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Abstract— This paper presents an analysis of planar bearing
localization and mapping for visual servoing with known
camera velocities. In particular, we investigate what is the
subset of camera locations and environmental features that can
be retrieved from dynamic observations obtained by a planar
bearing sensor (nearly e.g., a pinhole camera). Results assume
that the camera’s linear and angular velocities are available,
which is equivalent to consider a unicycle vehicle carrying
an onboard camera. Results hold if other system inputs are
considered, e.g., an omnidirectional vehicle. The theoretical
results may guide the design of nonlinear observers to estimate
the variables of interest in real time to be applied to visual
servoing schemes. An example of such an observer is discussed
and simulated.

I. INTRODUCTION

Vision systems are versatile, powerful, and cheap, providing
a minimal sensing framework for dealing with fundamental
robotic problems such as localization, environment mapping
and robot motion. A quite accurate measurement that can be
collected from a vision system is the horizontal bearing. This
paper aims at an analytical description of the information,
i.e., robot locations (localization problem) and environment
landmark positions (mapping problem), that can be inferred
from observed landmarks with planar bearings.

It is well known that the observability of localization and
landmark positions, a problem known as Simultaneous Lo-
calization and Mapping (SLAM), is granted when using
stereo cameras [1]. With known configuration of the stereo
pair, observability is preserved even in the static case [2].
This fact is mainly due to the stereo camera capability
of providing more than just scene appearance by captur-
ing three-dimensional images, undoubtedly more informative
than images grabbed from monocular cameras. However, the
larger amount of information is obtained at the cost of an
increased complexity of the system, for which fine calibration
of the stereo pair as well as a complex image processing
algorithm are unavoidable.

In order to bound the system complexity, we are aiming at
determining the minimal amount of information needed by a
vision system in order to solve the localization and mapping
problem. In particular, we analyze images coming from a
monocular camera fixed on a robot chassis in order to retrieve
planar bearing measurements and then retrieve the system
observability (the knowledge of the system inputs is given
for granted). In the case of vision problems, the observability
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problem is the first and main question to investigate in
order to verify in which conditions visual servoing is a
possibility.

While such a question can be investigated using system-
theoretic tools, a specific approach for vision problems
has been presented only recently. The first observability
analysis of the monocular SLAM problem using planar
bearing measurements has been discussed in [3], [4], where
landmark positions are considered known. Among the others,
a characterization of the observability analysis have been pre-
sented in [5] for bearing only measurements with unknown
landmark motions, in [6] for multi-robot localization and
in [6] for on-line parameter identification and odometry self
calibration. In [7] only one landmark is used for localization,
assuming that vehicle orientation w.r.t. a fixed reference
frame is available.

The knowledge of the input signals is not necessary for
localization if structure from motion (SFM) [8] techniques
are adopted. In such a case, the camera trajectory in space
is reconstructed from a series of images. Building a map
using SFM is time-consuming and hence it is usually carried
out off-line, while localization with SFM is faster if the
map is previously built. An alternative interesting method,
called Visual Odometry, has been proposed by Nistér [9],
[10], where motion estimation is performed through selected
landmarks tracking. This way, stereo or simple cameras
motion can be computed in real time using only visual
data.

In practice, the main difference between visual odometry
and SFM is that the latter was originally conceived an
off-line algorithm. However, apart from the implementation
differences, from a theoretical point of view monocular
visual odometry and monocular Visual SLAM [11] can both
be seen as a particular solution of SFM. One drawback of
SFM, and visual odometry as well, is the strong assump-
tion on the environment and on the camera motion: both
assume the rigidity in the scene and the constant velocity
of the camera along its trajectory. Preliminary results that
overcome these assumptions have been presented in [12],
where an unknown input observability analysis is proposed
for measurements taken from 3 known landmarks, without
any other information.

In this paper a detailed and complete analysis of the
localization and mapping observability problem assuming
planar bearings is presented following the same methodology
of [12] and assuming general configurations of the observed



landmarks with both known and unknown positions. Config-
urations that are not observable are decomposed in Kalman
Form, in order to have a clear picture of the observable and
unobservable spaces. For the best of the authors knowledge,
this is the first attempt of planar bearing SLAM analysis
that takes into account all the different aspects of the prob-
lem. Theoretical results are verified via simulation adapting
the nonlinear observer presented in [12]. A remarkable
difference with respect to [12] is the relaxed assumption
on the knowledge of the camera velocities. Indeed, results
apply whenever at least the camera’s linear and angular
velocities are available, which is equivalent to consider an
unicycle vehicle carrying an onboard camera. However, all
results still hold if additional system inputs are available,
e.g., an omnidirectional vehicle. The presented results are
applicable to a range of problems, in particular, to visual
servoing.

