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Abstract— The possibility to remotely control a plant through
a communication network offers strong advantages in terms
of installation, flexibility, and maintenance. These advantages
come at the price of specific challenges due to the format of
the transmitted data, the network nodes scheduling, and the
inherent delays. To address these obstacles, we have recently
developed a control methodology that exploits the packetized
nature of the transmitted data by relying on a model-based
prediction of the control signal to be applied. However, this
methodology was limited to static controllers. Dynamic control
laws indeed require a more careful synchronization between
the plant and its remote model. This paper aims at filling this
gap by exploiting the transmission of the measurements history,
rather than their instantaneous value only.

I. INTRODUCTION

A distributed networked architecture has the strong po-

tential to increase flexibility, scalability and robustness of

a plant, while inducing a remarkable reduction of costs

and delays for both installation and maintenance [2]. These

advantages justify the increasing interest in control over

networks (see for instance [3], [4]). On the other hand,

the use of a network as a communication medium and the

distributed nature of the system involve some problems like

bandwidth limitations, quantization, time-delays and packet

losses, which cannot be ignored in estimation and control

design [5]. An excellent discussion of the state-of-the-art is

reported in [6].

An essential aspect of many Networked Control Systems

(NCS), such as those using Ethernet as a communication

layer, is that they organize data transmission in packets (see

e.g. [7], [8]). Such networks allow carrying larger amount of

information but at less predictable rates compared with ded-

icated communication channels. The adoption of packetized

transmissions substantially alter the bandwidth/performance

trade-off of traditional design. However, the potentially large

size of packet payload can be exploited to reduce data

transmissions without degrading the overall NCS perfor-

mance. In [9] the author pioneered the idea of sending

feedforward control sequences, computed on the basis of

a model-based predictive (MBP) scheme, with the aim

of compensating large delays in communication channels.
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Similar MBP schemes are adopted in [10], [11] and [12]

to counteract packet dropouts and to compensate commu-

nication delays. Following developments along these lines

generalized the technique to address time-varying delays and

transfer intervals [13]. Such a family of methods exploiting

the packet payload are usually referred to as Packet-Based

Control (PBC) (see [14], [15]).

In [16] we presented a PBC strategy ensuring the stability

of an uncertain nonlinear NCS affected by varying trans-

mission intervals, varying (and potentially large) delays, and

constrained access to the network. An (imprecise) model

of the closed-loop plant was used to build a prediction of

the control law valid on a given time-horizon. The state

of the model was asynchronously updated by means of the

measurements of the plant state provided by sensors. In order

to account for distributed sensors, we considered the access

to the network to be ruled by a protocol deciding which

sensor node can communicate at each instant. The control

sequence sent by the remote controller was stored in an

embedded memory on the plant side, and the right control

command in the sequence was chosen by comparing the plant

clock with the time stamp in the control sequence.

The present paper extends the framework presented in

[16] by allowing the use of a dynamic control law. In order

to adopt a dynamic controller, its internal state has to be

consistently updated at each new control sequence generation

according to the update of the state of the model used for

the prediction. A direct application of the aforementioned

framework would require the update of the internal state

of each remote dynamic component (model + controller),

by means of a protocol ensuring convenient error-decreasing

properties.

We update the internal state of the dynamic controller in

a way that is consistent with the behavior it would have if it

were directly connected to the plant (without network). Such

a method is equivalent to having a virtual controller on the

plant side and emulating the sending of its state through

the network towards the remote controller the same way

the state of the plant is sent to update the remote model.

The virtual sending of the controller state is realized by

sending the history of the measured outputs of the plant

and by using these output sequences to feed the remote

controller. The knowledge of the history of plant outputs

is indeed the unique information required to consistently run

the controller. It is worth mentioning that the output history

can be sent still exploiting the large payload of packets by

slicing it in sequences over non overlapping time horizons.

If output sensors are distributed, outputs are partitioned and

the history of each sensor is assumed to be sent according



to a static protocol similar to Round Robin.

