
Packet-Based Dynamic Control of a Furuta Pendulum over Ethernet

T. Fabbri, D. Fenucci, S. Falasca, M. Gamba, A. Bicchi

Abstract— This paper presents experimental results of the
application of Packet-Based Control approach with dynamic
controller on a real plant: the Furuta Pendulum. Despite its
easiness of realization, Furuta Pendulum presents some features
useful for our purposes, such as pretty non-linear dynamics,
unstable equilibrium point and heavy dynamical inaccuracies.
The network communication channel has been implemented
using an Ethernet network. Packet-Based controller has been
tested and compared with a classic local controller for different
time-varying actuation delays. Results obtained corroborate
the validity of the proposed architecture and highlight the
robustness of this approach in the presence of actuation delays.

Index Terms— Distributed systems, Non-linear systems, Ro-
bust control, Networked control system

I. INTRODUCTION

In the past decade, Networked Control Systems (NCSs)
have experienced a dramatic growth due to their potential
applications in different fields, i.e. manufacturing, intelligent
vehicles, power-line control etc.

A NCS is a system in which components such as sensors,
actuators and controllers are spatially distributed and con-
nected via a shared communication channel, which can be
either a control-oriented infrastructure or a network which
is not designed for control purposes like Ethernet. The latter
one has many advantages such as small implementation and
maintenance costs, scalability and large diffusion; on the
other hand, it introduces some constraints which can not be
ignored in the control design.

Little can be found in literature concerning experimental
results in this field: in [7] experimental results, concerning
a dryer controlled via wifi, were provided to corroborate the
theoretical achievements. With very few exceptions (e.g. [8],
which controls a DC motor over the internet), however, it
is difficult to find experiments concerning new theoretical
progresses. It is the authors’ opinion that the field of control
theory is now mature enough to start experimenting with
more complex dynamical plants.

The research leading to these results has received funding from the
European Union Seventh Framework Programme [FP7/2007-2013] under
grant agreement n257462 HYCON2 Network of excellence

T. Fabbri is with University of Pisa, Via Diotisalvi 2, 56126 Pisa, Italy.
atfabbri@gmail.com

D. Fenucci is with University of Pisa, Via Diotisalvi 2, 56126 Pisa, Italy.
d.fenucci@gmail.com

S. Falasca is with Interdipartmental Research Cen-
ter “E. Piaggio”,Via Diotisalvi 2, 56126 Pisa, Italy.
stefano.falasca@centropiaggio.unipi.it

M. Gamba is with University of Pisa, Via Diotisalvi 2, 56126 Pisa, Italy.
massimiliano.gamba@gmail.com

A. Bicchi is with Interdipartmental Research Center “E. Piaggio”,Via
Diotisalvi 2, 56126 Pisa, Italy and IIT - Istituto Italiano di Tecnologia,
Genova, Italy. bicchi@centropiaggio.unipi.it

In this paper we show the networked stabilisation (via
Ethernet) of a Furuta Pendulum: it is a highly non-linear
plant having an unstable equilibrium and very fast dynamics.
Moreover it is easy and relatively inexpensive to build. For all
these reasons it represents a good benchmark for experiments
on networked control approaches.

A promising approach to the problem of stabilising a NCS,
presented in [2] and [5], is the Packet-Based Control (PBC)
which uses an a-priori known static-feedback control law to
stabilise the system despite the negative effects due to the
communication network in use. The previous strategy has
been extended in [3] to the case of dynamic controllers.
Such a control architecture is well suited for controlling
medium to large plants and provides easy means for both
rapid-prototyping of the control and for its deployment.

The realisation of the test-bed made it possible to get
some insights on the advantages and disadvantages which
are encountered when designing a networked or a classical
control architecture.

The experiments proposed in this paper have two goals:
assessing the real-world applicability of the approach pro-
posed in [3] and evaluating how the network-induced delays
influence the closed-loop system behaviour. Moreover, in this
paper a discussion is carried out about the different problems
we encountered in implementing both the networked control
scheme and the local one. Such discussion is aimed at
helping the interested reader in choosing which way to go.

In the following, we provide both a non-linear and a
linearised model of the real plant; afterwards a control
law able to both swing-up and stabilise the pendulum in
the upright position is designed. We remark that, since the
purpose of this paper is to illustrate how a real system can
be stabilised by using a networked architecture in spite of
massive network delays, the used control law is very simple
and is by no means being proposed as an alternative to
existing, more complex control laws. Experimental results
are presented in form of performance comparisons between
a classic local controller and the proposed network approach
for different time-varying delays.

