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ABSTRACT
In this paper we consider the problem of estimating the posture
of a human hand using sensing gloves, and how to improve their
performance by exploiting the knowledge on how humans most
frequently use their hands. We consider low-cost gloves provid-
ing measurements which are limited under several regards: they
are generated through an imperfectly known model, are subject to
noise, and are less than the number of degrees of freedom of the
hand. Under these conditions, direct reconstruction of the hand
pose is an ill-posed problem, and performance is very limited. To
obtain an acceptable level of accuracy without modifying the glove
hardware, hence basically at no extra cost, we propose to exploit the
information on most frequent human hand poses, as represented in
a database of postural synergies built beforehand. We discuss how
such an a priori information can be fused with glove data in a con-
sistent way, so as to provide a good hand pose reconstruction in
spite of insufficient and inaccurate sensing data. Simulations and
experiments on a low-cost glove are reported which demonstrate
the effectiveness of the proposed techniques.
Index Terms: H.5.2 [User Interfaces]: Haptic I/O—Input devices
and strategies; I.2.9 [Robotics]: Sensors—; G.1.6 [Optimization]:
Constrained optimization—

1 INTRODUCTION
In recent years the issue for a correct hand tracking and pose recon-
struction has widely grown together with the diffusion of sensing
gloves for gesture measurement [20]. These devices provide use-
ful interfaces for human-machine and haptic interaction in many
applications fields like, for example, virtual reality, musical per-
formance, video games, teleoperation and robotics [16]. Different
technologies have been exploited to capture fingers movements and
positions [9, 22].
At the same time, a widespread commercialization of electronic

gloves imposes limits on the production costs in terms of the
amount and the quality of the sensors adopted. As a consequence,
the correctness of the hand pose reconstruction available by low
cost devices themselves might be compromised. On the other hand,
several studies and observations on the complex role of human hand
in grasping tasks show that it is possible to individuate a reduced
number of coordination patterns, called postural synergies, which
constrains the motion of multiple fingers [19]. From the observ-
ability point of view, this suggests that simultaneous movements
of fingers follow coordination patterns that reduce the number of
independent degrees of freedom to be measured.
In this paper, the information embedded in a known grasps set,

which expresses the postural constraints for multi-finger joints, is
exploited to reconstruct the hand posture in static grasping tasks,
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when only a limited and inaccurate number of measures are pro-
vided by a low cost sensing glove.
To solve this problem we follow an optimal estimation approach

based on Bayes’inference and a priori normal data distribution as-
sumption. Two closed-form solutions are presented and tested.
The first one, which solves a constrained optimization problem of
multinormal probability density function (pdf), is mainly adopted
with accurate measured data. The second solution deals with noisy
measured data and relies on classic Minimum Variance Estimation
(MVE).
In order to validate our reconstruction procedures an optical

tracking system has been used to acquire the a priori set in addi-
tion with a large number of grasp poses. We have performed some
simulations where only the measurements of metacarpal joints from
the acquisitions have been considered (we refer to metacarpal joint
as the mathematical modelling of the rotation degree of freedom
(DoF) of metacarpophalangeal joint, MCP). Gaussian noise has
been also added and the estimates we get in these cases indicate
that, with increasing noise level, MVE method has to be preferred.
As a final step we have applied the reconstruction techniques to the
five metacarpal measurements of a low cost electronic glove, built
for general hand aperture/closure monitoring but not particularly
suitable for fine gestural and manipulation recognition. Statistical
analyses demonstrate the effectiveness of the proposed techniques
w.r.t. the one achievable by simply applying the pseudo-inverse of
the measurement matrix.

2 SYNERGIES
The main idea of this work is to exploit the a priori information em-
bedded in previously acquired grasps set. Numerous studies have
underlined the complex role of human hand in motor organization,
with particular attention to grasping, where simultaneous control of
many degrees of freedom is requested. It was shown that individ-
uated finger motions was phylogenetically superimposed on basic
grasping movements [8]. On this basis, it is possible to individ-
uate a reduced number of coordination patterns (synergies) which
constrain both joints motion and force exertion of multiple fingers
[19]. These constraints may be related to biomechanic factors [3]
and synchronization between different motor units [12]. For ex-
ample, during reaching movements significant covariation schemes
at multiple finger joints were observed [4]. Coordination patterns
were analyzed by means of multivariate statistical methods, reveal-
ing that a limited amount of so-called eigenpostures or principal
components (PCs) [14], i.e. “statistically identified kinematic coor-
dination patterns” [19], are sufficient to reconstruct a great amount
of hand poses. Moreover, a gradient in eigenpostures was identi-
fied [18]; lower order PCs take into account covariation patterns
for MCP and interphalangeal (IP) joints, which are mainly respon-
sible for coarse hand opening and closing, while higher order PCs
are used for fine hand shape adjustments. This concept may be in-
terpreted in terms of inner hand representations of increasing com-
plexity, which allow to reduce the number of DoFs according to de-
sired level of approximation. In robotics this idea was then adopted
to define simplified manners for the design and control of artificial
hands [1, 2]. The dual issue of controllability, i.e. observability,
was considered in [15]. In this case, the whole hand avatar anima-
tion problem was studied, when only two haptically-enabled con-
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tact points for the thumb and the index were considered, leading to
knowledge of 6 DoFs (over the 20 DoFs used to define mesh skele-
ton) by inverse kinematics algorithm. The key of this approach
was to exploit synergy variables [17] to approximate principal mo-
tion components, thus improving the realism of animation. Virtual
springs, which couple the avatar tips to the corresponding opera-
tor’s tips, are exploited to compute the forces necessary (for the
avatar fingertips) to track real finger trajectories. These forces are
then transformed in the synergy-space general forces and used to
recursively estimate the new synergy variables, which characterize
the whole-hand configuration. This kind of estimation, which is
dependent on the number of synergy variables, was proved to be
good enough in qualitative terms but no numerical evaluation was
furnished.
In this paper, we address the whole-hand reconstruction issue

