
Motion Planning for Two 3D–Dubins Vehicles
with Distance Constraint

Hamal Marino∗†, Marco Bonizzato∗o†, Riccardo Bartalucci∗†, Paolo Salaris‡, Lucia Pallottino‡

Abstract— In this paper we consider the motion planning
problem for a 3D–Dubins system consisting of a pair of Dubins
vehicles moving in a 3D space while maintaining constant
distance. We provide a motion planning algorithm and sufficient
conditions on the initial and final configurations that guarantee
the existence of admissible controls, moving a first step towards
the complete controllability characterization of such type of
systems. Results obtained in this paper are particularly relevant
in order to solve formation control problem for multiple robots
as aerial or underwater vehicles, which move in 3D spaces.
Simulation results demonstrate the feasibility of the motion
planning algorithm proposed in this paper.

I. INTRODUCTION

The formation control problem for multiple robots has
been extensively studied in the literature (see [1] for a
detailed review and references therein). Formation control
studies the problem of controlling multiple robots so that
they can maintain some given configuration constraints (e.g.
distances) while moving as a whole group [2], [3], [4].
Moving in formation has many advantages, for example,
it can reduce the energy consumption and can increase
the robustness and efficiency, providing at the same time
redundancy and flexibility for the system [5], [1]. Also in
nature, several types of animals, such as insects, birds, or
fishes, aggregate together, moving en masse or migrating
in some directions, known as swarm behavior. The term
shoaling or schooling is used to refer specifically to swarm
behavior in fishes which derive many benefits including also
the increased hydrodynamic efficiency (cf. [6]).

Many approaches of formation control have been pro-
posed, such as behavior-based methods [7], leader-follower
strategies [8], [9] and virtual structure approaches [10]. Var-
ious kinds of nonholonomic vehicles have been considered,
such as ground vehicles (e.g. in [11]), aircraft (e.g. in [12])
and underwater vehicles (e.g. in [13]).

However, in order to solve challenging problems, e.g. mo-
tion planning algorithms, control law design, formation
stability properties, and optimal trajectories, especially for
complex systems such as multiple robots moving as a whole,
it is important to analyze the controllability properties first. A
system is completely controllable if, for every pair of points
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q1 and q2 in the configuration space, there exists a control
that steers the system from q1 to q2 (see [14], [15]). This
is an important condition for the design of motion planning
algorithms and for the existence of an optimal trajectory.
In [16] the controllability of different pairs of identical
nonholonomic vehicles moving in a plane while maintain
a constant distance has been proved. Results obtained have
then been used in order to prove controllability and design
a motion planning algorithm for formation of planar Dubins
vehicles [12], [17]. In this paper our purpose is to extend
results of [17] to a 3D–Dubins system consisting of a pair
of Dubins vehicles moving in a 3D space while maintaining
constant distance. As in the aforementioned works, also for
the system considered in this paper, the challenge is that the
control input set depends on the system configurations and
classical controllability results can not be directly applied.
Hence, first a definition of feasible configurations is provided
to characterize configurations from which an admissible
control exists. The main contribution of this paper is the
proof that the feasibility of the initial and final configurations
is sufficient to guarantee the existence of admissible controls.
This result is fundamental to move a first step towards
the complete controllability characterization of such type
of systems. Furthermore, a motion planning algorithm to
drive such a system from any initial to any final feasible
configuration is presented.

The characterization of necessary conditions for controlla-
bility is still an open problem. Anyway, the present work can
be exploited to solve several open problems such as motion
planning and optimal planning for more complex formations
of robots in 3D space, as many biological beings do in nature.

II. MODELING

Consider a nonholonomic vehicle moving in a three di-
mensional space and let 〈W 〉 = (Ow, Xw, Yw, Zw) be a
fixed frame. In 〈W 〉, the vehicle configuration is ζ(t) =
(x(t), y(t), z(t), ϕ(t), ψ(t)) where q = (x(t), y(t), z(t))
is the position in 〈W 〉 of the reference central point in the
vehicle, ϕ(t) is the angle formed by the vehicle heading and
the plane Xw × Yw and ψ(t) is the angle formed by the
projection of the vehicle heading on the plane Xw×Yw and
Xw axis (see figure 1).

Given the forward velocity v of the vehi-
cle, the velocity vector v in 〈W 〉 is v =
(v cosϕ sinψ, v cosϕ cosψ, v sinϕ)T . The kinematic
model of the nonholonomic vehicle is (cf. [18]){

q̇ = v
v̇ = v × ω (1)

where ω = (ψ̇, ϕ̇ sinψ, −ϕ̇ cosψ)T .