The results obtained through experiments have been col-
lected in a video which compares the behavior of the locally
controlled system with the network controlled system. More-
over, the video includes an animation showing how control
data is exchanged among network nodes and used both on the
plant side and controller side (which is an animated version
of Figure 1). Finally, in the video the behavior of the system
under external perturbation is shown. This video is available
at IEEE Xplore.

The paper is organised as follows. Section II shows the

http://ieeexplore.ieee.org


main features of the Packet-Based Control approach. Then,
in section III dynamical equations of the model of Furuta
Pendulum are developed; from these, a linear model of the
system is obtained and then the real plant is briefly described.
Next, the proposed control law is illustrated in section IV.
Finally, section V highlights the major experimental results
obtained from the simulations and section VI contains con-
siderations about the implementation of the control scheme.

II. PACKET-BASED CONTROL STRATEGY

This section recalls the main assumptions needed by the
Packet-Based Dynamic control strategy with an emphasis on
providing details about how—and to which extent—they are
met within the experimental setup.

Packet-Based Control is a control approach which aims at
compensating for effects due to the use of a packet-switching
network. When used for control purposes, communication
networks introduce several constraints; those considered by
PBC are: large time-varying communication delays, variable
transfer intervals, non-simultaneous accesses to the network.
The framework developed relies on the algorithm proposed in
[3], whose basic idea is schematically illustrated in Figure 1.

The control technique used here for tackling networked
control issues belongs to the class of emulation-based ap-
proaches. Being emulation-based means that the control law
is designed without taking into account the network effects,
while the framework provides automatic means of adapting
the control law to the network infrastructure. In this spirit
we will assume that for the system at hand, a stabilising
controller has been designed (see assumption 1):

We address the stabilisation of a nonlinear continuous-time
system of the form

ẋp = fp(xp, u) (1)
y = gp(xp), (2)

OSn
OSn

SSn
SSn

Plant Model

Dynamic control law

x

u

Controller

Shared Bus Network

Packet FIller

z

Local Dynamic

Dynamic 
control law

x

y

z

Plant y

Actuator Node

u

x

SSn OSn

Compound Protocol

Fig. 1. Schematic illustration of the used control architecture

where xp : R≥0 → Rnp is the plant state, y : R≥0 → Rny

is the output, u : R≥0 → Rnu represents the control input,
and fp : Rnp × Rnu → Rnp and gp : Rnp → Rny denote
locally Lipschitz functions. For this system, we assume that
a nominal dynamic feedback controller of the form

ẋc = fc(xc, y) (3)
u = gc(xc, xp, y) (4)

is available. Here xc : R≥0 → Rnc is the controller state,
and fc : Rnc × Rny → Rnc and gc : Rnc × Rnp ×
Rny → Rnu denote locally Lipschitz functions. Letting
x(t) , (xTp (t), xTc (t))T ∈ Rnp+nx = Rn and

f(x, u) ,

(
fp(xp, u)

fc(xc, gp(xp))

)
g(x) , gc(xc, xp, gp(xp)),

the closed-loop system (1)-(4) in the absence of network
effects simply reads

ẋ = f(x, u) (5)
u = g(x). (6)

Assumption 1 (Nominal GES): The origin of the system
(1)-(2) in closed-loop with (3)-(4) is globally exponentially
stable (GES), i.e. there exists a differentiable function V :
Rn → R≥0 and constants α, α, α, d > 0 such that the
following conditions hold for all x ∈ Rn

α ‖x‖2 ≤ V (x) ≤ α ‖x‖2

∂V

∂x
(x)f(x, g(x)) ≤ −α ‖x‖2∥∥∥∥∂V∂x (x)

∥∥∥∥ ≤ d ‖x‖ .
Moreover, a technical assumption is needed regarding the
closed loop system.