II. PROBLEM DEFINITION

A. System Dynamics

Consider a vehicle, whose configuration is denoted by ξr =
(xr,zr,θr) w.r.t. a fixed reference frame ⟨W ⟩, that moves on
a plane in an unknown environment with the aim of map-
ping the object point features (or landmarks) and localizing
itself with respect to the mapped environmental features.
Adopting the notation presented in [3], these landmarks
are distinguished between those belonging to objects with
unknown position, named targets, and those belonging to
objects whose absolute position w.r.t. ⟨W ⟩ is known, which
are called markers. We will refer to ξt = (ξt,1, . . . ,ξt,N) as a
vector with all N targets and ξm = (ξm,N+1, . . . ,ξm,N+M) as a
vector with all M markers. Wherever necessary, we use the
notation ∗t to specify that the variable refers to a target and
∗m to specify that it refers to a marker.

The observability problem under analysis is considered in
different configurations regarding the number of known and
unknown landmarks being observed. The system state vari-
able of the problem at hand comprises the vehicle configura-
tion and the unknown position of the N targets ξ = (ξr,ξt) =

(ξr,ξt,1, . . . ,ξt,N) with dynamic ξ̇ =
(

ξ̇r,0, . . . ,0
)

(targets
are motionless in ⟨W ⟩). By noticing that the observable
space for a unicycle-like vehicle is a subset of that of
an omnidirectional vehicle (the difference is related to the
presence of an additional input velocity field), the analysis
is carried for the unicycle vehicle. Therefore, assuming that
the dynamics are slow enough to be neglected, the vehicle
kinematic model is given by ξ̇r = fr (ξr) =

[
g f gω

]
ur, where

g f = [cosθr,sinθr,0]T , gω = [0,0,1]T and ur = [v f , ω]T are
the control inputs, i.e., the linear and the angular velocity
respectively.

We consider vehicles equipped with a sensor head measuring
the angles in the horizontal plane between the line joining the
landmark with the head position and the forward direction of
the vehicle (see Fig. 1). Of course, a vision system equipped
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Fig. 1. Fixed frame <W >, vehicle state (xr, zr, θr), generalized velocities
(ν f ,νh,ω), input disturbances (d f ,dh,dω ) and ith landmark position Pi =
(xi, zi).

with a simple point feature detection and tracking algorithm
falls into this category. The measurement process is modeled
by equations of the form

yi = hi(ξr,ξi) = arctan2
(

zr − zi

xr − xi

)
−θr +π , (1)

where Pi = (xi,zi) describes the absolute position of
the i-th landmark (see Fig. 1). For N targets and M
markets, the system output is thus defined as Y =
(yt,1,yt,2, . . . ,yt,N ,ym,N+1, . . . ,ym,M+N). Note that equation (1)
is not defined whenever vehicle and landmark positions
coincide.

B. System Observability

Let us consider a generic continuous time-invariant control
affine system ξ̇ = f (ξ ) +G(ξ )u with system outputs y =
h(ξ ), where the vector field f is the drift and the matrix G
represents the m input velocity fields G = (g1, . . . ,gm). Let
the ith Lie Derivative of a covector field ω(ξ ) along a vector
field f (ξ ) be given by L(i)

f ω and let the ith lie derivative
of a generic codistribution Ω =

[
ω1 ω2 . . .

]
T along a

distribution ∆ =
[

f1 f2 . . .
]

be given by L(i)
∆ Ω.

Let ∆Σ = ( f ,g1, . . . ,gm) , and Ω0 = ∂ξ h(ξ ) be two codistri-
butions. By applying the following iterative formula:

Ωk+1 = Ωk +L∆Σ Ωk, (2)

the system observability codistribution dO(ξ ) = span [Ω∞]
is derived, where Ω∞ is the observability matrix. In [13] it
is demonstrated that a nonlinear system is locally weakly
observable if the observability rank condition rank(Ω∞) =
dim(ξ ) is verified. The analysis here proposed makes use of
this notion of observability.