As a first step towards a comprehensive framework capable

of encompassing both dynamic controllers and observers,

we make here the simplifying hypothesis of not using an

observer. Instead, we assume the plant state to be sent over

the network by the distributed sensors. On the one hand, this

choice allows us to approach the problem of the dynamic

controller by means of the formalism in [16], on the other

hand, however, we need to transmit both the instantaneous

state measurements

By using the formalism of [16], we are able to prove the

exponential stability of the NCS over a prescribed basin

of attraction, provided that some explicit bounds on the

Maximum Allowable Delay (MAD, [6]) and on the Maxi-

mum Allowable Transfer Interval (MATI, [17]) are satisfied.

We finally apply our technique to the control of a Furuta

pendulum involving an output-feedback dynamic controller.

NOTATION

Given a set A ⊂ R and a ∈ A, A≥a denotes the set

{s ∈ A | s ≥ a}. Given R ≥ 0, BR denotes the closed ball

of radius R centered in zero: BR , {x ∈ R
n | |x| ≤ R}. We

denote with N the set of positive integer numbers. We use

mod to denote the modulo operator, i.e. given m,n ∈ Z≥0,

m mod n = p if and only if there exists r ∈ Z≥0 such

that m = rn+ p with p < n. We define the ceiling function

⌈·⌉ : R → Z as ⌈x⌉ , min{m ∈ Z | m ≥ x}. Given t ∈ R

and a piecewise continuous function f : R → R
n , we use

the notation f(t+) := lims→t,s>t f(s)

II. SYSTEM DESCRIPTION
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Fig. 1. The proposed control architecture

This section provides a detailed description of the architec-

ture (controller, network and plant) of the NCS analyzed in

the present work. Consider Figure 1 as a pictorial reference.

A. The Plant and the Controller

We address the stabilization of a nonlinear continuous-

time system of the form

ẋp = fp(xp, u) (1)

y = gp(xp), (2)

where xp : R≥0 → R
np is the plant state, y : R≥0 → R

ny

is the output, u : R≥0 → R
nu represents the control input,

and fp : Rnp × R
nu → R

np and gp : Rnp → R
ny denote

locally Lipschitz functions. For this system, we assume that

a nominal dynamic feedback controller of the form

ẋc = fc(xc, y) (3)

u = gc(xc, y) (4)

has been developed by neglecting the network effects. Here

xc : R≥0 → R
nc is the controller state, and fc : R

nc ×
R

ny → R
nc and gc : R

nc × R
ny → R

nu denote locally

Lipschitz functions. Letting x(t) ,
[

xT
p (t), x

T
c (t)

]T ∈
R

np+nc = R
n and

f(x, u) ,

[

fp(xp, u)
fc(xc, gp(xp))

]

g(x) , gc(xc, gp(xp)),

the closed-loop system (1)-(4) in the absence of network

effects simply reads

ẋ = f(x, u) (5)

u = g(x). (6)

We assume that the nominal controller (3)-(4) globally

exponentially stabilizes the plant (1)-(2) in the absence of

network effects.

Assumption 1. (Nominal GES) The origin of the system (1)-

(2) in closed-loop with (3)-(4) is globally exponentially stable

(GES), and there exists a differentiable function V : Rn →
R≥0 and constants α, α, α, d > 0 such that the following

conditions hold for all x ∈ R
n

α ‖x‖2 ≤ V (x) ≤ α ‖x‖2
∂V
∂x (x)f(x, g(x)) ≤ −α ‖x‖2

∥

∥

∂V
∂x (x)

∥

∥ ≤ d ‖x‖ .
We also assume that local Lipschitz constants are available

to the designer.