Assumption 2: (Local Lipschitz) Given some constants
Rx, Ru > 0, there exist some constants λf , λκ > 0 and
all u1, u2 ∈ BRu

, the following inequalities hold

‖f(x1, u1)− f(x2, u2)‖ ≤ λf (‖x1 − x2‖ + ‖u1 − u2‖)
(7)

‖g(x1)− g(x2)‖ ≤ λκ ‖x1 − x2‖ . (8)
In the spirit of the emulation-based approach, we only

require for the control law to be able to stabilise the plant
when used in a classical (non networked) feedback loop. In
the experimental setup, we will see that for the designed
control law a Lyapunov function guaranteeing the closed
loop system to be stable will not be derived; instead, a control
law will be used which is known a priori to stabilise the
system. This is, in the author’s opinion, very important, in
that it shows that the whole Packet-Based control framework
can be applied to convert an existing control loop to a
networked one; and this is exactly what being emulation-
based is intended to allow for in practical applications.

In the used control setup every communication between
the plant (i.e. sensors and actuators) and the controlling
computer is carried out through a network. The following



assumption describes the constraints we require for the
communication allowed by the network.

Assumption 3: (Network) The communication network
satisfies the following properties:

i) (MATI) There exist two constants τm, τ c ∈ R≥0

such that τmi+1 − τmi ≤ τm and τ ci+1 − τ ci ≤ τ c,
∀i ∈ N;

ii) (mTI) There exist constants εm, εc ∈ R≥0 such
that εm ≤ τmi+1 − τmi and εc ≤ τ ci+1 − τ ci ∀i ∈ N.

iii) (MAD) There exist two constants Tm, T c ∈ R≥0

such that Tmi ≤ Tm and T ci ≤ T c, ∀i ∈ N;
Properties i) and ii) state that the inter-sending time is lower
and upper bounded both on the control side and on the
measurement side of the network. In network control theory,
the upper bound in i) is referred to as Maximum Allowable
Transfer Interval (MATI). Property iii) states that the delays
are bounded.

In the experimental setup an Ethernet link is used for
communicating between the plant and the controller nodes.
Of course, the Ethernet protocol does not guarantee for our
assumptions to be verified. In particular, there is no guarantee
that a packet incurs a limited delay. In practice, however,
this is not an issue, as shown in the network-in-the-loop
experiment carried out in [3].

In [3], it is also tacitly assumed that network nodes
are synchronised with each other. This characteristic of
network nodes will allow the controller to rely on timestamps
contained into packets having different sources. As we will
see, timestamping is also used for assigning a time-reference
to control packets.

In the experimental setup a simple master-slave synchro-
nisation protocol has been implemented, which is sufficient
to guarantee the synchronisation.

In order to implement the proposed control strategy, a
mathematical model for the plant needs to be available
at the controlling computer site. Of course, this model is
not required to be perfect. The presented control technique
explicitly tackles the robustness problem and allows for a
sector-bounded uncertainty to be in place. More precisely,
we assume the following:

Assumption 4: (Sector-Bounded Model Inaccuracy) Given
Rx, Ru > 0, there exists a constant λff̂ ≥ 0 such that, for
all x ∈ BRx

and all u ∈ BRu
,∥∥∥f(x, u)− f̂(x, u)
∥∥∥ ≤ λff̂ (‖x‖ + ‖u‖) . (9)

A very important role is played by the network protocol
which we now briefly introduce prior to stating the related
assumption. The network is a shared channel of communica-
tion between the various nodes. Therefore a rule describing
the possibility of a node to gain access to the network
is needed. Many rules are possible, two examples are the
Round Robin and the Mef-Tod protocols. In the Round Robin
policy the nodes are allowed to communicate in a cyclic
predeterminated order. The Mef-Tod, Maximum error first -
Try once discard, consists of letting a node to have access to
the network if the error of that sensed variable is the greatest.
Once a value is transmitted, some components of the error

are set to zero. If a data packets fails to gain access to the
network, it is discarded and a new value will be sent in the
next access.

Protocols can be viewed in another way i.e. by means of
describing the induced change in the information contained
in the node that receives an information when a communi-
cation is successful. To be more clear, being the protocol
the rule the nodes obey in order to communicate through
the shared network, it can be described by the update that
the packet received by the controller node causes. In the
controller node a vector containing the value of the state
variable of the plant is maintained. Let xp and x̂p be the
state of the plant and its estimate. Furthermore let ep be
defined as ep , x̂p − xp. As a packet, containing a measure
referred to time t̄, reaches the Controller node from the
SSn, the error ep(t̄) = x̂p(t̄) − xp(t̄) decreases. In fact a
piece of information regarding the state of the plant has
been received. Typically, but not necessarily, if the number
of SSn are ` the error vector can be partitioned as follows
e = [eTp1e