Fig. 1. Representation of a vehicle in a 3D space

In the rest of the paper, we denote with ω̂ the skew-
symmetric matrix associated to the cross product

ω̂ =

 0 ωz −ωy
−ωz 0 ωx
ωy −ωx 0

 , (2)

where ω = (ωx, ωy, ωz), i.e. v×ω = ω̂v. Notice that, since
the control ω can only rotate v, the velocity v has constant
modulus v.

In this paper we consider the 3D–Dubins system that is
described by (1) and a constrained control effort

|ω| ≤ ωM . (3)

Moreover, without loss of generality, we consider v = 1.
In such conditions, a 3D–Dubins generates trajectories with
bounded curvature, as the minimum radius is R = v

ωM
.

A. Problem definition

Consider the system consisting of a pair of 3D–Dubins
constrained to maintain constant the magnitude D of the
distance vector D joining the centers of the two robots.
Referring to figure 2, let qi, vi and ωi be the position,
forward and angular velocity vectors of vehicle i, i = 1, 2,
respectively. Furthermore, let σi ∈ [0, π] be the angle
between vi and D (i = 1, 2) and let θ ∈ [0, π] be the
angle between the projections of v1 and v2 on the plane
orthogonal to D. Notice that, when vi are aligned with D, θ
is not defined while is zero if vi are parallel. In the following
we will refer to θ = 0 also when σ1 or σ2 are zero with an
abuse of notation.

The constraint is to keep constant the magnitude of vector
D = q2 − q1, i.e. Ḋ = v2 − v1 must be always orthogonal
to D. Equivalent equations of the distance constraint are

Ḋ ·D = 0, (4a)

D · (v2 − v1) = 0, (4b)

Given initial and final configurations, the goal of this paper
is then to provide a motion planning algorithm for the system

Fig. 2. Configuration of the 3D–Dubins system

of a pair of 3D–Dubins subject to (4):
q̇1 = v1
q̇2 = v2
v̇1 = v1 × ω1

v̇2 = v2 × ω2

, (5)

B. Angular velocity of D
Let ωtr be the angular velocity of D, i.e. Ḋ = D × ωtr

or equivalently

D × ωtr = v2 − v1. (6)

Remark 1: It is worth noting that ωtr does not change
the magnitude D of D. The component of ωtr along D,
representing the rotation of D with respect to its own axis,
does not affect the system configuration. Hence, in the rest
of the paper we will assume an angular velocity ωtr such
that

ωtr ·D = 0. (7)
Remark 2: From (6) we have

ωtr · (v2 − v1) = 0, (8)

hence the angular velocity of D is always orthogonal to
v2 − v1. Furthermore, the projection of ωtr and of vi along
the plane orthogonal to D form an angle θ/2.

Moreover, when σ1 = σ2 = σ (as will occur in the
following to maintain the given distance), from (6) and
Remark 1

ωtr =
|v2 − v1|

D
=

2 sin θ
2 sinσ

D
. (9)

C. Control constraints
We now show the effect of the distance constraints (4) in

terms of constraints on the controls.
It will be useful, in the rest of the paper, to consider the

control ωi written as

ωi = ωtr + ωr,i, (10)

where ωr,i is the relative control that it is not necessarily
orthogonal to ωtr. Notice that ωtr represents the component



of the control that is common to both vehicles due to the
distance constraints. In the following we will refer to ωtr
also as the dragging control component. The choice of
ωr,i is then constrained only by the admissibility condition.
Indeed, the value ωtr depends on the system configuration as
described in (9) and ωr,i must be chosen in order to guarantee
that ωi verify the control constraint (3).

Remark 3: Starting from configurations in which |ωtr| ≤
ωM and applying admmissible controls ω1 = ω2 = ωtr
(i.e. considering ωr,1 = ωr,2 = 0) σ1, σ2 and θ are constant
during system evolution. Indeed, the same rotational velocity
is applied to v1, v2, and to D, making the system rotating
as a whole, and keeping the internal configuration constant.

The distance constraint limits admissible configurations
and controls that can be imposed to vehicles.

Proposition 1: Necessary conditions on system configu-
rations and controls to guarantee the distance constraint (4)
are

σ1 = σ2 , σ, (11)

D · (v1 × ωr,1) = D · (v2 × ωr,2). (12)
Proof: From (4b) we have that v1 and v2 must have

equal components along D, i.e. v1 cosσ1 = v2 cosσ2.
Taking the time derivative of (4b) and using (10) we have

ω̂trD · (v2 − v1) +D · ω̂tr(v2 − v1)+
D · (ω̂r,2v2 − ω̂r,1v1) = 0. (13)

Since ω̂tr is skew-symmetric the first two addenda of (13)
cancel out and we get D · ω̂r,2v2 = D · ω̂r,1v1, hence the
thesis.

