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Abstract: Variable stiffness actuators are a class of actuators with the capability of changing
their apparent output stiffness independently from the actuator output position. This is achieved
by introducing internally a number of compliant elements, and internal actuated degrees of
freedom that determine how these compliant elements are perceived at the actuator output.
The introduction of a mechanical compliance introduces intrinsic, passive oscillatory behavior
to the system, but rather than trying to minimize this effect, the question arises if it can be
exploited for the actuation of periodic motions. In this work, we propose a strategy to control
the variable stiffness actuator optimally, with respect to a cost criterion, to a desired periodic
motion of the output. In particular, the cost criterion provides a measure of embodiment of
the desired behavior in the passive behavior of the variable stiffness actuator, i.e., the variable
stiffness actuator is controlled such that its passive behavior is as close as possible to the desired
behavior and thus that the control effort is minimized.

Keywords: Variable stiffness actuators, Mathematical models, Nonlinear analysis,
Optimization problems, Periodic motion, Robotics

1. INTRODUCTION

Variable stiffness actuators are capable of changing the
apparent output stiffness independently from the output
position. This is achieved by introducing one or more
internal elastic elements to the actuator, and a number
of actuated internal degrees of freedom that determine
how the elastic elements are sensed at the output. In
this way, a mechanical compliance with variable stiffness
is introduced, that decouples the actuated joint from
the actuator itself (Bicchi and Tonietti, 2004). In many
emerging robotic applications, such as walking robots,
service and rehabilitation robotics, and prostheses and
orthoses, physical human-robot and robot-environment
interaction is an integral part, and in these cases the
introduction of the mechanical compliance guarantees an
intrinsic level of safety and stability. It can be seen as a
mechanical implementation of impedance control (Hogan,
1985).

In robotic applications where the motions are mostly
periodic, the introduction of a mechanical compliance
allows a temporary storage of energy when negative work
is done by the actuator (Stramigioli et al., 2008; van
Dijk and Stramigioli, 2008). By observing that the added
mechanical compliance introduces an oscillatory, passive
behavior to the system, it was shown by Uemura and
Kawamura (2009) that by tuning the stiffness properly
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to the desired motion, more energy efficient actuation of
periodic motions can be achieved. The optimal stiffness
was assumed to be constant, so that any costs related
to changing this stiffness only become relevant when the
desired motion is changed.

In this work, we show that the behavior of a variable stiff-
ness actuator can be accurately described by the behavior
of a spring with variable stiffness and equilibrium position.
A cost is associated to changing the equilibrium position
and the stiffness, both in terms of the deviation from the
initial position and the rate of change. Then, by allowing
both the equilibrium position and the stiffness to change
dynamically, the desired output motion of the actuator
output can be achieved optimally with respect to this cost.
The cost provides a measure of embodiment of desired
behavior in the passive dynamics of the variable stiffness
actuator: if the deviations from the initial conditions are
minimal, then the passive dynamics that the system would
show when the equilibrium position and stiffness are not
changed, already approaches the desired behavior as close
as possible. The optimal initial conditions can be found
that minimize the cost criterion.

The paper is organized as follows. Section 2 describes
the generalized behavior of variable stiffness actuators,
with the aim of rendering our approach independent from
specific actuator designs. Then, in Section 3, the problem
is formally stated and explained in detail. In Section 4, a
nominal solution to the problem is provided, which is then
optimized according to the cost criterion in Section 5. The



effectiveness of our approach is illustrated by algebraic and
simulation examples in Section 6. Concluding remarks and
an outline for future work is given in Section 7.

2. GENERALIZED BEHAVIOR OF VARIABLE
STIFFNESS ACTUATORS

In this Section, we present a port-Hamiltonian model for
variable stiffness actuators. This model is an extension of
the model presented by Visser et al. (2010). Furthermore,
we propose a change of coordinates to capture the behav-
ior of the variable stiffness actuator, irrespective of the
particular actuator design.