Assumption 2. (Local Lipschitz) Given Rx, Ru > 0, there

exist some constants λf , λκ > 0 such that, for all x1, x2 ∈
BRx

and all u1, u2 ∈ BRu
, the following inequalities hold

‖f(x1, u1)− f(x2, u2)‖ ≤ λf (‖x1 − x2‖+ ‖u1 − u2‖)
(7)

‖g(x1)− g(x2)‖ ≤ λκ ‖x1 − x2‖ . (8)

The control strategy analyzed in this paper aims at

compensating the network-induced effects by relying on a

prediction of the plant behavior. To that aim, we assume

that a model for (1)-(2) is known:

˙̂xp = f̂p(x̂p, û) (9)

ŷ = ĝp(x̂p). (10)

This model in closed loop with the nominal controller (3)-(4)

reads

˙̂x = f̂(x̂, û) (11)

û = ĝ(x̂), (12)



where x̂ , (x̂T
p , x̂

T
c )

T : R≥0 → R
n and

f̂(x̂, û) ,

[

f̂p(x̂p, û)
fc(x̂c, ĝp(x̂p))

]

ĝ(x̂) , gc(x̂c, ĝp(x̂p)).

The plant-model inaccuracy is assumed to be sector-bounded.

Assumption 3. (Sector-Bounded Model Inaccuracy) Given

Rx, Ru > 0, there exists a constant λff̂ ≥ 0 such that, for

all x ∈ BRx
and all u ∈ BRu

,
∥

∥

∥
f(x, u)− f̂(x, u)

∥

∥

∥
≤ λff̂ (‖x‖+ ‖u‖) . (13)

B. The Network

Control sequences are sent as packets. An embedded

control device receives, decodes, synchronizes these packets

and applies control commands to the plant. We consider that

measurements are taken and sent at instants {τmi }, and are

received by the remote controller at instants {τmi + Tm
i },

i ∈ N. In other words, {Tm
i } denotes the sequence of (pos-

sibly time-varying) measurement data delays. These delays

cover both processing time and transmission delays on the

measurement chain. Similarly, control commands are sent

over the network at time instants {τci }. They reach the plant

at instants {τci + T c
i }, where {T c

i } denotes the sequence of

delays accounting for both the computation time and the

transmission delay from the remote controller to the plant.

Assumption 4. (Network) The communication network sat-

isfies the following properties:

i) (MATI) There exist two constants τm, τc ∈ R≥0

such that τmi+1 − τmi ≤ τm and τci+1 − τci ≤ τc,

∀i ∈ N;

ii) (mTI) There exist constants εm, εc ∈ R≥0 such that

εm ≤ τmi+1 − τmi and εc ≤ τci+1 − τci , ∀i ∈ N;

iii) (MAD) There exist two constants Tm, T c ∈ R≥0

such that Tm
i ≤ Tm and T c

i ≤ T c, ∀i ∈ N.

Properties i) and ii) state that the inter-sending time is

lower and upper bounded both on the control side and on

the measurement side of the network. The minimum transfer

interval (mTI) is needed in order to avoid Zeno phenomena,

but will also be used for design purposes. The upper bound

in i) is referred to as maximum allowable transfer interval

(MATI). Property iii) states that the delays are bounded.

C. The Network Protocol: Physical Layer

The system involves two different kinds of sensor nodes

sending measurements: ℓx state-sending nodes (SSn) and

ℓy output-sending nodes (OSn). Sensors are assumed to be

distributed and synchronized with each other. Among the

ℓ = ℓx + ℓy nodes, only one node at a time can send its

information (as a consequence, only partial knowledge of

the plant state is available at each time instant).

1) Overall protocol: The access to the network is ruled

by an overall protocol choosing, at each instant τmi , which

node communicates its data. In order to limit the cumulated

delays on the output measurements, we assume that the nodes

access the network as follows: after each SSn access, all

OSn are required to send their data. Then access is again

granted to a SSn, and so on. This rule can be formally stated

by extracting from the sequence of access times {τmi } two

subsequences
{

τmoi
}

and
{

τmsi
}

. More precisely, we define

two sequences {si}i∈N
, {oi}i∈N

having values in N. Such

sequences have the following meaning: at time τms , s ∈ {si},

a SSn is granted access to the network; at time τmo , o ∈ {oi},

an OSn has the ability to send. The policy is such that the

two sequences exibit the following property: {si} ∪ {oi} =
N, {si} ∩ {oi} = ∅.