Definition 1: A configuration ξ = (q1, q2, v1, v2) of
3D–Dubins will be called feasible if σ1 = σ2 and ωtr =
2 sin θ

2 sinσ

D < ωM .
Such configurations will be the main focus of the rest of
the paper: it will be proved that there always exists an
admissible control steering the system between any two of
them (section V). Next sections (III and IV) will thus provide
basic maneuvers to steer the system between generic feasible
configurations.

III. BASIC MOVEMENTS

In order to get a complete motion planning algorithm
for a 3D–Dubins pair, it is convenient to start investigating
some basic movements and eventually connect them to form
the complete path. The ideas behind the choice of basic
movements and the associated controls, described next, are:
1) to steer the system with planar movements when possible
(i.e. velocities and distance vectors lie on one plane),
2) to obtain basic controls that allow to reach the desired
configuration without violating the control’s admissibility
condition given by (3).
Furthermore, a feasible initial configuration is considered so
that distance constraint is initially verified.

A. Steering of θ and σ to zero
In the motion planning it is necessary to rotate and

translate D from initial to final configuration. In terms
of control admissibility, it is a good choice to translate
and rotate D from a configuration with both σ = 0 and

Fig. 3. Steering θ to zero (keeping constant σ)

Fig. 4. Steering σ to zero (keeping constant θ = 0)

θ = 0. Furthermore, with this choice, desired translation
and rotation of D can be obtained separately with planar
movements.

To steer θ to zero, consider ωr,1 and ωr,2 aligned along
D so that the effect of relative controls on D is a rotation
around its own axis and the distance constraint is not vio-
lated. ωr,1 and ωr,2 are then chosen with opposite direction
in order to decrease θ to zero, (see figure 3). Notice that,
from (9), with this choice of ωr,i, ωtr decreases when θ
does. It is hence sufficient to choose ωr,i so that the control
constraint (3) is verified considering the value of ωtr in the
initial configuration.

Once θ = 0, in order to align the two 3D–Dubins on the
distance vector (see figure 4), thus to rotate the vectors vi
towards D or equivalently to steer σ to zero, it is sufficient
to choose relative controls ωr,i orthogonal to vi and D, i =
1, 2. In order to verify the distance constraint it is necessary
to choose relative controls with equal magnitude so that σ1 =
σ2 = σ during evolution. It is important to notice that, θ ≡ 0
(i.e. ωtr = 0) and hence ωr,i = ωM lead to an admissible
control.

Notice that, steering σ to zero, from a configuration with
θ 6= 0, may increase the value of ωtr limiting the choice
of ωr,i to verify the control constraint (3). For example,
referring to (9), from a configuration with σ > π/2, while
controls ωr,i are chosen to decrease σ to zero, the value of
ωi increases with ωtr toward the admissible upper bound.
The proposed strategy to first steer θ to zero is hence a
conservative maneuver able to guarantee control constraints.

B. Translation of D on a plane

When θ = 0, (9) implies ωtr = 0. Hence, controls



ω1 = ω2 (with ωi ≤ ωM , i = 1, 2) steer the system on
the plane containing D, v1 and v2, and orthogonal to ω1

and ω2. Notice that, during the evolution, θ ≡ 0 and hence
D is translated on the plane. Notice that ω1 = ω2 implies
σ1 = σ2 during system evolution, thus verifying the distance
constraint.

C. Rotation of D on a plane
In order to make D rotating in the space it is necessary

to have ωtr 6= 0. Hence, when θ = 0, controls ω1 and ω2

parallel and with ω1 = −ω2 must be applied to obtain a
rotation of D. Notice that applying such maneuver θ = π
as long as σ 6= 0. Choosing, ωi orthogonal to vi and D,
the system will evolve along the plane containing D and vi.
Furthermore, ω1 = −ω2 implies that σ1 = σ2 = σ verifying
the distance constraint.