from a limited amount of measurements following an optimal es-
timation approach and by taking into account all the information
available in the covariance patterns of multi-finger joint positions.
This information is summarized with the covariance matrix ob-
tained from the a priori grasps set and used for static pose recon-
structions. Moreover, our method does not require any interaction
with avatars to estimate the hand configuration.

3 THE HAND POSTURE ESTIMATION ALGORITHM
Let us consider a set of measures y ∈ IRm given by a sensing glove.
By using a n degrees of freedom kinematic hand model, we shall
assume a linear relationship between joint variables x ∈ IRn and
measurements y given by

y= Hx+i , (1)

where H ∈ IRm×n (m < n) is a full rank matrix which represents
the relationship between measures and joint angles, and v ∈ IRm is
a vector of measurement noise. The goal is to determine the hand
posture, i.e. the joint angles x, by using a set of measures y whose
number is lower than the number of DoFs describing the kinematic
hand model in use. Equation (1) represents a system where there
are fewer equations than unknowns and hence leads to an infinite
number of least-square solutions. The solution resulting from the
pseudo-inverse of matrix H for a such kind of system is a vector
x̂=H†y of minimum Euclidean norm, where y is the vector of noisy
measurements. If noise i is negligible, point x̂ is on the hyperplane
parallel to the null space and passing through real solution x and
such that ‖x̂‖2 is minimum. In case of H is a full rank selection
matrix, i.e. it consists only of ones and zeros entries with maximum
row norm equals to one or equivalently with each sensor measur-
ing exactly one hand kinematic model DoF, the solution is simply
given as x̂ = HT y. However, depending on both how many joints
are measured and the shape of matrix H (e.g. selection matrix), the
hand pose reconstruction could be very inaccurate and hence dif-
ferent from the real one. Hereinafter we will refer to the H pseudo-
inverse based method as Pinv.
For this reason, our purpose is to improve hand pose reconstruc-

tion by using postural synergies information.
All techniques developed in the following sections are based on

well established design tools for multinormal data set which usu-
ally represents a good approximation and limit to of many other
distributions. For this reason, in the following we assume that the
a priori information we use is multinormally distributed with co-
variance matrix Po and mean µo. The basic justification, in addition
to the procedural advantages in data handling, relies on the central
limit theorem [10].

3.1 Pdf Maximization and Mahalanobis Distance
If measurement noise is negligible (i ≈ 0), the best estimation of
the hand posture may be obtained by choosing as optimality crite-
rion the maximization of the probability density function (pdf) [21]
expressed by

f (x) =
1√

2/‖Po‖
exp

{
−1
2
(x−µo)TP−1o (x−µo)

}
. (2)

This is equivalent to solve the following optimal problem:
{
x̂= argmin

x̂
1
2 (x−µo)

TP−1o (x−µo)

Subject to y= Hx .
(3)

Equation (1) with i = 0 represents a system where there are
fewer equations than unknowns, leading to an infinite number of
least-square solutions given by

x= H†y+Nhj , (4)

where H† is the pseudo-inverse of matrix H, Nh is the null space
basis of matrix H and j ∈ IR(n−m) is a free vector of parameters.
As a consequence, the optimal problem defined in (3) becomes





ĵ = argmin
ĵ

(H†y+Nhj −µo)TP−1o (H†y+Nhj −µo)

Subject to y=Hx .
(5)

By using classical optimization procedures we obtain ĵ =
(NTh P

−1
o Nh)−1NTh P

−1
o (µo−H†y) and hence substituting in (4), af-

ter some algebras, the estimation of the hand joint angles is

x̂= [I−Nh(NTh P−1o Nh)−1NTh P
−1
o ]H†y+Nh(NTh P

−1
o Nh)−1NTh P

−1
o µo
(6)

The same result for the optimal problem reported in (3) can be
also obtained by using the classic method of Lagrange multipliers.
We introduce a new variable h ∈ IRm called Lagrange multiplier
and study the Lagrange function defined by