2.1 Generic Port-Hamiltonian Model of Variable Stiffness
Actuators

A generic port-based model for variable stiffness actuators
was introduced by Visser et al. (2010), in which it was
assumed that:

• the variable stiffness actuator has a number of in-
ternal elastic elements, described by a state s and an
energy function Hs(s) describing the storage of elastic
energy;

• there are a number of actuated internal degrees of
freedom, with configuration variables q;

• the behavior at the actuator output, with one degree
of freedom, is determined by the intrinsic properties
of the elastic elements and the configuration of the
internal degrees of freedom.

Moreover, since the model aims to capture the working
principle of the variable stiffness actuator, internal inertias
and friction were not incorporated in the model. Under
these assumptions, it was shown that the actuator behav-
ior can be accurately described in a port-based setting by:

[
ṡ
τq

τr

]

=





0 A(q, r) B(q, r)
−AT (q, r) 0 0
−BT (q, r) 0 0





︸ ︷︷ ︸

D0(q,r)





∂Hs

∂s
q̇
ṙ



 (1)

where the skew-symmetric matrix D0(q, r) describes the
power continuous port interconnection. In particular, a
storage port, an output port and a control port can be
identified. The storage port is described by the power
conjugate pair (ṡ, ∂Hs

∂s
), where ṡ denotes the rate of change

of the state s of the elastic elements and ∂Hs

∂s
denotes

the force generated by these elements. The output port
is described by the pair (ṙ, τr), with ṙ the rate of change
of the output position r, and τr the colocated force. The
pair (q̇, τq) describes the control port, where q̇ denotes
the rate of change of the configuration variables q, and τq

are the generalized collocated forces. The matrices A(q, r)
and B(q, r) are the algebraic Jacobians of the kinematic
relation λ : (q, r) 7→ s, that relates the actuator output
position r and the configuration q of the internal degrees
of freedom to the state s of the internal elastic elements.
In particular:

A(q, r) :=
∂λ

∂q
, B(q, r) :=

∂λ

∂r

The description (1) assumes ideal internal actuators, and
thus velocity control of q̇. In practice however, the internal

actuators have an inertia, and the torque required to
achieve a certain desired q̇ follows from the formulation
of an appropriate control law. Extending (1) to include
these internal inertias is straightforward. Letting M =
diag(m1, . . . , mn) denote the constant inertia matrix, we
then obtain the following Hamiltonian energy function:

H(ρ, s) =
1

2
ρT M−1ρ + Hs(s) (2)

where ρ = Mq̇ denotes the momenta of the internal
degrees of freedom. It can be shown that (1) can then
be expanded as:






ṡ
ρ̇
q̇
τr




 =






0 A(q, r) 0 B(q, r)
−AT (q, r) 0 −1 0

0 1 0 0
−BT (q, r) 0 0 0






︸ ︷︷ ︸

D(q,r)








∂H
∂s
∂H
∂ρ

τ

ṙ








(3)

Where D(q, r) is a skew-symmetric matrix representing
the extended Dirac structure. The power conjugate pair
(q̇, τ) defines the new control port.

2.2 Change of Coordinates

The behavior of a variable stiffness actuator, seen at the
output, is essentially the behavior of a linear spring, of
which the equilibrium position and the stiffness can be
changed (Palli et al., 2008). We propose a change of
coordinates

S : q 7→ q̃, q̃ := (r̄, k) (4)
where r̄ denotes the equilibrium output position, and k the
apparent output stiffness, defined hereafter, to capture the
behavior of the variable stiffness actuator in terms of these
quantities.