In the rest of the paper we will refer to Ω(i) as the i-th
submatrix of Ω that corresponds to the i-th level of Lie
Bracketing of (2), i.e., Ωk = [Ω(0),Ω(1), . . . ,Ω(k)]T . Whenever
necessary, we will make explicit reference to the terms in



Ω(i), i.e., Ω(i) =
[
∂ξ1

L∆Σh,∂ξ2
L∆Σh, . . .

]
, for a given ξ =

(ξ1,ξ2, . . .).

C. Local Decomposition

If a control affine system is not observable in the sense of
rank condition [13], there exists a coordinate mapping ζ =
Φ(ξ ) for which it can be decomposed into observable and
unobservable subsystems as follows:

ζ̇ō = fō (ζo,ζō)+gō (ζo,ζō)u
ζ̇o = fo (ζo)+go (ζo)u
y = ho (ζo)

, (3)

where the observable state, i.e., the one that satisfies the rank
condition, is given by ζo and the unobservable state is given
by ζō. The local decomposition for linear systems was orig-
inally dubbed Kalman observable canonical form.

III. PLANAR BEARING SLAM OBSERVABILITY

In this section the planar bearing SLAM observability prob-
lem assuming the knowledge of the control inputs is dis-
cussed. The results here reported extend those in [3] by
detailing all possible cases from 3 + N markers to 3 + N
targets, thus including the unobservable cases and the related
Kalman Form decomposition.

A. Codistribution form

A generic form for the observability codistribution of the
systems under investigation is

Ω =


Ω(0)

Ω(1)

...

=


∂ξ rh1 ∂ξt h1

...
...

∂ξ rL∆
(1)h1 ∂ξt L∆

(1)h1
...

...

 . (4)

In all cases, the rank of the observability codistributions
reaches its maximum within the first level of Lie differenti-
ation.

B. Observability Analysis

Each feature configuration is now analyzed separately. Be-
fore going into details, we recall that the state space of
a vehicle moving on a plane has dimension 3, while each
landmark has 2 variables w.r.t. the plane of motion.

1) Case A: 3 or more markers: The observability codis-
tribution rank is equal to 3 for Ω(0), which means that
the system is locally weakly observable with level 0 Lie
bracketing. Therefore, apart from singular configurations, the
problem is statically invertible and reconstruction does not
depend on system inputs. Singular configurations are easily
determined by analyzing where the codistribution rank is less
than 3.
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Fig. 2. Reference frame < P > with axes parallel to <W > and vehicle
configuration represented using polar coordinates

2) Case B: 2 markers: After 1 level of Lie differentiation,
the observability codistribution rank reaches its maximum
of 3, apart from configuration singularities, and the system
is completely locally weakly observable. The problem is
not statically invertible, instead state reconstruction is only
possible under vehicle motion.

3) Case C: 1 and a half markers and half target: For this
case, the output function is given by the measurements from
two landmarks: one landmark position is completely known
(marker); the other landmark position is partially known (half
marker), i.e., only one of the 2 plane coordinates is assumed
to be known. Without loss of generality, we will assume
that the coordinate z1 (half marker) is known while x1 is
unknown (half target). Hence the state space to reconstruct
is ξ = (ξr,x1), while the system output is y= (y1,ym,2). After
1 level of Lie differentiation, the observability codistribution
rank reaches its maximum of 4, apart from configuration
singularities. Hence, all state variables from ξ are locally
weakly observable, as the Case B.

4) Case D: 1 marker: After 1 level of Lie differentiation,
the observability codistribution rank reaches its maximum
of 2, apart from configuration singularities. Hence, ξ is not
fully observable and the unobservable space dimension is 1.
From geometric analysis, the unobservable space is given by
a circumference centered in the marker.