L=
1
2
(x−µo)TP−1o (x−µo)+hT (Hx−y) , (7)

and, by imposing ,L
,x = ,L

,h = 0, we have

x̂= µo−PoHT (HPoHT )−1(Hµo−y) . (8)

This solution is equivalent to the one obtained in (6).
If the measurement matrix H is a selection matrix, it is possible

to easily maximize E[x|y] in terms of multinormal conditional dis-
tribution [10]. Indeed, in this case vector y defines a precise subset
of the state variables, being X1, whose values are known by means
the measurement process, while X2 indicates the rest of state vari-
ables to be estimated. This definition allows to partition the a priori
covariance matrix as

(
X1
X2

)
=⇒ Po =

(
Po11|Po12
Po21|Po22

)
(9)

as well as the a priori mean µo = (µo1|µo2). The estimation of X2
is easily derived as

X̂2 = E[X2|X1 = y] = µo2+Po21P−1o11(y−µo1) . (10)

It is interesting to give a geometrical interpretation of the cost
function in (3), which expresses the squared of the Mahalanobis
distance [13]. The concept of Mahalanobis distance, which takes
into account data covariance structure, is widely exploited in statis-
tics, e.g. in PCs Analysis, mainly for outliers detection [11]. Ac-
cording to it, to assess if a test point belongs to a known data set,
whose distribution defines an hyper-ellipsoid, we have to take into
account both its closeness to the centroid of data set and the direc-
tion of the test point w.r.t. the centroid itself. In other words, more
samples are distributed along this direction, more probably the test
point likely belongs to data set even if it is further from the center.
Hereinafter, we will refer to the aforementioned constrained

p.d.f. maximization as Mp algorithm.



DoFs Description
TA Thumb Abduction
TR Thumb Rotation
TM Thumb Metacarpal
TI Thumb Interphalangeal
IA Index Abduction
IM Index Metacarpal
IP Index Proximal
MM Middle Metacarpal
MP Middle Proximal
RA Ring Abduction
RM Ring Metacarpal
RP Ring Proximal
LA Little abduction
LM Little Metacarpal
LP Little Proximal

Figure 1: Kinematic model of the hand with 15 DoFs. Markers are
reported as red spheres.
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Figure 2: Euclidean error norm [◦] in pose reconstruction for Mp,
MVE and pseudo-inverse based algorithm, for 27 random elements
from the grasps set. Performance is evaluated with 10% noise am-
plitude.

3.2 MVE and MAP
Let us assume now that sensors used in a sensorized glove are af-
fected by noise i . If sensor noise is relevant, measures coming
from the glove are not much reliable and the hand posture esti-
mation obtained by previous algorithms might be very different
from the real one. For this reason, in this section we propose an
other algorithm in case of noise: the Minimum Variance Estimation
(MVE) technique. This method minimizes a cost functional which
expresses the weighted Euclidean norm of deviations, i.e. cost func-
tional J =

∫
X (x̂− x)T S(x̂− x)dx, where S is an arbitrary, positive-

semidefinite matrix.
Under the hypothesis that i has zero mean and gaussian distri-

bution with covariance matrix R, we get the solution for the mini-
mization of J as x̂= E[x|y], where E[x|y] represents the a posteriori
pdf expectation value. The estimation x̂ may be achieved by easily
generalizing the expression in [7] to nonzero mean a priori distri-
butions as

x̂= (P−1o +HTR−1H)−1(HTR−1y+P−1o µo) , (11)

where matrix Pp = (P−1o +HTR−1H)−1 is the a posteriori covari-
ance matrix, which has to be minimized to increase information
about the system. This result represents a very common procedure
in applied optimal estimation, where usually there is redundant sen-
sor information. Here we adopt it for an under-determined problem
(i.e. m< n), with nonzero mean a priori distribution. When covari-
ance matrix R tends to assume very small values, the solution de-
scribed in equation (11) might encounter numerical problems and
hence it can not be exploited. For this reason, in these cases it is
preferable to use the estimation formulas given by (6), (8) or (10).

4 MODEL AND DATA CAPTURE
Without loss of generality, a 15 DoFs model is adopted for hand
pose reconstruction, which is the same used in [18, 6] and reported
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Figure 3: Euclidean error norm [◦] in pose reconstruction for Mp,
MVE and pseudo-inverse based algorithm, for 27 random elements
from the grasps set. Performance is evaluated with 45% noise am-
plitude.