T
p2 . . . e

T
p`

]T . The change in the error induced by a
reception of a packet containing measures on the state of the
plant can be represented as 1:

ep
(
τmi

+
)

= hp (i, ep(τ
m
i )) . (10)

Although the latter equation is only a map between the error
at time τmi and the error at time τmi

+, it is useful to define
an auxiliary discrete-time system of the form:

ep(i+ 1) = hp (i, ep(i)) . (11)

Equation (11) is referred to as the discrete-time system
induced by the protocol or, with some abuse of terms, simply
the protocol. The core role of the protocol is to ensure that at
each transmission some positive definite function of the error
ep is decreased. Consequently, the protocol can be viewed
as a tool that allows for reducing the error on the state of
the plant. More about the protocols can be found in [7] and
[6].

In [3] the protocol is assumed to induce an exponential
decrease of the error ep when the inter-sample dynamics are
neglected. More precisely, the following is assumed.

Assumption 5 (UGES Protocol): The protocol (10) is uni-
formly globally exponentially stable and admits an associated
Lyapunov function with bounded gradient. More precisely,
there exists a function Wp : N × Rnp → R≥0 locally
Lipschitz in its second argument and there exist constants
ap, ap, cp > 0 and ρp ∈ [0, 1) such that for the discrete-time
system induced by the protocol, i.e. (11), hold the following:

ap ‖ξ‖ ≤Wp (i, ξ) ≤ ap ‖ξ‖
Wp (i+ 1, hp (i, ξ)) ≤ ρpWp (i, ξ)

(12)

for all ξ ∈ Rnp and all i ∈ N. Moreover:∥∥∥∥∂Wp

∂ξ
(i, ξ)

∥∥∥∥ ≤ cp (13)

for almost all ξ ∈ Rnp and all i ∈ N.

1We tacitly introduced the notation f(t+) := lims→t,s>t f(s)



We remark that the conditions supposed to hold for the
discrete-time system induced by the protocol do not make any
reference to the evolution of the plant nor to the evolution
of its model. These conditions captures intrinsic properties
of the protocol itself.

Of course in the experimental setup measures are taken
by means of digital sensors and are therefore affected by
quantisation errors. Strictly speaking, the sending protocol
we employ is not UGES, in that it does not correct for
quantisation errors.

In the plant side, there are sensor and actuator nodes which
are devices that in addition to provide the connectivity to
the network, are equipped with transducers depending on
the system under consideration. The sensor nodes collect a
fixed number of samples from their own transducers and
the data set is stored in a local buffer. The whole buffer
content is time-stamped and encoded into packets, which are
sent to the controller when the network is available. Data
which has been already sent is discarded from the buffer. In
the controller side, when the data is received, the controller
initialises an internal model of the Furuta Pendulum and
based on the simulation results, a fixed number of commands
to be used in the future is computed. These commands
are indexed with respect to time using a timestamp. All
information is encapsulated in a packet and sent to the
actuator node. In the plant side, the actuator node receives
the generated command horizon and it starts running its
content by selecting the right control to be used at a given
time; in particular, the actuator node compares the timestamp
of the last packet it received with its internal clock and
moves within the control sequence up to the starting point;
moreover, if a new a control sequence is received by the
actuator node, the old one is discarded.

III. SYSTEM DESCRIPTION

In this section dynamical equations for the Furuta Pendu-
lum system are derived; afterwards a linear model to be used
for the stabilisation is provided and finally the real plant is
described.

A. Modelling of pendulum

The Furuta Pendulum includes a horizontal arm coupled
to a motor shaft; the pendulum rod, which is free to rotate,
is hinged to the horizontal arm. A schematic illustration
of Furuta Pendulum is shown in Figure 2. By applying
Langrange formulation the dynamics of any multi-link robot
can be represented by:

B(q)q̈ + C(q, q̇)q̇ +G(q) = τ (14)

where q is the vector of the Lagrangian coordinates, B(q)
represents the inertia matrix, C(q, q̇) is the Coriolis, cen-
trifugal and friction matrix, G(q) is the gravity matrix and
τ includes the control torques applied to each joint.