The equilibrium position r̄ of the actuator output is, by
definition, the position r for which ṙ = 0 and remains zero,
i.e., the position r for which the potential (elastic) energy
function attains a minimum. Given a configuration q of
the internal degrees of freedom, and q̇ = 0, we thus have

r̄ = arg min
r

H(ρ, q, r)

= arg min
r

(Hs ◦ λ)(q, r)
(5)

where the second equality follows from q and r being
stationary and from the Hamiltonian energy function
being quadratic in the momentum variables. The apparent
output stiffness follows from the definition of the stiffness:

k :=
δτr

δr
(6)

i.e., the infinitesimal force generated by an infinitesimal
change in output position. Note that the stiffness is a
local property, thus (6) is only valid for stationary con-
figurations q̇ = 0 and ṙ = 0. From (3) and the kinematic
relation λ, the force at the output is τr = ∂

∂r
Hs(s◦λ), and

thus we obtain that the apparent output stiffness is given
by:

k = −
∂2H

∂r2
(q, r)

= −
∂2(Hs ◦ λ)

∂r2
(q, r)

(7)

where the second equality again follows from q and r being
stationary. Observe that both r̄ and k are not functions of
r, as they are only defined for a particular value of r.



Using (5) and (7), the change of coordinates S is obtained,
and it follows that, for a given configuration (q, r),

˙̃q =
∂S

∂q
q̇ (8)

Assumption 1. The change of coordinates (8) is a dif-
feomorphism and independent of q. •

Commonly encountered variable stiffness actuator designs,
for example the antagonistic design that is the basis of the
VSA-I presented by Tonietti et al. (2005), or the design
of the VS-Joint by Wolf and Hirzinger (2008), satisfy
this assumption. Under this assumption, the dynamics (3)
can be rewritten in the new coordinates by transforming
the momenta ρ into the new coordinates, denoted by ρ̃.
Correspondingly, the new inertia matrix M̃ is obtained as

M̃ =
(

∂S
∂q

)−T

M
(

∂S
∂q

)−1

(9)

Then, in the new coordinates, the Hamiltonian energy
function becomes

H̃(ρ̃, q̃, r) =
1

2
ρ̃T M̃−1ρ̃ + (Hs ◦ λ)(S−1(q̃), r)

The dynamic equations in port-Hamiltonian form readily
follow, with a new control port (τ̃ , ˙̃q).

For notational convenience, we introduce the following
variables for the remainder of this paper:

x =






x1

x2

x3

x4




 :=






r
ṙ
r̄
k






Proposition 1. Due to the change of coordinates (4), the
behavior of the variable stiffness actuator can be described
in the form

ẋ1 = x2

ẋ2 = 1
m

x4(x3 − x1)

ẋ3 = u1

ẋ4 = u2

or:

ẋ = f(x) + g1 u1 + g2 u2

(10)

where x ∈ M denotes the state as element of the state
manifold M, f(x) is the drift vector field, and g1 and g2

are the constant control input vector fields. •

Remark 1. We note that, since x4 corresponds to a stiff-
ness, which is a positive definite quantity, the state man-
ifold M has a border. Therefore, any solution that is
obtained in what follows is only valid if it remains in the
bounded set {x ∈ M | x4 > 0}. ⊳

3. PROBLEM FORMULATION

The goal of this work is to embed desired behavior into
the variable stiffness actuator as much as possible. Con-
sequently, the desired behavior should be represented in
the form of a dynamical system, so that it is meaningful
to let the autonomous part of (10) approach the desired
behavior.

Assumption 2. The desired periodic motion of the ac-
tuator can be described in the phase space (x1, x2) by a
dynamical system of the form:

ẋ1 = x2

ẋ2 = a(x1) − γ
(11)

implying that the desired motion x1(t) is bounded and at
least twice continuously differentiable. •

Assumption 3. Because (10) describes a physical sys-
tem, the desired motion is such that it can be achieved
with finite inputs u. •

Remark 2. Note that we do not allow a(·) to be a function
of x2, as this would imply damping, which will not result
in a periodic motion. Only if this damping is nonlinear
and satisfies certain properties, such a description can
result in periodic behavior. For example, the solutions
to Liénard systems are, when certain conditions are met,
limit cycles in the phase space (Strogatz, 1994). This topic
is considered beyond the scope of this paper. ⊳

By combining (10) and (11), we can define a function Γ(x):

Γ(x) = 1
m

x4(x3 − x1) − a(x1) (12)

i.e., Γ(x) defines which output force must be generated
to follow a desired trajectory. It follows that Γ(x) defines
foliations Nγ ⊂ M described by

Nγ = {x ∈ M | Γ(x) = γ}

The goal of this work is to find an input u, such that the
system remains on the foliation for a given desired motion
(11), with minimum effort, i.e., with the smallest control
input and minimal deviations of x3 and x4 from the initial
conditions. This can be formally stated as follows.