in figure 1. An optical motion capture system (Phase Space, San Le-
andro, CA - USA) with 19 active markers is used to collect a large
number of static grasp positions. Subject AT (M,26) has performed
all the grasps of the 57 imagined objects described in [18]; these
data have been acquired twice to define a set of 114 a priori data.
LC (M,26) has executed 54 grasp poses of a wide range of differ-
ent imagined objects, which have been recorded in parallel with the
sensing glove and the Phase Space system. In this manner both a
glove calibration and reliable reference values for whole hand posi-
tions have been achieved. Indeed, given the high accuracy provided
by the optical system to detect markers (the amount of static marker
jitter is inferior than 0.5 mm, usually 0.1 mm) and assuming a lin-
ear correlation (due to skin stretch) between marker motion around
the axes of rotation of the joint and the movement of the joint it-
self [23], we can consider the processed hand poses acquired with
Phase Space as a good approximation of real hand positions. This
assumption is still valid when the sensing glove is worn because it
perfectly adapts to hand shape. None of the subjects had physical
limitations that would affect the experimental outcomes. Data col-
lection from subjects in this study was approved by the University
of Pisa Institutional Review Board.
The disposition of the markers on the glove refers to [5] and it is

reported in figure 1 and 6. We have used four markers for the thumb
and three markers for each of the rest of the fingers. Three markers
have been also placed on the dorsal surface of the palm to define
a local reference system SH . The positions of the markers, which
have been sampled at 480 Hz, are given referring to the global ref-
erence system SMC (which is directly defined during the calibration
of the acquisition system).
The computation of joint angles w.r.t. SH has been executed

using the ikine function of Robotics Toolbox, which implements
an iterative algorithm of kinematic inversion suitably modified by
adapting computational tolerance to guarantee numerical conver-
gence. Data have been suitably pre-filtered with a moving average
filter to enhance Signal Noise Ratio (SNR). This application needs
a preliminary phase, where the hand is posed in a reference posi-
tion and fingers flexion-extension is nearly zero. During this phase
phalanges length and eventual offset angles have been calculated.

5 SIMULATION RESULTS
In simulations, only metacarpal joint measurements from Phase
Space are used with reconstruction algorithms. Estimation results
are compared with corresponding reference values. An additional
normal noise with different amplitudes (1%, 10% and 45% mea-
sures amplitude, respectively) is also added, and algorithms perfor-
mance is evaluated. These noise levels have been chosen in order to
offer a reasonable workspace to test the robustness of the algorithm;
indeed 10% amplitude represents a common value for sensors while
1% and 45% identify, respectively, a reasonable upper-quality case
and worst-quality case. Two different types of analysis have been
conducted. The first one evaluates the estimation performance for
the three techniques over all the poses in terms of absolute esti-



Real hand posture (from
optical position tracking
system).

Hand reconstruction by
Pinv estimation algorithm.

Hand reconstruction by
MVE estimation algorithm.

Hand reconstruction by Mp
estimation algorithm.

Figure 4: Hand pose reconstructions obtained with MVE, Mp algorithms and by pseudo-inverse of selection matrix H. Matrix H allows to
measure TM, IM, MM, RM and LM (see figure 1). Measures are affected by 1% of noise. In black the “real” hand posture whereas in white
the estimated one.

Noise Level(%) Max Error [◦]
1% 10% 45% 1% 10% 45%

Mp 6.74±2.40 7.25±2.51 10.11±4.70 13.50 13.58 26.08
MVE 6.74±2.41 7.23±2.56 8.44±2.77 13.51 13.76 15.95
Pinv 13.93±3.09 14.36±3.05 15.87±3.23 20.85 21.56 23.75

Table 1: Mean pose estimation errors and standard deviations ([◦])
for the three methods with different noise levels. Maximum errors
are also reported.

mation error for each pose (i.e. the average of the DoF absolute
estimation errors). The second analysis is focused on the estima-
tion accuracy on each DoF. In table 1 the mean estimation errors
over all the poses with the corresponding standard deviations and
maximum errors are reported.
In order to demonstrate the effectiveness of our methods, we

have tested for statistical differences between estimation poses and
joint errors obtained with above described techniques. For this pur-
pose, various types of tools have been used. More specifically, if
normality and homogeneity of variances assumption on samples are
verified (through Lilliefors’ composite goodness-of-fit test and Lev-
ene’s test, respectively), a classic two-tailed t-test (hereinafter re-
ferred as Teq ) has been used. If the variances assumption is not met,
a modified two-tailed T-test has been exploited instead (Behrens-
Fisher problem, using Satterthwaite’s approximation for the effec-
tive degrees of freedom, hereinafter referred as Tneq ). When the as-
sumption of normality is not verified, a non parametric test has been
adopted for the comparison (Mann-Whitney U-test, hereinafter re-
ferred asU ). Significance level of 5% has been considered whereas
p-values less than 10−4 are assumed equal to zero.
Referring to pose estimation errors, results obtained show no sta-