2) State protocol: The SSn are granted access to the

network according to a protocol ruled by the map involving

the estimation error ep(t) ∈ R
np defined as ep(t) , x̂p(t)−

xp(t):

ep(τ
m
si

+) = hp

(

i, ep(τ
m
si )

)

, ∀i ∈ N, (14)

where hp : N × R
np → R

np . This protocol is assumed

to induce an exponential decrease of the error ep when the

inter-sample dynamics are neglected; i.e. we are interested in

UGES protocols. We recall here a slightly modified version

of the definition in [18] as given in [16].

Definition 1 (UGES protocol). A function h : N×R
n → R

n

is said to be a UGES protocol with parameters a, a, ρ, c if

there exist a function W : N×R
n → R≥0 locally Lipschitz

in its second argument and constants a, a, c ∈ R>0 and ρ ∈
[0, 1) such that:

a ‖e‖ ≤ W (i, e) ≤ a ‖e‖
W (i+ 1, h (i, e)) ≤ ρW (i, e)

(15)

for all e ∈ R
n and all i ∈ N, and

∥

∥

∥

∥

∂W

∂e
(i, e)

∥

∥

∥

∥

≤ c (16)

for almost all e ∈ R
n and all i ∈ N.

Assumption 5. (UGES of SSn protocol) The protocol (14)

is UGES with parameters ap, ap, ρp, cp.

3) Output protocol: The OSn are granted access to the

network according to the Round Robin protocol. We keep

track of which OSn transmits at a given time by means of

the sequence {νi}i∈N
having values in [1, ℓy] ⊂ N defined

as

νi+1 = (νi mod ℓy) + 1 (17)

and we consider ν1 = 1 to express the fact that the OSn

number 1 sends first. The νi-th OSn is thus granted the access

to the network at time τmoi .

III. ALGORITHM DESCRIPTION

At the plant side of the network, three kinds of devices

are needed, namely the actuator node (ACn), the SSn and

the OSn. The controller, instead, is decomposed into two

modules: the Local Dynamics and the Control Law Builder.

In this section we describe the role of each module and

provide a model for the overall closed-loop system.



A. The Plant

1) Actuator Node: The ACn is in charge of receiving,

decoding and re-synchronizing packets sent by the controller

and then actuating the plant. Each received packet contains

a time-stamp and a certain number of control values which

are stored in a local buffer. The actuator node compares the

time-stamp of the latest packet it received with its internal

clock and moves within the control sequence up to the

corresponding control value to be applied.

2) State-Sending Node: The state xp (t) ∈ R
np of the

system (1) is partitioned in ℓx components as xp (t) =

[xT
p,1 (t) , . . . , x

T
p,ℓx

(t)]T with xp,l (t) ∈ R
pl and

∑ℓx
l=1 pl =

np. When at a time instant τms a SSn l ∈ {1, . . . , ℓx} is

granted access to the network, it encodes the instantaneously

sensed value xp,l(τ
m
s ) into a packet, timestamps it and sends

it to the controller.

3) Output-Sending Node: The output y(t) ∈ R
ny of

the system (1) is partitioned in ℓy components as y (t) =

[yT1 (t) , . . . , yTℓy (t)]
T with yl (t) ∈ R

nyl and
∑ℓy

l=1 nyl
=

ny . An OSn l ∈ {1, . . . , ℓy} continuously monitors the

sensed output yl(t), storing the readings into a buffer. When

at a time instant τmok the l-th OSn is granted access to the

network (i.e. νk = l), it timestamps and encodes the output

history stored into the buffer and sends it to the controller.

After the sending, the buffer is flushed. According to (17), the

latest time the l-th OSn sent its output history was τmok−ℓy
. We

assume conventionally that τmok−ℓy
= 0 if at time τmok the l-th

OSn makes its first transmission (i.e. if k < ℓy). Therefore,

the time horizon of the l-th output history is [τmok−ℓy
, τmok ] and

we will write it as follows: yl [τm
ok−ℓy

,τm
ok

].

B. The Controller

1) Local Dynamics: The output histories reach the Lo-

cal Dynamics module, where they are stored and used to

reconstruct the state of the controller. As discussed in the

Introduction, the controller state reconstruction is necessary

to consistently initialize the dynamic controller before run-

ning the prediction and computing a new control packet.