Problem 1. Given a desired motion of the actuator out-
put, described by (11), find initial conditions x◦ = x(0),
x◦ ∈ Nγ , and a control input u, such that the criterion

J =

∫ ∞

0

1

2
‖x◦

3 − x3‖
2
r̄ +

1

2
‖x◦

4 − x4‖
2
k +

1

2
‖u‖2

u dt (13)

is minimized for given weighted 2-norms ‖ · ‖∗.

The integrand of (13) can be interpreted as a Hamiltonian
energy function. Thus, minimizing J corresponds to find-
ing the optimal trajectories x3(t) and x4(t) with respect
to this energy function. Note that there are two parts in
the integrand, and optimizing J means finding a trade-off
between those two parts: the first two terms associate a
cost to the deviation from the initial conditions, and the
last term associates a cost to the rate of change of x3 and
x4. In particular, the first two terms in fact formulate a
measure of embodiment of the desired behavior into the
variable stiffness actuator: if the deviations from the initial
conditions of x3 and x4 are small, it means that the initial
values for x3 and x4 result in an intrinsic passive behavior
that is already close to the desired behavior.

Remark 3. It will be shown that there is a cost associated
to u that naturally arises from physical considerations.
However, there is no such physical cost for the deviations
of x3 and x4. These costs are associated with changing the
equilibrium position and the stiffness, and may be defined
by the design of the actuator, by an analysis of desired
disturbance rejection, or some other analysis. ⊳

4. NOMINAL SOLUTION

The first step in solving Problem 1 is showing that there
exists at least one solution to the problem. The approach
will be in two parts: first we establish that there exists
an input u such that the system (10) exhibits the desired
motion (11) in the plane (x1, x2), and then we will infer



that the obtained solution curves allow a minimization of
the criterion (13).

4.1 Nominal Control Input

Given the desired motion (11) and the corresponding Γ(x)
as defined in (12), we extend the system description (10) by
defining an output function h(x) = Γ(x) − γ. Then, given
initial conditions x◦ ∈ h−1(0), it is possible to compute the
maximal controlled invariant output-nulling submanifold.
In particular, following the algorithm presented by Nijmei-
jer and van der Schaft (1990), we obtain the following.

First, we define the submanifold Z1 ⊂ Nγ ⊂ M by

Z1 = {x ∈ M | h(x) = 0}

This submanifold is of dimension three, because the re-
striction of the output function being zero defines a curve
of dimension one. With x◦ ∈ Z1, the system dynamics
remain in Z1 for all time, if ḣ(x) = 0 for all time. We
calculate

d

dt
h(x) = Lfh(x) + Lg1

h(x)u1 + Lg2
h(x)u2

= LfΓ(x) + [Lg1
Γ(x) , Lg2

Γ(x)]

[
u1

u2

]

with

LfΓ(x) =

(

−
1

m
x4 −

∂a

∂x1

)

x2

i.e., the Lie-derivative of Γ(x) along the drift vector field
f(x), and similarly the Lie-derivatives of Γ(x) along the
control input vector fields:

[Lg1
Γ(x) , Lg2

Γ(x)] =
[

1
m

x4 , 1
m

(x3 − x1)
]

=: A(x)

Since, as remarked before, x4 is always nonzero, A(x)
nonsingular for all x, and thus there always exists an input
u, such that A(x)u + LfΓ(x) = 0. Define the submanifold
Z2 ⊂ Z1 by