tistical differences between Mp and MVE for noise levels of 1%
(p = 0.99, Teq ), 10% (p = 0.97, Teq ) and 45% (p = 0.09, U ). In
the latter case the significance is strongly related to the randomness
of the noise, while for low levels of noise p-values for the com-
parison between Mp and MVE methods are much larger than the
significance level. On the contrary, when noise increases Mp per-
formance appears to be degraded w.r.t. MVE, as clearly reported
in figures 4 and 5, where same reconstructed poses are displayed
in comparison with the reference values, considering 1% and 45%
noise respectively. Under a qualitative point of view, in case of low
level noise, Mp and MVE reconstructions are quite identical and
hardly distinguishable. Estimated joint angles and finger positions
are very close to the reference ones. When noise is at 45% level,
Mp algorithm reconstructions are worst than those obtained with
MVE algorithm. Nevertheless, Mp algorithm maintains the likeli-
hood with common grasp poses because of the a priori information
unlike Pinv method. Same trends are observable also in figures 3
and 2, where Euclidean reconstruction error norm is plotted for 10%
and 45% noise levels, respectively. In all cases, Pinv performance in
pose reconstruction is significantly different from Mp and MVE (at
1% and 10% noise: p= 0, Teq, for Mp vs. Pinv and MVE vs. Pinv;
at 45% noise: p = 0, Teq, for Mp vs. Pinv and p = 0, U , for MVE
vs. Pinv). Pinv method gives the worst average results as appeared
in table 1. Maximum errors for pose reconstruction show that MVE
method offers the best performance for all the levels of noise. For
45% level Mp method produces the largest maximum error, because
this technique is the most sensitive to noise effects (see figure 3).
Since the average pose errors analysis gives only a global per-

formance description, a second type of analysis w.r.t. the average
absolute estimation error for each DoF over the poses has been con-
ducted. In tables 2, 3 and 4 the average values of each DoF absolute
estimation error with their corresponding standard deviations are re-
ported, with level of noise of 1%, 10% and 45% respectively. The



Real hand posture (from
optical position tracking
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Figure 5: Hand pose reconstructions obtained with MVE, Mp algorithms and by pseudo-inverse of selection matrix H. Matrix H allows to
measure TM, IM, MM, RM and LM (see figure 1). Measures are affected by 45% of noise. In black the “real” hand posture whereas in white
the estimated one.

Figure 6: The sensing glove with added markers.

three reconstruction methods are considered and maximum errors
are also indicated. What is noticeable is that for 1% level Mp and
MVE methods furnish the best results for all the DoFs. As it can
be seen from table 5, no statistical difference is observed between
Mp and MVE. Moreover, Mp, MVE and Pinv show no differences
in TA, TI and TM estimations, as well as for the measured DoFs.
This may be due to the fact that the thumb phalanges are the hard-
est to be modeled under a kinematic point of view. Same behavior
between Mp and Pinv is observed for all the considered noise lev-
els, while MVE and Pinv exhibit no differences for TM, TI and LM
DoFs at 10% noise levels and TI, IM, MM, RM and LM DoFs at
45% level. When noise increases, Mp and MVE method differen-
tiate each other in terms of the estimation errors for the measured
DoFs and TA; at 45% level they present significant different recon-
struction performance for TA, TM and LA. From this analysis, Mp
and MVEmethods exhibit a performance which is better or compa-

DoF Noise 1% Max Error [◦]
Mp MVE Pinv Mp MVE Pinv

TA 10.71±8.52 10.58±8.42 14.04±11.10 31.73 31.35 32.74
TR 7.17±4.54 7.15±4.54 27.62±10.24 19.40 19.45 45.65
TM∗ 0.07±0.06 0.07±0.06 0.07±0.06 0.20 0.20 0.20
TI 4.86±3.68 4.84±3.68 6.74±5.54 19.55 19.52 23.16
IA 11.96±5.31 11.94±5.32 6.27±3.27 26.16 26.16 14.90
IM∗ 0.17±0.24 0.17±0.24 0.17±0.24 1.22 1.26 1.22
IP 13.29±7.10 13.32±7.10 28.87±13.79 28.19 28.18 59.41
MM∗ 0.14±0.14 0.15±0.13 0.14±0.14 0.61 0.57 0.61
MP 12.36±7.77 12.39±7.77 29.84±13.64 30.77 30.82 57.78
RA 3.44±2.44 3.43±2.43 10.17±3.78 9.56 9.54 16.45
RM∗ 0.19±0.18 0.22±0.17 0.19±0.18 0.61 0.69 0.61
RP 13.41± 9.67 13.46±9.69 34.00±13.88 39.61 39.73 65.43
LA 11.33±5.97 11.26±5.85 24.28±5.18 24.6 24.46 37.89
LM∗ 0.14±0.15 0.13±0.14 0.12±0.15 0.80 0.76 0.80
LP 11.94± 9.55 11.98±9.55 26.50±13.65 36.74 37.85 63.64
∗ indicates a measured DoF.

Table 2: Average estimation errors and standard deviations for each
DoF [◦] with 1% noise level. Mp, MVE and Pinv methods are con-
sidered. Maximum errors are also reported.

rable with the one provided by Pinv, except for the IA DoF which
is a not measured DoF. Maximum errors for the three methods are
observed for RP and LP DoFs. However, for a proper evaluation
they should be weighted w.r.t. the maximum variation produced by
each DoF. Referring to Mp and MVE, a possible explanation for
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Figure 7: Hand pose reconstructions with MVE, Mp and Pinv algorithms, with measures given by sensing glove. In blue the “real” hand
posture whereas in white the estimated one.