To rotate D of a given quantity ν, we are interested in
determining the controls of both vehicles (additional to ωtr)
with magnitude |ωr,1| = |ωr,2| such that, at the end, the
desired rotation is obtained. Indeed, the value of ωtr depends
on θ and σ and, when not null, it rotates D. Hence, ωr,1
and ωr,2 are first used to let θ = π and then give a non null
angular velocity to D. Finally, opposite values of ωr,1 and
ωr,2 can be used to drive back σ (and hence θ) to zero and
stop the rotation of D. During the phase in which θ and σ
are incremented, the consequently increasing magnitude of
ωtr, added to the control variables ωr,i, may saturate the
constraint (3). In this case it is possible to let the system
evolve with only ωtr while ωr,i = 0. More formally, a
possible choice of the controls is

1) ωr,1 = −ωr,2 = ε for t ∈ [0, δ);
2) ωr,1 = ωr,2 = 0 for t ∈ [δ, t̄− δ);
3) ωr,1 = −ωr,2 = −ε for t ∈ [t̄− δ, t̄] ,

the value ε is chosen to be as small as needed in order to
let ωtr have a non zero magnitude while still respecting the
constraint (3). δ is chosen to be the minimum between the
time needed to obtain a rotation of ν

2 , and the time needed to
reach a dragging control value of ωtr = ωM−ε to guarantee
admissibility of the control variable ωi.

If a rotation of ν
2 is obtained before the control saturation

occurs, t̄ is chosen to be 2δ and the second step is not
performed (i.e. the null control is never used). Otherwise,
let ν̄ be the rotation realized in step 1, the time t̄ of step 2,
during which the system rotate with fixed θ and σ, is such
that the total rotation performed in step 2 and step 3 is ν− ν̄.

The admissibility of the controls chosen in this movement
will be further discussed in section V, theorem 1.

IV. MOTION PLANNING

A. Reverse System
To complete the motion planning, we define the reverse

system of 3D–Dubins introduced in Section II as follows:
q̇R1 = −vR1
q̇R2 = −vR2
v̇R1 = −vR1 × ωR1
v̇R2 = −vR2 × ωR2 .

(14)

All symbols and subscripts are consistent to what we defined
in (5). The only difference stands in the changed signs in the

dynamics evolution.
In addition, the constraints represented by (3)-(4) also apply
to this model with the appropriate variable substitution (e.g.,
qR1 in place of q1).

Remark 4: Applying to the 3D–Dubins system the con-
trol ω(t), from ξ(t0) = (q1(t0), q2(t0), v1(t0), v2(t0)) a
configuration ξ(tf ) = (q1(tf ), q2(tf ), v1(tf ), v2(tf )) is
reached in t = tf . In the reverse system, starting from
ξR(t0) = ξ(tf ) and applying control ωR(t) = ω(tf − t)
(i.e. the reverse control law) the position ξR(tf ) = ξ(t0) is
obtained.
We will use this property in the next section to ease the
design of a motion planning algorithm based only on the
basic movements described in section III.

B. Motion Planning Algorithm
In this section we develop a possible algorithm for the

motion planning of a 3D–Dubins couple with arbitrary start
and final configurations respecting the constraint (11). The
feasibility of this algorithm will then be further addressed in
Section V.

Indicating with u = (ω1, ω2) and as uR = (ωR1 , ω
R
2 )

the controls of the original and reverse systems, respectively,
and given two feasible configurations ξs = ξ(t0) and ξf =
ξ(tf ), the algorithm is structured as follows:

1) steer the system towards a configuration aξs in which
vehicles are aligned to the distance vector (i.e. σ =
0; hereafter we use the superscript a to denote that
vehicles are aligned with D), applying a control u1 as
described in section III-A;

2) apply step 1 to the reverse system, from ξf to a
configuration aξf using a control uR2 ; reverse it to
obtain u2;

3) from aξs steer the system towards aξ, a configuration
in which the distance vector is parallel to the one of
aξf , applying a control u3 as described in section III-
C;

4) steer the system from aξ to aξf through a parallel
Dubins path applying a control u4 as described in
section III-B and similar to the one described in [17].
Such control steers both vehicles with the same control
ωi translating the distance vector in space along two
parallel trajectories consisting in concatenations of
straight lines and curves of limited curvature to verify
the control constraint (3).

5) use the control u2 to steer the system from aξf to ξf .
Refer to figure5 for a visual representation of the motion
planning steps.

In summary, the steps are:

ξs
u1−→ aξs

u3−→ aξ
u4−→ aξf

u2−→ ξf

In figure 7 the path from qs = (q1(t0)T , q2(t0)T )T =
(0, 0, 0, 3, 0, 0)T to qf = (q1(tf )T , q2(tf )T )T =
(0, 0, 4, 0, 3, 4)T with v1(t0) = (0, 0, 1)T , v2(t0) =
(0, 0, −1)T , v1(tf ) = (−1, 0, 0)T and v2(tf ) = (1, 0, 0)T

is represented. Furthermore, a maximum control magnitude
of 1 has been considered.