Z2 = {x ∈ Z1 | ḣ(x) = 0}

This submanifold is of dimension two, due to the added
restriction of ḣ(x) = 0. We can take for u a combination
of a state feedback and a new input v:

u = −AR(x)LfΓ(x) + A⊥(x)v (14)

where AR denotes a right inverse of A, and A⊥ is the
annihilator for A. Then, for initial conditions x◦ ∈ Z2,
the input (14) ensures that the system remains in Z2, and
thus Z2 =: Z∗ is the maximal controlled invariant output-
nulling submanifold. Or, in other words, any trajectory
x(t) that is a solution to (10), subject to the input (14),
will show the desired motion (11) in the plane (x1, x2) if
the initial conditions x◦ ∈ Z∗.

Remark 4. Because A(x) is not full rank, (14) defines in-
finitely many solutions. It is well known that the weighted
pseudo inverse is a right inverse that gives a solution of
minimum norm with respect to a metric (Ben-Israel and
Greville, 2003). Therefore, in the context of optimizing
(13), in (14) the pseudo inverse should be taken with
respect to the metric defining the norm ‖ · ‖u, and v ≡ 0.

Inspection of the third row of (3) reveals that, at the
port (q̇, τ), the infinitesimal change δq̇ as a result of an
infinitesimal change of applied control torque δτ is, using
the energy function (2), given by:

δq̇

δτ
=

∂2H

∂ρ2
= M−1

Hence, the metric defined by M is a useful metric to
measure a change of q̇. Since the input u = ˙̃q is defined in
the new coordinates q̃, a meaningful choice for the metric
inducing the norm ‖ · ‖u is the pseudo mass matrix M̃
defined in (9). Using the definition of the norm, we obtain

1

2
‖u‖2

M̃
=

1

2
uT M̃u

which has indeed the units of energy, as we observed in
defining the integrand of (13). ⊳

4.2 Bounded Solutions

Optimization of the criterion (13) is only meaningful if the
solutions x3(t) and x4(t) remain in some bounded neigh-
borhood of the initial conditions (x◦

3, x
◦
4). It is tempting to

assume, since the motion in the plane (x1, x2) is periodic,
that also the solutions (x3, x4) are periodic. However, this
assumption may not be valid, since the solution x(t) can
be chaotic while still the projection onto (x1, x2) gives the
desired periodic motion. However, by investigation of (14),
we can deduce some properties of the solution x(t) of the
system (10), (14).

The desired motion is described in (11) by a dynamic
system without damping, and thus of the form ẍ1 =
a(x1) − γ. For v ≡ 0, (14) is differentiable, because
A(x) is nonsingular (see Remark 1) and bounded by
Assumption 3. Defining z := (x1, x3, x4), it follows that
on a closed and finite time interval, ż is bounded and C1,
and that z̈ is finite. Therefore, we can write the system
dynamics as

z̈ = F (z)

where F (z) is a function that depends on the state z of
the system only, because due to (11) and the restriction to
Z∗, the feedback in (14) can be found in terms of x1, x3, x4

only. If it is possible to find a potential energy function
U(z) such that

F (z) = −
∂U

∂z
then the system is conservative. Then, assuming ż(0) = 0,
due to the law of conservation of energy all solutions z(t)
remain in the ellipse U(z) ≤ U(z(0)) (Arnol’d, 1989).

However, U(z) may not exist, or it may be unbounded or
not smooth. Therefore, at this point, no strict conclusions
may be drawn about the boundedness of the solutions of
x(t). But, if U(z) does not exist and thus that the system is
not conservative, this implies that there is energy injection
or dissipation, which may be countered by a proper choice
for the additional input v. As stated, the optimization of
(13) is only meaningful if the solution x(t) is bounded, and
therefore we will assume the following.