Kalman form decomposition

Consider a reference frame ⟨P⟩= {PO,PX ,PZ} (see Fig. 2)
such that its origin PO coincides with the position of the
feature P1 = (x1,z1) and axes PX and PZ are parallel to axes
W X and W Z respectively. Moreover, consider the coordinates
mapping ζ = Φ(ξ ) = [ρ,β ,ϕ ]T described by Φ : R2 × S →
R+×S2, which maps the pose displacement between ξr and
P1 in polar coordinates w.r.t. ⟨P⟩, i.e.,

ζ = Φ(ξr) =

 ρ
β
ϕ

=


√

(xr − x1)2 +(zr − z1)2

tan−1
(

zr−z1
xr−x1

)
−θr +π

tan−1
(

zr−z1
xr−x1

)
 , (5)



where ρ represents the cartesian distance from the vehicle
to the point P1, β represents the angle displacement between
vehicle orientation and the line that passes through point P1
and vehicle position and ϕ represents the angle formed by
the vehicle with both axes PX and W X . Notice that the polar
coordinates transformation is undefined for ρ = 0. Vehicle
kinematics on polar coordinates is then given by

ζ̇ =

 −cos(β )
sin(β )

ρ
sin(β )

ρ

ν f +

 0
−1
1

ω. (6)

We are now in a position to decouple observable and
unobservable subsystems. Indeed, under such coordinate
transformation, the system output becomes y = (β ). For
ρ ̸= 0 and after 1 level of Lie differentiation, the observability
codistribution for ζ is

Ω =

[
0 1 0

− sin(β )
ρ2

cos(β )
ρ 0

]
,

whose null space is given by Ker(Ω) = span([0,0,1]T ).
Therefore, the observable subsystem is ζO = (ρ,β ) and the
unobservable subsystem is ζŌ = (ϕ). In other words, the
vehicle is able to determine its distance ρ to the feature and
the angle β by which it sees the feature, but its orientation
ϕ with respect to a generic reference frame attached to the
plane of motion remains unknown.

5) Case E: Half marker and half target: We are now
interested in a robot whose output measurements consist of
two landmarks: one landmark has a position that is partially
known. Without loss of generality, the coordinate z1 (half
marker) is assumed known while x1 is unknown (half target).
Again, the state space is ξ = (ξr,x1) and the system output is
y= (y1). After 1 level of Lie differentiation, the observability
codistribution rank reaches its maximum of 2, apart from
configuration singularities. Hence, ξ is not observable, while
the dimensions of the observable and unobservable spaces is
2.

Kalman form decomposition

With reference to the reference frame ⟨P⟩ presented in
section III-B.4 and Fig. 2, consider the coordinates transfor-
mation ζ = Φ(ξ ) = [ρ,β ,ϕ ,x1]

T described by Φ : R3 ×S →
R+×R1×S2, i.e., the mapping to polar coordinates (5) plus
the half target coordinate. Notice that x1 corresponds to the
unknown horizontal translation from origin OP to origin OW
along PX . The system dynamics ζ̇ is (6) plus ẋ1 = 0 and
system output is again y = (β ).
Using the new set of coordinates, after 1 level of Lie differ-
entiation, the observability codistribution for ζ is

Ω =

[
0 1 0 0

− sin(β )
ρ2

cos(β )
ρ 0 0

]
,

whose null space is Ker(Ω) = span([02x2,I2]), where we use
the notation 0ix j to represent a i× j matrix of zeros and Ii
an identity matrix of dimension i. As in section III-B.4, the
observable subsystem is ζo = (ρ,β ) and the unobservable
subsystem is ζō = (ϕ ,x1), which means that the horizontal
translation x1 between OW and OP is unobservable.
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Fig. 3. Reference frame < P > of 2 targets problem.

6) Case F: 1 target: After 1 level of Lie differentiation,
the observability codistribution rank reaches its maximum
of 2, apart from configuration singularities. ξ is not com-
pletely observable and the unobservable space dimension has
3.

Kalman form decomposition

With reference to Fig. 2, consider again the frame ⟨P⟩
and the mapping ζ = Φ(ξ ) = [ρ,β ,ϕ ,x1,z1]

T described by
Φ : R4 × S → R+ ×R2 × S2. As in section III-B.5, (x1,z1)
corresponds to the position of the origin OP w.r.t ⟨W ⟩. The
system dynamic has an additional variable ż1 = 0 and the
system output is y = (β ).
Using the new set of coordinates, after 1 level of Lie differ-
entiation, the observability codistribution for ζ is

Ω =

[
0 1 0 0 0

− sin(β )
ρ2

cos(β )
ρ 0 0 0

]
,

whose null space is given by Ker(Ω) = span([03×2,I3]) and
we can conclude that the observable subsystem is ζo = (ρ,β )
while the unobservable subsystem is ζō = (ϕ ,x1,z1), i.e.,
angle ϕ and origin PO w.r.t. world frame < W > are not
observable, similar to section III-B.4.

