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Abstract— This paper focuses on the estimation of the
impedance for a Variable Impedance Actuator (VIA) through
torque and position measurements. Despite the recent develop-
ment of several VIA, impedance control is not yet implemented
in closed loop because of the difficulty of obtaining in real-time
measurements of time-varying impedance. The estimation algo-
rithm is proposed as an alternative approach to the standard
procedures of impedance identification, to robustly tolerate
the variability of the mechanical stiffness due, for example,
to model uncertainties. The impedance estimator is therefore
implemented on the Actuator with Adjustable Stiffness (AwAS).
The effectiveness of the proposed estimator is proved through
simulation and experimental results.

I. INTRODUCTION

While most of today’s robots are built with rigid links and
joints, recent robotic research shifted toward a new paradigm
of intrinsically compliant robots. The first solutions of this
kind introduced simple linear springs between the actuators
and the links of a robot [1]. This approach was improved by
realizing actuators with integrated adjustable stiffness, where
springs, which could be tuned to the particular task in early
prototypes [2], and could be adjusted in real-time on more
recent devices ([3], [4] and [5]). Recently, devices which can
also regulate damping or inertia have been proposed [6], thus
generalizing Variable Stiffness Actuators (VSA) in Variable
Impedance Actuators (VIA)

The overall trend aims toward the development of VIA
[7] that can adapt to the particular tasks and even during the
task itself, changing the shape of their output dynamic char-
acteristic, possibly with more than one degree of freedom.

Development of such novel actuators gives rise to inter-
esting problems in term of control. A number of recent
papers tackle the problem of controlling variable stiffness
devices. Approaches, ranging from simple PD control [8] to
more sophisticate feedback linearization techniques [9],are
adopted to control stiffness in VIAs. Nevertheless, most of
these approaches suffer from the same flaw: the impedance
is not obtained trough direct measurements but it is inferred
from the mathematical model of the device. Even if modeling
an actuator in order to derive its stiffness seems like an
easy and feasible approach, three main obstacles render it
problematic. First of all, the derivation of a model requires
knowledge of the non-linear elastic mechanism of the actua-
tor, and while this is possible today on prototypical devices,
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Fig. 1. Concept of impedance observer for a variable stiffness robot: inertia,
damping and stiffness on the link side are estimated from measures of inputs
(motors currents) and outputs (angles and torques) of VSA device.

could not be facilitated or even hindered in tomorrow’s
commercial devices. Second, derivation of impedance from
a model requires fine calibration of the model parameters,
in fact, due to intrinsic non-linearities of most VIAs, small
errors in the model can badly propagate and produce large
errors in the reconstruction of impedance. Third, a model
approach does not easily account for parameter variation due
to wear, change in external condition (e.g. temperature) and
unmodeled dynamics.

In a recent work [2], a stiffness observer was proposed
as an alternative approach to face this problem. Without
relying on a detailed model of the actuator, but rather using
measurements of forces, positions and their derivatives, the
method is able to reconstruct the time-varying value of
stiffness. Its application to the case of VSA-powered robots
is partially restricted by the necessity of knowing estimates of
damping and impedance of the link, although the algorithm
shows some robustness to small errors on this information.

When linear impedance parameters are sufficient to model
a system, standard estimation techniques exist to solve this
problem, such as the Extended Kalman Filtering (EKF).
Given proper calibration, their performance is satisfactory.
A combined estimation approach is proposed to jointly
observe non-linear stiffness and linear damping and inertia
parameters. However, the first proposed implementation is
not always practical: due to the fact that a loop between the
two observers arises, robustness of the observation stability
is severely undermined.



Therefore we propose a technique for the combined esti-
mation of the whole set of impedance parameters of a VIA
powered system (as in Fig. 1), which avoids interacting ob-
servation loops, thus preserving robustness of the estimation.
The derived method can be applied to a class of variable
stiffness devices. Its practical feasibility is demonstrated by
applying it to the estimation of the impedance parameters of
the AwAS variable stiffness actuator, in simulations first and
experimentally as a final verification.

This document is organized as follows: in section II we
state the general frame of the problem, section III presents
our solutions, section IV shows result obtained both in sim-
ulations and experiments. Conclusions are drawn in section
V.

II. PROBLEM STATEMENT

Most of the VIA mechanisms are characterized by 3 de-
grees of freedom (DOFs) and, therefore, can be described by
a similar common structure. We will assume here that a VSA
can be modeled with one motor (indirectly) actuating the
link movement and another motor actuating the impedance
variation, as in Fig. 1, or:







Iq̈ +Nq̇ +Σ(θ2, · · · ) = τext
B1θ̈1 +D1θ̇1 − Σ(θ2, · · · ) = τ1
B2θ̈2 +D2θ̇2 + Γ(θ2, · · · ) = τ2.

(1)

The first equation of (1) represents the dynamics of the
link: I, N andΣ(θ2, · · · ) are inertia, damping and the non-
linear variable impedance of the link, respectively,τext is the
external torque on the link,q is the link angle. The second
equation of (1) represents the dynamics of the position
actuating motor:B1 andD1 are inertia and damping of the
link motor, respectively,τ1 is the motor torque andθ1 is the
motor angle. The third equation represents the dynamics of
the impedance actuating motor:B2 andD2 are inertia and
damping of the stiffness motor, respectivelyΓ(θ2, · · · ) is the
torque needed for the motors to change impedance andτ2
andθ2 are the motor torque and angle, respectively.