Assuming that the controller state xc(σ) is known at some

time σ, then the state xc(τ) at a time τ > σ can be

reconstructed by integrating the controller dynamics (3),

provided that the output history y[σ,τ ] is known. In other

words, the reconstruction of the controller state requires the

histories of all the ℓy OSn to be available to the Local

Dynamics module. Moreover, all the histories should have

an overlapping time interval. As a consequence, the Local

Dynamics cumulates a delay on the reconstruction of the

controller state that is quantified in the following proposition.

Proposition 2 (Virtual packets’ delay). For each k ∈ N,

the controller state xc(τ
m
ok) is reconstructed by the Local

Dynamics module at time τ ≤ τmok + T f with T f , ℓyτ
m +

Tm.

For sake of simplicity let us assume νk = 1, that is at time

τmok the OSn 1 is sending the output history y1 [τm
ok−ℓy

,τm
ok

].

We use again the convention that τmok−ℓy
= 0 if k < ℓy.

Such an output history reaches the Local Dynamics module

after a delay Tm
ok

≤ Tm. Similarly, the output history

y2 [τm
ok+1−ℓy

,τm
ok+1

] sent by the OSn 2 at time τmok+1
reaches the

Local Dynamics after a delay Tm
ok+1

≤ Tm. Hence, for the

Local Dynamics to receive both the output histories, a time

max
(

Tm
ok
, τmok+1

− τmok + Tm
ok+1

)

≤ τm + Tm is required.

The same argument holds for all the ℓy OSn. Moreover, the

entire cycle of the output sendings is interleaved with a state

sending, thus adding a further delay to the reconstruction

which is upper bounded by τm. Finally, an upper bound

for the time required to receive all the histories is given

by (ℓy − 1) τm + Tm + τm = ℓyτ
m + Tm. We stress that

the Local Dynamics module can store the past histories,

therefore we can assume they all have the same starting

time, for instance τmok−1
. Since the controller state xc(τ

m
ok−1

)
is known by previous reconstructions (or by initialization

if τmok−ℓy
= 0), the state xc(τ

m
ok
) can be reconstructed at

τmok +T f , by integrating the controller dynamics (3) with the

output history y[τm
ok−1

,τm
ok

].

2) Control Law Builder: When a new measurement is

received, the remote controller uses the new data in order to

update an estimate of the state of the plant. The controller

then computes a prediction of the control signal over a fixed

time horizon

T
p
0 ≥ T c + T f + τm + τc, (18)

where τm, τc and T c are given by Assumption 4 and T f is

defined in Proposition 2. This is done by numerically running

the model (11)-(12) based on the latest state reconstruction.

Such computation generates values for the function û(t) (see

(12)) over the horizon T
p
0 , which are then coded, marked with

the appropriate time-stamp, and put in a single packet which

is sent at the next network access.

C. The Network Protocol: Virtual Layer

Section II-C was devoted to the description of the physical

protocol used to arbitrate the node scheduling. In this section,

instead, we build a virtual layer upon the physical layer

in order to account for the controller state reconstruction

described in Section III-B.1. The virtual state protocol co-

incides with the physical state protocol described in Sec-

tion II-C.2, whilst the virtual output protocol and the overall

protocol (now named Compound Protocol) are defined in the

following sections.

1) The virtual output protocol: The controller state re-

construction performed by the Local Dynamics (see Sec-

tion III-B.1) allows us to consider the controller as if it

were executed on the plant side and its internal state sent

over the network. This is tantamount to considering that at

time τmok a virtual packet containing xc(τ
m
ok) is sent by the

plant and that such a packet incurs a delay no larger than

T f (see Proposition 2). Therefore, while the sequence {τmi }
of sending times is unchanged, we need to define a new

sequence
{

T
f
i

}

to account both for the delays affecting the

physical packets and those affecting the virtual packets. The



sequence of state-sending delays
{

T
f
i

}

i∈N

, T
f
i ∈ R≥0 is

defined as:

T
f
i ,

{

Tm
i if i ∈ {sk}k∈N

min
{

Tτm
i

}

otherwise,
(19)

where Tτ , {T | xc (τ) is reconstructed at τ + T }.