DoF Noise 10% Max Error [◦]
Mp MVE Pinv Mp MVE Pinv

TA 11.22±8.68 6.50±5.59 14.04±11.10 35 19.41 32.74
TR 7.06±4.74 6.96±5.11 27.62±10.24 20.85 21.54 45.65
TM∗ 0.70±0.61 0.70±0.55 0.70±0.60 2.48 2.66 2.58
TI 4.91±3.61 4.83±3.52 6.74±5.54 19.80 19.20 23.16
IA 11.95±5.24 11.34±5.33 6.27±3.27 26.55 26.36 14.90
IM∗ 1.66±2.31 2.08±1.90 1.66±2.32 12.68 9.43 12.68
IP 13.49±7.10 14.34±7.19 28.87±13.79 27.55 28.23 59.41
MM∗ 1.55±1.77 2.67±1.49 1.55±1.77 7.82 6.54 7.82
MP 12.38±7.54 13.20±7.36 29.84±13.64 31.04 31.74 57.78
RA 3.53±2.48 3.25±2.29 10.17±3.78 9.59 8.99 16.45
RM∗ 1.64±1.77 3.12±1.79 1.64±1.77 10.43 8.13 10.43
RP 13.80±9.60 15.41±10.00 34.00±13.88 43.70 42.89 65.43
LA 11.18±6.16 9.07±5.29 24.28±5.18 24.28 19.39 37.89
LM∗ 1.53±1.61 1.44±1.53 1.53±1.61 7.07 7.49 7.07
LP 12.13±9.62 13.59±9.24 26.50±13.65 38.64 37.24 63.64
∗ indicates a measured DoF.

Table 3: Average estimation errors and standard deviations for each
DoF [◦] with 10% noise level. Mp, MVE and Pinv methods are
considered. Maximum errors are also reported.

the errors occurring at RP and LP may be related to the fact that
the ring-proximal and little-proximal estimated positions tend to be
more closed in common grasping tasks, as it is contained in the a
priori set. Notice the growth of the maximum error for Mp with
noise level. On the contrary, Pinv method errors are always the
same except for those DoFs referring to measures. This fact may
be easily derived from the pseudo-inverse definition.

DoF Noise 45% Max Error [◦]
Mp MVE Pinv Mp MVE Pinv

TA 18.05±13.73 7.46±4.73 14.04±11.10 64.10 20.79 32.74
TR 7.66±5.76 7.31±5.70 27.62±10.24 27.57 26.04 45.66
TM∗ 3.16±2.60 2.16±1.85 3.16±2.60 12.17 7.96 12.17
TI 6.60±5.07 5.50±4.33 6.74±5.54 20.79 18.17 23.16
IA 11.73±6.16 10.94±5.42 6.27±3.27 30.61 26.81 14.90
IM∗ 7.71±8.75 6.33±4.96 7.71±8.75 41.46 21.98 41.46
IP 13.87±10.52 15.05±7.80 28.87±13.79 45.19 32.89 59.41
MM∗ 5.83±5.56 5.30±3.42 5.83±5.56 26.72 18.33 26.72
MP 14.43±12.15 13.96±8.29 29.84±13.64 52.75 38.31 57.78
RA 3.84±2.59 3.10±2.28 10.17±3.78 10.55 8.91 16.45
RM∗ 6.72±7.84 5.48±4.07 6.72±7.84 35.53 15.33 35.53
RP 18.38±18.79 17.11±11.38 34.00±13.88 85.71 51.62 65.43
LA 10.53±6.60 7.85±5.16 24.28±5.18 26.68 21.22 37.89
LM∗ 6.26±6.34 4.91±4.67 6.26±6.34 27.35 20.36 27.35
LP 16.72±17.77 15.09±9.94 26.50±13.65 72.30 49.89 63.64
∗ indicates a measured DoF.

Table 4: Average estimation errors and standard deviations for each
DoF [◦] with 45% noise level. Mp, MVE and Pinv methods are
considered. Maximum errors are also reported.

6 EXPERIMENTAL RESULTS

The sensorized glove used in this study is manufactured by printing
a strip of a Conductive Elastomer (CE) following the contour of the
hand on a Lycra R©/cotton fabric, see figure 6. Additional elements
of the conductive elastomer are also printed on the dorsal side of the
glove to create the connection to the 20 different sensor segments
of the polymeric strip [22].