7) Case G: 2 targets: After 1 level of Lie differentiation, the
observability codistribution rank reaches its maximum of 4,
apart from singularities. Hence, ξ is not fully observable,
with an unobservable subspace dimension of 2.

Kalman form decomposition

Consider a reference frame < P >= {PO,PX ,PZ} such that
its origin PO is coincident to the position of the feature
P1 = (x1,z1) and axis PX is coincident to the line that
passes through P1 and P2, with direction from P1 to P2
(see Fig. 3 for reference). Orientation of ⟨P⟩ w.r.t. ⟨W ⟩ will
be denoted ϕ1,2. Position P2 w.r.t. ⟨P⟩ will be described by
PP2 = {Px2,0} and vehicle configuration will be described
as Pξr =

(
Pxr,

P zr,
P θr

)
.

Consider the coordinate transformation ζ =
(Pxr,

P zr,
P θr,

P x2,x1,z1,ϕ1,2) given by Φ : R6 ×S → R5 ×S2



and defined as

ζ =



(xr − x1)cos
(

tan−1
(

z2−z1
x2−x1

))
+(zr − z1)sin

(
tan−1

(
z2−z1
x2−x1

))
(zr − z1)cos

(
tan−1

( z2−z1
x2−x1

))
− (xr − x1)sin

(
tan−1

(
z2−z1
x2−x1

))
θ r− tan−1

(
z2−z1
x2−x1

)
(x2 − x1)cos(ϕ1,2)+(z2 − z1)sin(ϕ1,2)

x1
z1

tan−1
(

z2−z1
x2−x1

)


,

for which system dynamic yields ζ̇ =
(cos (Pθr

)
ν f ,sin (Pθr

)
ν f ,0, . . . ,0) and system output

becomes

y =

 π −P θr + tan−1
(

Pzr
Pxr

)
π −P θr + tan−1

(
Pzr

Pxr−Px2

)  .

Φ is a not a global diffeomorphism since it is not defined
if the robot is on the feature position P1. Moreover, Φ
is not defined if Px2 = 0, i.e., the features are coincident,
which is the Case F. After 1 level of Lie differentiation, the
observability codistribution for ζ is:

Ω =


∂ζr h1 0 0 0 0
∂ζr h2 ∂ζ4

h2 0 0 0
∂ζr L∆h1 0 0 0 0
∂ζr L∆h2 ∂ζ4

L∆h2 0 0 0

 ,

where:

∂ζr hi =
[ P∆zr,i

Pρr,i2

P∆xr,i
Pρr,i2 −1

]
, ∂ζ4

h2 =
P∆zr,2
Pρr,22 ,

∂ζr L∆hi =


2P∆xr,i

P∆zr,i cos(Pθr)+ (P∆zr,i+
P∆xr,i) (P∆zr,i−P∆xr,i) sin(Pθr)

Pρr,i4

− 2P∆xr,i
P∆zr,i sin(Pθr)+ (P∆zr,i+

P∆xr,i) (P∆zr,i−P∆xr,i) cos(Pθr)
Pρr,i4

P∆xr,i cos(Pθr)+P∆zr,i sin(Pθr)
Pρr,i2


T

,

∂ζ4
L∆h2 =

(
−2P∆xr,2

P∆zr,2 cos(θr)− (P∆zr,2 +
P ∆xr,2

)
(P∆zr,2 −P ∆xr,2

)
sin(θr)

)
Pρr,2

4 .

The null space of Ω is Ker(Ω) = span([03×4,I3]), hence the
observable subsystem is given by ζo = (Pxr,

P zr,
P θr,

P x2
)

and the unobservable subsystem is ζō = (x1,z1,ϕ1,2). It is
worthwhile to note that the observable subsystem ζo of the 2
target problem is equivalent to the system investigated in the
1 and a half marker problem if one considers the z position
of the half marker zero.

C. Extension of results

Results presented in this section are extended to any number
of targets. Let ξ ∗ = (ξr,ξt,1, . . . ,ξt,N) be a generic system.
The system that describes the same problem with additional
L̄ targets will be written as ξ = (ξ ∗,ξt,N+M+1, . . . ,ξt,N+M+L).
We will use the notation ∗ whenever we refer to quantities
related to the original system ξ ∗.