By virtue of Proposition 2, the following inequality holds:

T
f
i ≤ T f , ∀i ∈ N. (20)

The virtual output protocol can be described as a discrete-

time map similar to that given for the state protocol in (14).

Given the estimation error ec(t) ∈ R
nc , defined as ec(t) ,

x̂c(t)− xc(t), we have

ec(τ
m
oi

+) = hc

(

i, ec(τ
m
oi )

)

, ∀i ∈ N, (21)

where hc : N × R
nc → R

nc . When an OSn transmits its

history, the state of the controller is perfectly known (even if

with a large delay). Therefore, the function hc takes in our

case the null value and we simply write

ec(τ
m
oi

+) = 0, ∀i ∈ N. (22)

The protocol (22) is clearly UGES.

2) The compound protocol: We now gather together the

physical packets, containing the state of the system, and the

virtual packets, containing the state of the controller. They

are used to design a protocol which acts on the compound

error (eTp (t), e
T
c (t))

T . In the following proposition we prove

that, if the protocol updating ep is UGES (see Assumption 5),

then the compound protocol is UGES as well.

Proposition 3 (Compound protocol). The function h : N×
R

n → R
n

h
(

i,
[

eTp , e
T
c

]T
)

,

[

hs(i, ep)
ho(i, ec)

]

(23)

with

hs(i, ep) ,

{

hp(qs(i), ep) if i ∈ {sk}k∈N

ep otherwise
(24)

ho(i, ec) ,

{

ec if i ∈ {sk}k∈N

hc(qo(i), ec) otherwise,
(25)

where hp : N × R
np → R

np and hc : N × R
nc → R

nc are

defined in (14) and (21)-(22), respectively; and the functions

qs : N → N, qo : N → N are given by

qs(i) ,

{

1 if i = 1

max {k ∈ N | sk ≤ i− 1} ∀i ∈ N≥2

(26)

qo(i) ,

{

1 if i = 1

max {k ∈ N | ok ≤ i− 1} ∀i ∈ N≥2 ,
(27)

defines a UGES protocol with parameters ρ
1−1/ℓy
p ap, ap,

ρ
1/ℓy
p and cp.

D. The Overall Model

The loop composed of the system (1)-(2) and the con-

troller node which executes the algorithms described in

Section III-B can be summarized as follows (see also [16]).

The NCS model has a state x(t) which models the internal

state of the plant as well as the state of the controller as it

would act if it were directly connected to the output of the

plant. Moreover, N vectors of additional state variables are

used to model the estimations of the vector x̂. N represents

the number of packets, either real or virtual, that can be

received by the controller during the time T
p
0 . In view of

Assumption 4, it is defined as

N ,

⌈

T
p
0 − τmi
εm

⌉

+ 1. (28)

By means of x̄(t), e(t) ∈ R
Nn defined as x̄(t) ,

[

xT (t), . . . , xT (t)
]T

and e(t) ,
[

eT1 (t), . . . , e
T
N (t)

]T
,

ei(t) ∈ R
n , the closed-loop dynamics of the NCS can be

compactly written as

ẋ = F (t, x̄, e) (29a)

ė = G(t, x̄, e) (29b)

e(τm+
i ) = H(i, e(τmi )), (29c)

where

F (t, x̄, e) = f(x, v(t, e + x̄)) (30a)

G(t, x̄, e) =







f̂(e1 + x, ĝ(e1 + x))− f(x, v(t, e + x̄))
...

f̂(eN + x, ĝ(eN + x))− f(x, v(t, e + x̄))







(30b)

H(i, e) =











e1 + (h(i, eN )− e1) η(i, 1)
e2 + (h(i, e1)− e2) η(i, 2)

...

eN + (h(i, eN−1)− eN) η(i, N)