In this case, the vector of configuration variables is rep-
resented by q = [q1, q2]T , where q1 is the angular position
of the arm and q2 is the angular position of the pendulum;

z0

x0

y0
z1

x1

x2

z2

y
2

Fig. 2. Schematic representation of Furuta Pendulum

moreover, the considered system is under-actuated, in partic-
ular is effectively actuated only the arm joint. The dynamical
equation (14) then becomes:[
π1 + π2 sin2 q2 + π3 cos2 q2 π4 cos q2

π4 cos q2 π7

]
q̈+[

π6 + π5 sin (2q2)q̇2 −π4 sin q2q̇2 + π5 sin (2q2)q̇1
−π5 sin (2q2)q̇1 π8

]
q̇+[

0
π9 sin q2

]
=

[
τ
0

]
(15)

where the quantities πi represent the dynamic parameters
of the system, which are defined, based on the mechanical
parameters reported in Table I, as follows:

π1 = Jz0 +m1l
2
1 +m2L

2
1 π2 = Jy2 +m2l

2
2

π3 = Jx2
π4 = m2L1l2

π5 =
1

2

(
Jy2 − Jx2

+m2l
2
2

)
π6 = c1

π7 = Jz2 +m2l
2
2 π8 = c2

π9 = m2l2g

where g is the gravity.

TABLE I
PARAMETERS OF FURUTA PENDULUM

Physical quantity Symbol Units

Arm mass m1 200× 10−3 [kg]
Pendulum mass m2 72× 10−3 [kg]
Arm length L1 224× 10−3 [m]
Arm COM l1 144× 10−3 [m]
Pendulum COM l2 106× 10−3 [m]
Arm z0 inertia Jz0 0.9× 10−3 [kg m2]
Pendulum x2 inertia Jx2 1.65× 10−6 [kg m2]
Pendulum y2 inertia Jy2 2.7× 10−4 [kg m2]
Pendulum z2 inertia Jz2 2.71× 10−4 [kg m2]
Arm friction c1 0.9× 10−2 [N m s]
Pendulum friction c2 2.71× 10−7 [N m s]
Motor torque constant K 2.2274 [N m A−1]
Motor inductance La 0.044 [H]
Motor resistance Ra 1.9 [Ω]



In order to change the upright position from q2 = π to
q2 = 0 we provide the following coordinate transformation:

θ =

[
q1

q2 − π

]
Using the previous change of variables, a state space model
of the system (15) with the unstable equilibrium in the origin,

can be represented, choosing as state vector x =
[
θT , θ̇T

]T
,

by:

ẋ =

[
θ̇

−B(θ)−1
[
C(θ, θ̇)θ̇ +G(θ)

]]+

[
0

B(θ)−1

]
τ (16)

The torque τ is generated by a DC motor, modelled by the
following first order linear dynamic:

Laτ̇ = KV −Raτ −K2θ̇1 (17)

where V is the voltage applied to the motor and K, La, Ra
are the motor parameters described in Table I.

B. Linear Model

The linear model of the mechanical plant is obtained by
linearising the dynamical equation in (16) around the upright
state and is described by the following equation:

ẋ =


0 0 1 0
0 0 0 1
0 π4π9

d
−π6π7

d
−π4π8

d

0 π9(π1+π3)
d

−π4π6

d
−π8(π1+π3)

d

x+


0
0
π7

d
π4

d

 τ
(18)

where d = −π2
4 + π7(π1 + π3).

The previous equation has been combined with the equa-
tion (17), considering the torque τ as an additional state and
the voltage V as the input, to obtain the linear model of the
complete system (i.e. pendulum + motor).

C. Real plant

The Furuta Pendulum used for experiments is shown in
Figure 3. The mechanical system is equipped with two
encoders: a very precise one measures the θ1 angle with
2π/176128 rad resolution, while the second one measures θ2
with 2π/2000 rad resolution. The horizontal arm is actuated
by a DC motor, which has an input voltage range of

Fig. 3. Furuta Pendulum system

−24 ÷ 24 V. Clearly, the real plant has some physical
phenomena which are not modelled, like Coulomb frictions
and the play between the arm and the motor due to the
presence of a reduction gear.

IV. CONTROL DESIGN

The aim of the control is divided in two distinct steps:
the first one is the Swing-Up phase, in which the pendulum
starts from the downward state and has to reach the upright
position; the second one is the Stabilisation phase, where
the controller must be able to maintain stable the pendulum
around this position. The switching from the Swing-Up phase
to the other one occurs when the pendulum enters in an
angular sector in the neighborhood of the upright position. In
this section control laws for both swing-up and stabilisation
phases are provided.

