolu1meéf’k—1”k—1) €or-

The same parametrization can be used to describe the homogeneous matrix g¢.;(u) as product of
exponentials

Jap(u) = ebrurghauz | plous 117)
Substituting (117) into (115), considering the properties of the adjoint matrix, it is easy to obtain

0 Ad

N R | _
a'u,jb - W Ad(e*éOGuge*éosug;“.6*501ul) -
(118)
5t (—Eo )
= Ade,é%u6 .. .Ade,éomuj+1 R T Ade,éojiluj_1 .. .Ade,éolu1 .
The derivative term in (118) can be also expressed as
(€0 1j) d(=€0.u;
fe s = ad(=6,, ) o) = ad(=6,,) Ad_, ., =
(119)
= Ad oy Ade,éo1u1 Adeéo1u1 ...Ad €oju; ad(—foj)Ad ~Eojuj -
Substituting (119) in (118), considering the properties seen in (97) and in (98), we finally obtain
0 Adg-iy) , :
T = Ay W(E) = Ady (6 (120)

From (120), it is now trivial to compute (114), and thus (112).

D BLOCK ELEMENTS OF THE CANONICAL FORM OF THE FUNDAMENTAL GRASP
MATRIX
D.1  Fundamental Grasp Matrix for a Fully Actuated Hand Grasping an Object

The Fundamental Grasp Equation relative to the case of a grasp performed by a fully actuated hand
can be obtained considering (8), (14), (19), (23), (25). This appears in the form

o]
Iy 0 0 -K. K. 0 0 ot
—<JT I, -U 0 0 0 -Q Su
0 0 —*GKLGT 0 0 I, °GK.T 50;; =0. (121)
0 0 0 Lin 0 0 —<T 5CE,
0 0 —bGT 0 ILice O 0 Sw?

oq
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Applying the algorithm GEROME-B to (121), this becomes in quasi-diagonal form as follows

s
Ly 0 0 o 0 wf R} o7
0 L 0 0 o w! R Su
0 0 Iy O o W/ Rf 505; =0. (122)
0 0 0 L 0 Wl R 6C<,,
0 0 0 0 ILeo Wi R, 5§UZ

q

The super-script f was introduced to distinguish the blocks relative to the fully actuated case, from the
cases with elastic joints and synergistic underactuation, respectively, presented later in this section. The
blocks composing (122) have the following expression

Wi = KLGF (PGKLGT)

W/ = (TTKLPGT - U) (CGELGT)

Wi = ("GRG (123
Wéh =0,

Wi, = —GT (*GELGT) 7,

Rl = K, (bétT (CGELGT) T GK, — If) <7,
RE = Q- “ITK.ST + (TTKIGT - U) (\GK.GT) v,

Rl = — ("GK L GT) ' GK, T, (124)
Réh = - (Z]a

Rl = —*GT (*GK.rGT) PG

D.2 Fundamental Grasp Matrix for a Fully Actuated Hand with Elastic Joints Grasping an Object
The Fundamental Grasp Equation describing the case of a hand with elastic joints can be obtained
adding (27) to the system (122), resulting in

T
0 0 -K. K. 0 0 0 o7
Iy, -U 0 0 -@Q 0 0 du
0 —PGKSGE 0 0 PGEST Ly 0 Caer | —0. (125
0 0 Licr 0 -J 0 0 6CS o
0 -bGT 0 Iico 0 0 0 5q
Iy, 0 0 0 K, 0 -K, Sw?
oqr
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The canonical form is achieved applying GEROME-B to the coefficient matrix of (125). The final form

of the system appears as

- 5ff; -
Iﬁf 0 0 0 0 0 Wf R? ot
0 Iy O 0 0 0 Wg RS ou
0 0 I4tw O 0 0 WwWg RS 50,
agh | = (. 12
0 0 0 ILien O 0 Wg. R 0CS .0 0 (126)
0 0 0 0 IﬁC" 0 Wco Rco 5q
0 0 0 0 0 Ly W; R Sw?
oqr
The blocks composing (122), expressed as function of the terms in (123) and (124), have the form
W =W/ + R} (K, — RI)" W/,
We=WI+RI (K, — RL)™ Wi,
wWe = Wf Rf RAOY wi,
&n = Rch (K Rf) Wi,
Weo =W+ RE, (K, - R) ™ WY,
. -1
We = — (K, — RI) ™ W,
RS = R} (K, — RI) K,
. -1
R¢ = RI (K, — RI) " K,
Re = R! (K,— RI) 'K,
’ f( ! ) et (128)
R¢, = R, (K, —RI) " K,
. -1
Ce :Rév (Kq*quf) Ky,
Re = — (K, — R\ K,
D.3  Fundamental Grasp Matrix for a Synergistic Underactuated Hand Grasping an Object
Using the result in (122), the Fundamental Grasp Equation in (43) can be rewritten as
[ 675 ]
Ly 0 0 0 0 0 R, 0o 0o Wl o7 or
0 Lk O 0 0 0 RS 0 0 wi oo on
0 ST I, 0 0 0 0 0o -2 0 0 ou
0 0 0 Iy O 0 Rf 0O 0o wi o (scggh
0 0 0 0 Len O R;h 0 0 0 0 0CS.. | =0, (129)
0 0 0 0 0 ILeo RL, 0 0 Wl o dq
0 Ity 0 0 0 0 K, K, 0 0 0 gy
0O 0 0 0 0 0 0 I, S 0 0 oo
L0 0 L, 0 0 0 0 0 K, 0 -K,]| ouw
oo,
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Applying GEROME-B to (129), we arrive to the formulation seen in (44). For later use, we define the

matrices 1
H=(K,—Rf) ",

L= (K, +%-STRIHK,S) ", (130)
T=5"(I+RH)W/.
With these simplifications, the matrices composing (44) can be expressed as follows
s __ f I f q
W =W/ + RyH (W) + K,SLT),
We =W/ +RIH (WS + K,SLT),
Wy =STW/ +SLT + STRIH (W/ + K,SLT),
We=wJ+R/H(W/!-K,/SLT),
Wg, = RéhH (W] + K,SLT), (131)
Wgo = Wi, + RL.H (W + K,SLT),
WS =-H (WTf + KqS’LT) ,
W, = —SLT,
We =—-LT,

o

% = RIHK,SLK,,

R = RIHK,SLK,,

R = (STRIHK,S - %) LK,,

RS, = RIHK,SLK,,

Ry, = R, HK,SLK,, (132)
¢, = RLHK,SLK,,

R: = -HK,SLK,,

RS =-SLK,,

RS = —LK,.
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