Finally, in figure 6 the steps of the algorithm for the path
of figure 7 are represented.



Fig. 5. Motion Planning Steps
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(d) Control u2

Fig. 6. Steps of path represented in figure 7

V. SUFFICIENT CONDITIONS FOR CONTROLLABILITY

Theorem 1: Given feasible initial and final configurations
ξs and ξf of 3D–Dubins, there always exist a control law
u = (ω1, ω2) such that ωi ≤ ωM , i = 1, 2 that steers the
system from ξs to ξf .

Proof: To prove the existence of control laws that verify
the constraint (3), we chose the controls determined in the
proposed motion planning algorithm. It is worth noticing
that any configuration reached from a feasible one with
admissible control is a feasible configuration.

As shown in section III-A, the control u1 (Step 1 of
Motion Planning algorithm), that steers the system from ξs
to a configuration aξs with θ = σ = 0 consists of two parts.
The first part, dedicated to position v1 and v2 on parallel
lines, is performed with controls ωr,i 6= 0 such that for the

initial configuration ωi ≤ ωM , i = 1 and 2. Such controls
exist in the feasible initial configuration since ωtr < ωM .
Furthermore, during evolution, ωtr decreases with θ and
hence (3) is always verified.

The second part, dedicated to align vi along D, is per-
formed with controls ωr,i 6= 0 while ωtr = 0. Hence, it is
sufficient to choose ωr,i ≤ ωM to verify (3).

With the same reasoning, the control u2 (Steps 2 and 4 of
Motion Planning algorithm) verify (3) since ξf is feasible.

In Step 3, the maneuver described in III-C is considered
choosing, initially, controls ωr,1 = −ωr,2 = ε < ωM from
the feasible configuration reached after Step 1.

Notice that during evolution θ = π while the value of
ωtr = 2 sinσ

D increases with σ. If the controls ωi < ωM − ε,
the system is then steered to the desired orientation of D
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Fig. 7. Path obtained from qs = (0, 0, 0, 3, 0, 0)T (stars) to qf =

(0, 0, 4, 0, 3, 4)T (diamonds) with v1(t0) = (0, 0, 1)T , v2(t0) =
(0, 0, −1)T , v1(tf ) = (−1, 0, 0)T and v2(tf ) = (1, 0, 0)T . Further-
more, a maximum control magnitude of 1 as been considered.

through ωr,1 = −ωr,2 = −ε that decreases the value of
σ ensuring (3). Otherwise, if, and when, ωi = ωM − ε
the controls ωr,1 = ωr,2 = 0 are considered and the
system evolves with constant σ (and θ) while D continues to
perform a rotation thanks to ωtr. As described in III-C, at the
appropriate time t̄ − δ the controls ωr,1 = −ωr,2 = −ε are
then applied. Since the value of σ decreases (3) is ensured.

Step 4 of the Motion Planning algorithm is equivalent to a
planar steering of a two 2D Dubins vehicles without rotations
of D, i.e. ωtr = 0. In the proposed algorithm, we choose to
steer the system with circular arcs and straight lines choosing
ωr,1 = ωr,2 with magnitude smaller than ωM , i.e. circular
arcs of radius larger than R.

Concluding, critical configurations from a control point of
view are either initial or final configurations.
If ωtr is strictly smaller than ωM , it is always possible to
give the vehicles relative controls ωr,i in order to execute
the proposed motion planning algorithm.

VI. CONCLUSIONS

In this paper a model for a 3D–Dubins systems consisting
of a pair of Dubins vehicles moving in a 3D space maintain-
ing constant distance has been introduced with constraints on
the control. A motion planning algorithm of the proposed
system has been introduced based on three basic move-
ments with associated control laws. A theorem providing
sufficient conditions on the initial and final configurations
that guarantees the existence of admissible controls has
been demonstrated based on the proposed motion planning
algorithm.

A necessary condition to ensure existence of admissible
control is under investigation to have a complete controllabil-
ity characterization. The results of this paper can be seen as a
starting point to solve the motion planning and controllability
problems for formations of multi-vehicle systems as it has
been done in [12], [17] for the planar case.

Future developments will regard control laws that take into
account more complex constraints depending on both states

and controls, such as non uniform bounds on the control
components and bounds on the roll angle.

Finally, the existence of a control that steers the system
among feasible configurations is fundamental to solve the
challenging optimal control problem, i.e. to determine the
control law that steers the system as desired while mini-
mizing a certain cost functional (e.g. time spent, distance
travelled).
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