, (30c)

where η : N × {1, . . . , N} → {0, 1} identifies the index of

the relevant state estimate

η(i, r) ,

{

1 if µ(i) = r

0 otherwise
(31)

and µ : N → {1, . . . , N} is defined as the following periodic

inspection µ(i) , ((i− 1) mod N)+1. The control signal

v in (30a) and (30b) is defined as the emulation of (12) based

on the available state estimate:

v(t,
[

x̂T
1 , . . . , x̂

T
N

]T
) ,

N
∑

k=1

ĝ(x̂k)ζ(t, k) (32)

where x̂i ∈ R
n and ζ : R≥0 × {1, . . . , N} → {0, 1} is

defined as

ζ(t, k) ,











1 if ∃j ∈ N s.t. µ(γ(j)) = k

and t ∈ (τcj + T c
j , τ

c
j+1 + T c

j+1]

0 otherwise

(33)



and γ : N → N, defined as

γ(j) , max
{

i ∈ N | τmi + T
f
i < τcj

}

, (34)

denotes the index of the latest measure received before τcj .

IV. MAIN RESULT

We now have all the ingredients to state our main result.

Theorem 4. Assume that Assumptions 1, 4 and 5 hold.

Given some R > 0, fix Rx = R and Ru = λkR

and suppose that Assumptions 2 and 3 hold with these

constants. Let ap, ap, ρp, cp,α, α, α, d, λff̂ , λf and λk be

generated by these assumptions. Pick a = apρ
1−1/ℓy
p , a =

ap, ρ = ρ
1/ℓy
p , c = cp and define aH , a, aL ,

a

N min

{

1,
(

a

a

)2
1
ρ

}

. Assume that the following conditions

on τm, T f , τc, εm hold:

τm ∈ [εm, τm∗), τm∗ , 1
L log

(

Mγ2+aLL
Mγ2+aLρL

)

N =
⌈

T c+T f+τc

εm

⌉

+ 1
(35)

where

L , c
aL

(

(1 + λk)
√
Nλff̂+√

Nλf +
(√

N − 1 +N − 1
)

λfλk

)

M , (1 + λk) cNλff̂ γ2 , d
α

√

a
aλfλk.

(36)

Then the origin of the NCS (29) is exponentially stable with

radius of attraction

R̃ ,
R

K
(37)

where K ,
√
2

1−γ1γ2
max {(1 + γ1)k2, (1 + γ2)k1} , γ1 ,

exp(Lτm)−1
aLL(1−ρ exp(Lτm))M , k1 , aH

ρaL
and k2 ,

√

α
α .

The conditions expressed in (35) establish a relation

among all the relevant parameters, namely εm, T c, T f , τc

and τm. Notice that (20) can be used to express such a

relation in terms of the measurement MAD Tm and the

number of OSn ℓy instead of T f . Note that since Theorem

4 guarantees only local properties, Assumption 1 could be

relaxed to local exponential stability of the nominal plant,

over a sufficiently large domain.

The presented formulation of the MATI and the expression

for the radius of convergence are based on [16] where

examples showing that the MATI constitutes an improvement

over the previously existing state-of-the-art can be found.

V. NETWORK-IN-THE-LOOP EXPERIMENTS

In this section, we address a network-in-the-loop experi-

ment and show that if the state of the dynamic controller is

not reconstructed, the control law is not able to stabilize the

plant.

The plant, namely a Furuta pendulum [19] is depicted in

Figure 2 and its parameters are listed in Table I.

Fig. 2. Schematic representation of Furuta pendulum

TABLE I

PARAMETERS OF FURUTA PENDULUM

Physical quantity Symbol Value Units

Arm mass m1 200 × 10−3 kg

Pendulum mass m2 72× 10−3 kg

Arm length L1 224 × 10−3 m

Arm COM l1 144 × 10−3 m

Pendulum COM l2 106 × 10−3 m

Arm z0 inertia Jz0 0.9× 10−3 kgm2

Pendulum x2 inertia Jx2
1.65× 10−6 kgm2

Pendulum y2 inertia Jy2 2.7× 10−4 kgm2

Pendulum z2 inertia Jz2 2.71× 10−4 kgm2

Arm friction c1 0.9× 10−2 Nms

Pendulum friction c2 2.71× 10−7 Nms

Motor torque constant K 2.2274 NmA−1

Motor inductance La 0.044 H
Motor resistance Ra 1.9 Ω

The vector of state variables is represented by q =
[q1, q2]