Assumption 4. For a desired motion described by (11),
starting from initial conditions x◦ ∈ Z∗, there is a v such
that the solution x(t) of the system (10), (14), remains
within an ellipse defined by the initial conditions. •

Remark 5. The preceding analysis implies that v ≡ 0
should give the desired behavior. Simulation examples
in Section 6 show that this is indeed the case for some
nontrivial periodic motions in (x1, x2). ⊳



5. OPTIMIZATION

In the previous Section, it was established that the max-
imal controlled invariant output-nulling submanifold Z∗

is of dimension 2. One dimension corresponds to the de-
sired motion in (x1, x2), leaving one degree of freedom in
(x3, x4). As mentioned before, taking the pseudo inverse in
(14) with respect to the desired norm on u in (13) results
in that the term 1

2‖u‖
2
u is already minimized among all

possible solutions. This leaves the remaining two terms to
be minimized by a proper choice of the initial conditions
(x◦

3, x
◦
4).

In general, the optimization problem cannot be solved
analytically. Therefore, we propose a variation on the line
search algorithm that exploits the fact that there is only
one degree of freedom left in the choice for the initial
conditions (x◦

3, x
◦
4), due to the restriction to Z∗. It is not

possible to find the gradient descent of J with respect to
(x◦

3, x
◦
4) analytically, but since there is only one degree

of freedom to search in, the following algorithm can be
effectively executed.

Step 0: Choose initial conditions (x◦
1, x

◦
2) for the duration

of the algorithm. Determine an initial guess for x◦,1
3 and

calculate x◦,1
4 such that x◦,1 ∈ Z∗. Choose an initial

step-size ε1.
Step k > 0: Determine the gradient descent direction:

• Calculate the cost Jk according to (13), by simulat-
ing the system (10), (14) for a number of periods,
starting from initial conditions x◦,k.

• Compute J+
k and J−

k by computing the costs start-

ing from initial conditions x◦,k
3 + εk and x◦,k

3 − εk

(and corresponding initial values x4) respectively.
• Determine Jk+1 = min(J+

k , J−

k ).
• If Jk−Jk+1 is smaller than a threshold δ, terminate

the algorithm: the corresponding initial conditions
minimize (13). Otherwise, continue with the corre-
sponding initial values and set εk+1 = εk/2.

Remark 6. Successful convergence of this algorithm relies
on the assumption that, since J is quadratic, it has at least
a local minimum. Reaching the global minimum depends
on the initial guess x◦,1

3 , the threshold value δ, and the
initial stepsize ε1. ⊳

6. EXAMPLES

In this Section, we illustrate the results of the preceding
Sections with two examples. The first example is the
harmonic oscillator, which has optimal values for (x◦

3, x
◦
4)

that can be determined a priori. In the second example,
the Duffing oscillator is used to illustrate the effectiveness
of the optimization process for nontrivial periodic motions.

6.1 The Harmonic Oscillator

The harmonic oscillator with unit frequency and ampli-
tude is described in the form (11) as:

ẋ1 = x2, ẋ2 = −x1

which admits the analytical solution

x1(t) = cos t, x2(t) = − sin t

It follows that the submanifold Z1 is defined as

Z1 = {x ∈ M | 1
m

x4(x3 − x1) + x1 = 0}

Table 1. Parameter values

Desired motion (x◦

1
, x◦

2
) (−2, 0)

α, β, γ 1,−2, 3

Cost criterion ‖ · ‖r̄ ‖ · ‖ (2-norm)
‖ · ‖k ‖ · ‖ (2-norm)
‖ · ‖u ‖·‖

M̃
(weighted 2-norm with

M̃ = diag(1, 4)

Optimization δ 0.005
ε1 0.2

It is well known that the harmonic oscillator can be
implemented by tuning the stiffness to the frequency of the
desired oscillation, i.e., choosing k such that ω =

√

k/m.
In this example, we have m = 1 and ω = 1, and thus
taking k = 1 gives the desired motion. Indeed, taking
x◦

3 = 0 and x◦
4 = 1 results in initial conditions that are in

Z1 for any (x◦
1, x

◦
2). Moreover, we compute LfΓ(x), with

a(x1) = −x1, we obtain

LfΓ(x) =

(

−x4 −
∂a

∂x1

)

x2

= (−x4 + 1)x2

which is always equal to zero for x4 = 1. Hence, the
control input u can remain zero, and the cost (13) is
trivially minimized. This illustrates perfectly the principle
of embedding desired behavior.