DoF p Mp vs. MVE p Mp vs. Pinv p MVE vs. Pinv
N-1% N-10% N-45% N-1% N-10% N-45% N-1% N-10% N-45%

TA 0.88 0.0025 0‡ 0.16 0.36 0.15 0.14 0.0004 0.0173
TR 0.99! 0.92! 0.57 0 0 0 0 0 0
TM∗ 0.97 0.66 0.0332 1 1 1 0.97 0.66 0.0332
TI 0.96 0.91! 0.17 0.14 0.18 0.8 0.14 0.11 0.23
IA 0.82 0.31 0.54 0 0 0 0 0 0
IM∗ 0.78 0.0159 0.27 1 1 1 0.78 0.0159 0.27
IP 0.98! 0.54! 0.15 0 0 0 0 0 0
MM∗ 0.43 0 0.62 1 1 1 0.43 0 0.62
MP 0.98! 0.57! 0.64 0 0 0 0 0 0
RA 0.94 0.44 0.1 0 0 0 0 ‡ 0 0
RM∗ 0.23 0 0.61 1 1 1 0.23 0 0.61
RP 0.93 0.34 0.34 0 0 0 0 0 0
LA 0.95‡ 0.07 0.0207! 0 ! 0! 0! 0 ! 0 0!
LM∗ 0.78 0.93 0.44 1 1 1 0.78 0.93 0.44
LP 0.90 0.25 0.26 0 0 0.0001 0 0 0‡

1←−−−−−−−−−−−−−−−−−−−−−−0p-values
∗ indicates a measured DoF.

Table 5: p-values from the evaluation of DoF estimation errors be-
tween Mp and MVE, Mp and Pinv, MVE and Pinv. 1%, 10% and
45% noise levels have been considered. ! indicates Teq test. ‡
indicates Tneq test. When no symbol appears near the tabulated val-
ues, U test is used. Bold value indicates no statistical difference
between the two methods under analysis at 5% significance level.
When the difference is significative, values are reported with a 10−4
precision. p-values less than 10−4 are considered equal to zero.

The CE materials show piezoresistive properties. So, as the hand
moves, the sensor elements corresponding to different segments
of the contour of the hand are subject to changes in length, thus
causing changes in the electrical properties of the material. Such
changes can be detected by reading the voltage drop across such
segments. Sensors and connections made by means of the same
material avoided the use of obtrusive metallic wires, which may
interfere with hand movements. Moreover this solution allows to
maintain the textile original elasticity placing electrical contacts in
the periphery of the garment, resulting in an advantage in terms of
user comfort.
The sensors are connected in series thus forming a single sensor

line while the connections intersect the sensor line in the appropri-
ate points. An ad hoc electronic front-end was designed to compen-
sate the resistance variation of the connections, made by the same
material of the sensors, using an high input impedance stage.
In the present study, metacarpophalangeal (MCP) flexion-

extension measures are provided by the glove.

6.1 Results and Discussion
In the calibration phase, we firstly get Ĥ, which is an estimation of
the measurement matrix H. For this purpose, number of poses N
to be collected in parallel with the glove and the position optical
tracking system has to be larger or equal than the dimension of
the state to estimate, i.e. N ≥ 15. The reference poses have been
collected in matrix Xc ∈ IR15×15.
At the same time measures of the glove have been averaged over

the last 50 acquired samples and organized in matrix Zc ∈ IR5×15.
Given the relation Zc = ĤXc, matrix Ĥ is obtained as

Ĥ = Zc((XTc )
†)T . (12)

Measurement noise is calculated in terms of fluctuations
w.r.t. the aforementioned average values of the measures and noise
covariance matrix R is obtained. In this case noise is less than 10%

Mean ± std Max Error [◦]

Mp 11.17±4.32 25.70
MVE 10.94±4.24 25.18
Pinv 19.00±3.66 30.30

Table 6: Mean pose estimation errors and standard deviations ([◦])
for the three methods with different noise levels. Maximum errors
are also reported.

DoF Mean±Std Max Error
Mp MVE Pinv Mp MVE Pinv

TA 12.12±9.98 12.10±9.88 14.37±10.78 36.95 36.63 34.28
TR 9.20±7.13 9.20±7.04 26.46±10.49 26.61 26.34 46.43
TM∗ 4.36±3.73 4.32±3.71 6.43±4.44 13.34 13.25 18.50
TI 14.56±9.96 14.46±9.86 7.84±5.47 33.61 33.25 22.38
IA 9.82±6.89 9.91±6.81 7.10±5.08 30.01 29.60 21.18
IM∗ 15.27±11.86 15.06±11.76 16.48±12.62 47.92 46.76 43.58
IP 9.60±7.65 9.67±7.62 31.47±14.70 27.28 27.40 61.11
MM∗ 14.40±12.84 14.01±12.54 19.88±14.58 55.18 53.03 51.47
MP 6.80±6.49 6.92±6.58 24.36±9.85 24.49 24.74 43.72
RA 6.20±4.31 5.94±4.11 5.69±4.72 16.31 15.72 20.90
RM∗ 19.00±13.44 18.21±12.95 19.22±11.81 64.80 61.98 46.32
RP 8.98±8.91 9.11±9.03 31.51±13.98 31.66 32.24 60.62
LA 11.42±8.50 10.72±8.03 32.24±6.98 31.56 29.59 48.11
LM∗ 17.37±12.51 16.03±11.79 17.98±11.81 62.44 58.40 45.05
LP 8.43±6.36 8.48±6.33 23.90±12.53 25.74 26.07 56.21
∗ indicates a measured DoF.