Proposition 1: Consider a system ξ ∗ = (ξr,ξt,1, . . . ,ξt,N),
for which the dimension of the observable space is
given by dim(ζo

∗) = K. Now, consider a system ξ =
(ξ ∗,ξt,N+M+1, . . . ,ξt,N+M+L) that comprises ξ ∗ and L new
targets. The dimension of the observable space of ξ is
dim(ζo)≥ K +L.

M 0 0 0 0 1 1+ 1
2 1+ 1

2 2 3+ M̄
N 2+ N̄ 2 1 1

2 0 0 N̄ 0 N̄
k 1 1 1 1 1 1 0 1 0
n 7+2N̄ 7 5 4 3 4 4+ N̄ 3 3 + 2M̄ +

2N̄
nO 4+2N̄ 4 2 2 2 4 4+ N̄ 3 3 + 2M̄ +

2N̄
nŌ 3 3 3 2 1 0 0 0 0

TABLE I
OBSERVABILITY ANALYSIS SUMMARY: M - NUMBER OF MARKERS; N - NUMBER

OF TARGETS; K - MINIMUM LEVEL OF LIE-BRACKETING REQUIRED TO COVER

OBSERVABLE SPACE; n - SYSTEM DIMENSION; nO - OBSERVABLE SPACE

DIMENSION; nŌ - UNOBSERVABLE SPACE DIMENSION.

Proof: Given a generic observability codistribution Ω∗

associated to ξ ∗:

Ω∗ =


Ω∗(0)

Ω∗(1)

...

 ,

the correspondent Ω (associated to ξ ) that consider the same
problem with N̄ new targets can be written as

Ω =


Ω∗(0) 0
∗ Ωt

(0)

Ω∗(1) 0
∗ Ωt

(1)

...
...

 ,

where

Ωt
(i) =


∂ξt,1

L∆
(i)ht,1 0 . . .

0 ∂ξt,1
L∆

(i)ht,2 . . .

0 0
. . .

 .

Given that {Ωt
(0),Ωt

(1)} has rank 2, we can conclude that
rank(Ω)≥ rank(Ω∗)+L.

Corollary 1: If ξ ∗ is completely observable then ξ is com-
pletely observable.

Table I presents an overview of the results obtained in this
section for any number of targets.

IV. RESULTS

Theoretical results were evaluated by simulations, imple-
menting the nonlinear observer described in [12] to re-
construct the observable space of the cases analyzed in
section III. Simulation results for arbitrary configurations are
summarized in Fig. 4. Notice that the nonlinear observer con-
verges in all cases, hence it always succeeds in reconstructing
the observable space.

In particular, when only one landmark is being observed
(Case D,E and F), the observable subsystem is ζo = (ρ,β )
where ρ represents the cartesian distance of the vehicle from
the landmark and β represents the bearing angle between
the vehicle orientation and the landmark. The unobservable
space in these cases is the angle ϕ formed by the vehicle
position and any arbitrary reference frame and the position
of the landmark if it is a target.
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Fig. 4. Observed state errors eo = ζo − ζ̂o

When 2 landmarks P1 and P2 available (Case
B, C, G), the observable subsystem is ζo =(

Pxr,
Pzr,

Pθr,
Px1,

Pz1,
Px2,

Pz2,
Px3,

Pz3, . . .
)

where ⟨P⟩ is
a right-handed coordinate frame whose origin is coincident
with the position P1 and axis PX parallel to the line that
passes through P1 and P2. If 3 or more landmarks are
known (Case A), static complete observability is available,
otherwise full observability is reached after 1 level of
Lie differentiation. The unobservable space concerns the
coordinate transformation between frame ⟨P⟩ and world
frame ⟨W ⟩. This coordinate transformation is completely
unobservable if all landmarks are targets (Case G), while it
is completely observable when at lest three coordinates of
the landmark positions are known (Case C), e.g., position
of P1 and orientation of the line passing through P1 and P2
w.r.t. ⟨W ⟩.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a complete observability
analysis of the planar bearing only localization and mapping
problem for all configurations of landmarks with known
(markers) and unknown position (targets). Theoretical results
are supported by simulations.

Future work will concentrate mainly on the singularity anal-
ysis and on observability without input knowledge.
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