A. Swing-Up control

A strategy for bringing the pendulum to the upright
position is shown in [1]. Assume that the pendulum is at
rest in the downward position; the basic idea is to apply
a constant torque in an arbitrary direction to the arm and
reverse it when the velocity of the pendulum becomes zero;
through this approach the angle described by the pendulum
doubles every time the torque applied to the arm is reversed.
Due to the difficulty of estimating accurately the velocity
of the pendulum, we have used a simplified version of the
previous law, summarised as follows:

• a positive torque when the pendulum has positive ve-
locity and mod(θ2, 2π) is less than π;

• a negative torque when the pendulum has negative
velocity and mod(θ2, 2π) is greater than π;

• a null torque otherwise.
With reference to the equation (17), neglecting the transient
of the motor (τ̇ = 0), the voltage to be applied to the motor
in order to obtain the torque τ̄ as defined previously is equal
to:

V =
Raτ̄ +K2θ̇1

K

B. Stabilisation control

The stabilisation law is obtained through a state ob-
server plus a state feedback of the linearised model of
the pendulum described by the equations (18), (17). In
order to stabilise the system in the upright position, i.e.
x = [0 2kπ 0 0]T , τ = 0 with k ∈ Z, the Luenberger
observer has as inputs, in addition to the angular position
of the arm and the controlled voltage, the angular position
error due to the difference between the reference, equal to
the nearest upright position, and the current angular position
of the pendulum (i.e. if the pendulum is located between −π
e π the reference applied is 0).

V. EXPERIMENTAL RESULTS

The main goal of the carried experiments is to characterise
the influence of network-induced delays on the control. In
particular, the PBC approach has been tested for different
random time-varying delays. The random delays have been



generated according to a Gaussian distribution; in different
tests, the mean value of the distribution is changed spanning
from 0 with 0 variance (no delay is added to the delay
induced by the network in use) to 30 (an average 30×10−3[s]
delay is artificially induced) with 2 variance. The relative
ordering of the packets is forced to be maintained.

In this section experimental results obtained with various
tests on the real plant are illustrated. First, a comparison
between the local and the packet-based networked control
for different time-varying actuation delays is provided; after-
wards, all the results obtained with PCB strategy are sum-
marised in a single graph in order to display the difference
in the performance with increasing time delays.

Local control has been realised using a micro-controller
with two hardware encoder modules for reading the angular
positions of the two link and a PWM module that controls
the motor.

On the other end, for the networked control experiments
a software for networked control systems based on the one
presented in [4] has been used. Modules for the embedded
platform used in physical network nodes have been written
for this purpose.

In the PBC test-bed implementation the control network is
made of three nodes: the controller, an actuator/sensor node
for θ1 and a sensor node for θ2. The communication link is
an Ethernet network having a star topology. Packets are sent

-1

 0

 1

 2

 3

 4

 5

 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13

θ
2
 [
ra

d
]

Time [s]

PBC
Local

(a) No delay

 0

 2

 4

 6

 8

 10

 12

 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13

θ
2
 [
ra

d
]

Time [s]

PBC
Local

(b) Time delay N (5, 2) ms

Fig. 4. Comparison between local and packet-based network control

via UDP. The test-bed uses an 88 bytes long payload when
sending control packets: each packet contains the control for
the next 40 ms (i.e. 40 times the sampling time used for
control). Sensors send 80 bytes with every packet. Sensor
data set contains 10 samples and is sent every 10 ms. Sensor
and actuator nodes have been implemented on a micro-
controller using the C language, the computer software for
the controller is written in C++. In our implementation, the
time needed for computing the control law over a time-
horizon of 40 ms is 4 ms.

The results obtained and reported below exhibit time

-1

 0

 1

 2

 3

 4

 5

 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13

θ
2
 [
ra

d
]

Time [s]

(a) Time delay N (10, 2) ms

 0

 1

 2

 3

 4

 5

 6

 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13

θ
2
 [
ra

d
]

Time [s]

(b) Time delay N (20, 2) ms

-1

 0

 1

 2

 3

 4

 5

 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

θ
2
 [
ra

d
]

Time [s]

(c) Time delay N (30, 2) ms

Fig. 5. Packet-based network control with different time-varying delays



-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

θ
2
 [
ra

d
]

Time [s]

No delay
10x10

-3
s delay

20x10
-3

s delay
30x10

-3
s delay

Fig. 6. Packet-based network control: comparison between different time-
varying delays

responses of θ2. Figure 4 shows the difference in behaviour
between the local and the packet-based networked controller:
in Figure 4(a), where there is no actuation delay, responses
are very similar, but as soon as a Gaussian actuation delay
(with 5 ms on average and variance 2) is introduced as
in Figure 4(b), the performance of the local controller is
degraded. For actuation delays with higher means, the local
controller is no longer able to execute the swing-up nor to
stabilise the system; for this reason in Figure 5 are shown
only the results obtained with PBC for delays on increasing
average: it’s clear that the more the mean of the actuation
delay is high, the more the pendulum fluctuations around
the unstable equilibrium are strengthened. Finally, Figure 6
summarises time responses obtained with PBC for various
delays.