6.2 The Duffing Oscillator

Duffing’s equation was originally introduced to model
nonlinear oscillations with a hardening stiffness effect, but
it provides in general an example for studying nonlinear
oscillations (Guckenheimer and Holmes, 1983). In this
example, the undamped Duffing oscillator is considered,
which takes the form:

ẍ1 + βx1 + αx3
1 = γ (15)

with α > 0. Oscillations of this type can be formulated
in the form of (11) by taking a(x1) = −βx1 − αx3

1. To
compute the maximal controlled invariant submanifold
Z∗ ⊂ Nγ ⊂ M, we first compute

Z1 = {x ∈ M | Γ(x) + γ = 0}

with
Γ(x) = −βx1 − αx3

1 − x4(x3 − x1)

It follows, for any initial conditions (x◦
1, x

◦
2), that (x◦

3, x
◦
4)

must satisfy:

x◦

4 =
−βx◦

1 − αx◦
1
3 + γ

x◦
3 − x◦

1

Using this relation, the algorithm presented in Section 5 is
executed, with the parameter values presented in Table 1.
Setting the cost for both x3 and x4 equally in the cost
criterion (13) implies that there is no preference on using
either one. Note, however, that there are different costs
associated with dynamically changing x3 and x4, indicated
by M̃ = diag(1, 4). For the initial guess of x◦,1

3 , we take
the average of the solution to (15).

Figure 1 shows the solution curves of the system (10), (14)
in the plane (x1, x2). Both the initial solutions and the
optimal solution, according to the algorithm of Section 5,
are shown, but cannot be distinguished. The ◦ indicates
the initial guess x◦,1

3 for the algorithm, and the + the
optimal x◦

3. Figure 2 shows the components x3 and x4
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Fig. 1. Solutions in the plane (x1, x2) - The ◦ indicates the
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Fig. 2. Solutions (x3, x4) - The grey curves correspond to
the first step of the algorithm of Section 5, the black
curves to the optimal solution, with the dashed lines
indicating the initial values.

of both solutions. It can be clearly seen that the optimal
solution (solid black curve) achieves smaller excursions
from the initial conditions (dashed curves). It is noted that
both the solutions x3 and x4 are reduced comparatively
(observe the scales of the vertical axes).

The cost criterion (13) is calculated over a time span of
100 s. For the optimal solution found by the algorithm, a
numerical value of J = 141.374 is found. A fine-gridded
brute force calculation of the cost for all possible initial
conditions finds a minimum of J = 141.316, illustrating
the effectiveness of the algorithm. To illustrate that it
makes sense to have a varying stiffness, the process is
repeated with the same parameter values, but with u2 ≡ 0,
i.e. a fixed stiffness. The algorithm then finds an optimal
cost of J = 158.397 (brute force: J = 155.998), which
is higher than obtained with the variable stiffness, even
though we assigned a higher cost to the dynamic changes
of the stiffness with respect to the equilibrium position.

7. CONCLUSIONS AND FUTURE WORK

In this paper, a cost criterion was proposed, that formu-
lates a measure of embodiment of desired behavior into a
variable stiffness actuator. In particular, minimization of
the cost criterion achieves a desired output motion with
minimum control effort. The effectiveness of this approach

was illustrated in an algebraic and a simulation example.
Currently, the algorithm is being implemented on a test
setup, and experimental results will be reported in a future
article.

Future work will focus on how the behavior of the variable
stiffness actuator should change in case of a disturbance,
considering the fact that the disturbance will add energy
to the system that may be used efficiently for actuation.
Furthermore, extensions to multi degree of freedom sys-
tems need to be formulated. Rather than considering each
degree of freedom separately, it should be investigated if a
coordinated approach to embodiment of desired behavior
in all degrees of freedom is possible.
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