Table 7: Average estimation errors and standard deviations for each
DoF [◦], for the sensing glove acquisitions. Mp, MVE and Pinv
methods are considered. Maximum errors are also reported.

but the errors in the measurement matrix estimation are consistent
due to intrinsic non-linearities and hysteresis of sensing glove.
In table 6 the absolute average pose estimation errors are re-

ported with the corresponding standard deviations. Same trends
already observed for simulation results can be noticed here. There
is no statistical difference between Mp and MVE (p = 0.78, Teq)
and significant difference between Mp and Pinv and MVE and Pinv
(p = 0, Teq). Mp and MVE exhibit best pose reconstruction per-
formance, also in terms of maximum errors. In table 7 the average
reconstruction errors for each DoF are reported. No statistical dif-
ference is present between Mp and MVE performance as appeared
from table 8. Mp and MVE methods exhibit results statistically dif-
ferent w.r.t. Pinv method except for IM, RM and LM DoFs, which
are provided by measures, RA DoF, for which the average estima-
tion error is limited (≈ 6◦), and finally TA. Notice that the best
TI average estimation is achieved with Pinv; this result, together
with the aforementioned observation about TA, may be explained
in terms of the difficulties in modelling thumb kinematics (as pre-
viously observed in Section 4). Also IA DoF presents the smallest
average estimation error using Pinv algorithm, even if in this case p-
values resulting from the comparisons between the three techniques
are close to the significance value and mean error values compara-
ble. Looking at maximum DoF reconstruction errors, we can see
that they occur at those measured DoFs which present the maximum
variation during grasping tasks. This is especially noticeable for
Mp and MVE methods and it may be explained in terms of an inac-
curate estimation of the measurement matrix due to non-linearities
in glove behavior. However, except for some poses, both Mp and
MVE procedures globally exhibit best performance and a good ro-
bustness to modelling errors. It is important to notice that the main
goal achieved by Mp and MVE algorithms is the likelihood with
real poses which is always preserved as reported in figure 7. Same
fact can not be obtained with pseudo-inverse technique. Euclidean
norm errors between the real hand poses and the reconstructed ones
for the above described techniques are shown in figure 8.



DoF p Mp vs. MVE p Mp vs. Pinv p MVE vs. Pinv

TA 0.98 0.27 0.28
TR 0.99 0 0
TM∗ 0.90 0.0107 0.0093
TI 0.93 0.0008 0.0008
IA 0.95! 0.0448 0.0381
IM∗ 0.92 0.63 0.58
IP 0.87 0 0
MM∗ 0.85 0.0348 0.0232
MP 0.88 0 0
RA 0.76 0.37 0.51
RM∗ 0.76! 0.93 0.67
RP 0.90 0 0
LA 0.66 0 0
LM∗ 0.48 0.60 0.26
LP 0.99 0 0

1←−−−−−−−−−−−−−−−−−−−−−−0p-values
∗ indicates a measured DoF.

Table 8: p-values from the evaluation of DoF estimation errors be-
tween Mp and MVE, Mp and Pinv, MVE and Pinv. 1%, 10% and
45% noise levels have been considered. ! indicates Teq test. ‡ in-
dicates Tneq test. When no symbol appears near the tabulated val-
ues, U test is used. Bold value indicates no statistical difference
between the two methods under analysis at 5% significance level.
When the difference is significative, values are reported with a 10−4
precision. p-values less than 10−4 are considered equal to zero.
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Figure 8: Euclidean norm error [◦] for 27 random poses acquired
with the glove. All three techniques are considered.

7 CONCLUSIONS AND FUTURE WORK

In this work reconstruction techniques to estimate static hand poses
from a reduced number of measures given by an input glove-based
devices are presented. These techniques are based on classic op-
timization and applied optimal estimation methods. The main in-
novation relies on the exploitation of the a priori information em-
bedded in the covariance structure of a grasps set. This covariance
individuates some coordination patterns, defined as postural syner-
gies, which reduce hand DoFs to be measured and controlled.
Simulation results, where noise effects are also considered, and

experiments with a low-cost sensing glove are reported. Perfor-
mance is compared with the one obtained with a simple pseudo-
inverse based algorithm. Statistical analyses demonstrate the effec-
tiveness of the here proposed hand pose reconstructions.
The achieved results may be useful to improve a large class of

human-interfaces in many application fields, e.g. video-games or
tele-robotics, where fine hand position individuation and low cost
devices are crucial features to allow a reliable haptic experience.
Future work aims at individuate both optimal criteria for sensors

design and optimal procedures for a good calibration of the sen-

sorized glove arrangement on the basis of the a priori information.
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