VI. DISCUSSION

In order to carry-out the presented experiments, both the
networked control scheme and the local one have been im-
plemented. In this section we want to highlight the different
problems that arose in designing them.

Even for the simple system we considered, the local con-
trol implementation required us to select a micro-controller
having two hardware encoder modules. On the other hand,
each network node we implemented used a much simpler
micro-controller, which has only one hardware encoder mod-
ule. Of course, this is by no means an issue when controlling
a Furuta pendulum, but it might become so for a different
system with more sensors/actuators.

The two approaches required radically different efforts for
the embedded coding. The local control scheme required to
write routines for input/output and for computing the control
values. The networked control scheme, on the other hand,
required the implementation of input/output and networking
routines. The control law computation for the networked
version was much simpler in its implementation, being
carried out on a full blown PC.

In order to capture the data during the experiments for the
local control, an external device had to be used as a data
logger. The networked control scheme, on the other hand,

already transmits all relevant data over the network, so that
it is captured by the controlling computer itself.

That said, it is the authors’ opinion that, as expected, the
networked control approach is much more convenient when
a medium to large plant has to be controlled.

Lastly, the PBC approach and its implementation based on
the software tools presented in [4] appears to be a suitable
framework for fast-prototyping as well as for the deployment
of a control system.

VII. CONCLUSIONS

This paper has presented experimental results which al-
lows for corroborating the real-world applicability of the
PBC architecture. The experiments were carried out for a
Furuta pendulum controlled during the swing-up phase as
well as when keeping the upright position. As for PBC,
the controller has been designed without taking into ac-
count the effects of the network. The effects of different
network delays have been shown. Experience with this
control implementation shows that the proposed framework
allows for the networked system to mimic the behaviour of
a classical local control by compensating even significant
network delays. Finally, a comparison between the efforts
needed for implementing the networked control system and
the local control system has been provided.

ACKNOWLEDGMENTS

Special thanks go to Stefano Melani for his help and
support in implementing the embedded software on network
nodes.

REFERENCES

[1] K. J. Astrom and K. Furuta. Swinging up a pendulum by energy control.
In IFAC 13th World Congress, San Francisco, California, 1996, 1996.

[2] A. Chaillet and A. Bicchi. Delay compensation in packet-switching
networked controlled systems. In Decision and Control, 2008. CDC
2008. 47th IEEE Conference on, pages 3620 –3625, dec. 2008.

[3] S. Falasca, M. Gamba, and A. Bicchi. A strategy for dynamic controller
emulation in packet-based networked control systems. submitted for
publication, 2013.

[4] Stefano Falasca, Christian Belsito, Andrea Quagli, and Antonio Bicchi.
A Modular and Layered Cosimulator for Networked Control Systems.
Proc. IEEE Mediterranean Conference on Control, 2010.

[5] L. Greco, A. Chaillet, and A. Bicchi. Exploiting packet size in
uncertain nonlinear networked control systems. Automatica, 48:2801–
2811, 2012.

[6] D. Nesic and D. Liberzon. A unified framework for design and analysis
of networked and quantized control systems. Automatic Control, IEEE
Transactions on, 54(4):732 –747, april 2009.

[7] G.C. Walsh and Hong Ye. Scheduling of networked control systems.
Control Systems, IEEE, 21(1):57 –65, feb 2001.

[8] Yun-Bo Zhao, Guo-Ping Liu, and D. Rees. Packet-based deadband
control for internet-based networked control systems. Control Systems
Technology, IEEE Transactions on, 18(5):1057 –1067, sept. 2010.


	Introduction
	Packet-Based Control Strategy
	System Description
	Modelling of pendulum
	Linear Model
	Real plant

	Control Design
	Swing-Up control
	Stabilisation control

	Experimental Results
	Discussion
	Conclusions
	References