T , where q1 is the angular position of the arm and

q2 is the angular position of the pendulum. Only the arm

joint is actuated by means of the torque τ . The dynamics of

the nonlinear plant is given by:

[

π1 + π2 sin
2 q2 + π3 cos

2 q2 π4 cos q2
π4 cos q2 π7

]

q̈+

[

π6 + π5q̇2 sin 2q2 −π4q̇2 sin q2 + π5q̇1 sin 2q2
−π5 sin (2q2)q̇1 π8

]

q̇+

[

0
π9 sin q2

]

=

[

τ

0

]

,

(38)

where the quantities πi represent the dynamic parameters of
the system, which are defined, according to the mechanical
parameters in Table I, as follows:

π1 = Jz0 +m1l
2

1 +m2L
2

1 π2 = Jy2 +m2l
2

2 π3 = Jx2

π5 =
1

2

(

Jy2 − Jx2
+m2l

2

2

)

π4 = m2L1l2 π6 = c1

π7 = Jz2 +m2l
2

2 π8 = c2 π9 = m2l2g

where g is the gravity.

The torque τ is generated by the following first order linear

dynamics, representing the model of a DC motor:

Laτ̇ = KV −Raτ −K2q̇1 (39)

where V is the voltage applied to the motor and K , La, Ra

are the motor parameters described in Table I.



The adopted dynamic control law is:

C(s) =







−4696.5(s−2000)(s+2011)(s+0.01525)
(s+1300)(s2+4612s+6.329 106)

−3169.4(s−2000)(s−225.6)(s+9.466)
(s+1300)(s2+4612s+6.329 106)







T

, (40)

whose input is the vector [q1, q2 − π]
T

.

The experiment setup uses two computers, one for the

controller and the other for simulating the plant with sensors

and actuators. The same dynamics are used for the model

and the plant (perfect model hypothesis). The computers are

connected through a real Ethernet link. The experimental

network setup is such that 1 × 10−3 s ≤ τmi+1 − τmi ≤
10 × 10−3 s and 1 × 10−3 s ≤ τci+1 − τci ≤ 10 × 10−3 s.
Based on the measurements, we can consider the maximum

delays to be Tm, T c = maxRTT
2 ≈ 8 × 10−3 s, where

RTT is the packet round-trip-time. The delays are induced

by the Ethernet network and by computation overhead, no

probabilistic characterization is assumed. The experiments

have been carried out by means of a software for networked

control systems developed in [20]. For this purpose a module

implementing the virtual layer, as in Sections III-B and III-C,

has been designed.

The goal of the control is to keep the pendulum rod in

the upright position (q2 = 2kπ rad, k ∈ Z in Figure 3).

The initial condition for the plant is near the equilibrium

point, i.e. 10◦ from the upright position and all the other

state variables set to zero.

Figure 3 shows the results of the experiments, the two

trajectories represent the behavior of the controlled pendulum

rod with and without controller state reconstruction. The

absence of the controller state reconstruction means that no

correction of the controller state error is done, or, equiva-

lently, that the following compound protocol h : N×R
n →

R
n is used:

h
(

i,
[

eTp , e
T
c

]T
)

=

[

hs(i, ep)
ec

]

.

Experiments show that if the proposed algorithm is not

used, the pendulum rod cannot be stabilized around the

vertical equilibrium and it starts oscillating.
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Fig. 3. Trajectories of the pendulum rod

VI. CONCLUSIONS

The problem of stabilizing a networked nonlinear plant via

an output-feedback dynamic controller has been considered.

Differences and difficulties in using a dynamic controller

w.r.t. a static one have been underlined and an algorithm

exploiting the packet-based nature of the network has been

proposed. Sufficient condition for the local exponential sta-

bility of the resulting system are given. A Furuta pendulum

is used to illustrate the effectiveness of the presented method.

Network-in-the loop experiments show that the resulting

network controlled system closely mimics the behavior of the

ideal closed-loop system. If, on the contrary, the proposed

algorithm is not used, the network is shown to strongly affect

the performance and stability of the controlled system.
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