The functions

Σ(θ2, · · · ) = Σ(θ2, q − θ1, q̇ − θ̇1, · · · ) (2)

Γ(θ2, · · · ) = Γ(θ2, q − θ1, q̇ − θ̇1, · · · ), (3)

represent thevariable impedancepart of the system. Their
effective structure and the set of their arguments itself depend
on the particular VIA system considered, but it can usually
be restricted to the values ofθ2 , q−θ1 and their derivatives.
In the case of a VSA, i.e. a VIA where damping and inertia
are constant, the arguments ofΣ() andΓ() usually reduce
to just θ2 , q − θ1, respectively.

A. Variable Stiffness Estimator

In [2] an approach for the measurement of the stiffness
component of variable impedance actuators was proposed,
which is shortly resumed here for convenience. Assuming
that the stiffness-regulating inputθ2(t) and its first derivative
θ̇2(t) are bounded, more precisely assuming that the ratio

Fig. 2. Schematic of the observer as proposed in section III-A. The
interaction loop between the two observers is highlighted.

between the stiffness regulation rate of change and the
velocity of the measured trajectory is bounded, namely that,
for all timest during the application of the observer, it holds

|θ̇2(t)|

|q̇(t)|
< v ∈ IR, ∀t.

By differentiating the link dynamics in (1) with respect to
time, yields

τ̇ext = I
...
q +Nq̈ +K(q̇ − θ̇1) + Σuθ̇2, (4)

whereK = ∂Σ
∂δ

, with δ = q − θ1, is the link-side stiffness
of the VIA device1, Σu = ∂Σ

∂θ2
represents the effect ofθ2

on the force exerted by the motor on the link. If an estimate
K̂(t) of the stiffness is available, it can be used to build a
best-effort prediction foṙτext as

˙̂τext = I
...
q +Nq̈ + K̂(q̇ − θ̇1) . (5)

Let K̃(t) = K − K̂(t) be the estimation error. The update
law

˙̂
K = α ˙̂τextsgn(q̇ − θ̇1), (6)

with α > 0 andsgn(x) defined as usual, is shown to be such
that the estimation error is uniformly ultimately bounded,
with the bound given by

|K̃| >
|Kq|

α
+

(

|su|+
|Kθ2 |

α

)

v . (7)

Kq andKθ2 are partial derivatives ofK with respect toq
andθ2 respectively.

This approach has the disadvantage of necessitating to
knowledge ofI andN , which may not always be available.
A straightforward application of the former observer is,
therefore, not possible if those parameters are ignored.

Standard methods to identifyI andN rely on constant and
known stiffness values. Moreover, an on-line estimation of
I andN allows to address more general variable impedance

1The total impedance on the link side depends on the behavior ofθ1 and
θ2 which, in turn, depends on the particular control scheme adopted.



actuators, although, at this stage we can only prove conver-
gence ofK for slowly varyingI andN .

III. IMPEDANCE OBSERVERS

A. Combined EKF-Stiffness Observer

Assuming that a measurement of the torqueτext is known,
a possible approach to the combined estimation problem
relies on the juxtaposition of a stiffness observer and an EKF.
Rewriting (4)as

τ̇ext −K(q̇ − θ̇1)− Σuθ̇2 = τ̇∗ = I
...
q +Nq̈ , (8)

an EKF can be easily built in to estimate the impedance
parameters of the rightmost side given a measurement of
τ̇∗. Given the estimateŝI and N̂ derived from the EKF, the
estimation of stiffness can be obtained by using the best-
effort prediction for theτ̇ext defined now as

˙̂τext = Î
...
q + N̂ q̈ + K̂(q̇ − θ̇1) , (9)

where τ̂ext, Î, N̂ and K̂ are the estimations of external
torque, inertia, damping and stiffness, respectively.

By virtue of the robustness of the stiffness observer
algorithm claimed in [2], the error on the knowledge ofI
andN should introduce only an error on the estimateK.

The knowledge ofτ̇∗ is, unfortunately, unavailable but,
possesing possessing an estimate of the stiffnessK, can be
approximate as

˙̂τ∗ = τ̇ext − K̂(q̇ − θ̇1).

This approach has the advantage of estimating the whole
set of parameters using only torque and position measure-
ment (and their derivatives) without needing any other as-
sumption. It works under the hypothesis that the initial error
on the estimates ofI andN and the influence of the termΣu

are small enough. Nevertheless, as it is highlighted from the
block-diagram of Fig. 2, the problem of an interaction loop
between the two observers arises. This has a negative effect
on the stability of the algorithm, and can make convergence
depend strongly on initial guesses. A solution to this problem
is presented in the next section (III-B).

B. Decoupled Impedance observer

Assume that the torque sensor necessary for the stiffness
estimation is assembled between the actuator unit and the
link so as to measureΣ. It is possible to notice, that the
variable impedance termΣ, giving rise to the stiffnessK,
appears in both the first and second equations of (1). If we
consider, in particular, the second equation of (1), its general
form is identical to that needed by the stiffness observer.
While accomplishing the stiffness estimation task on the
first equation of (1) requires the knowledge ofI and N ,
performing the estimate on the second of (1) demands just
the knowledge of the motor parametersB1 andD1. Those
values can be usually deduced by the motor data-sheets,
or otherwise measured with standard off-line calibration
techniques2. The rest of the problem, i.e. the estimation

2Moreover, small errors in the knowledge of these two parameters are
robustly tolerated, as shown in [2].

of the inertiaI and the dampingN , can be realized with a
standard EKF on the system

Iq̈ +Nq̇ = û. (10)

Defining the extended state vector

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q
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

, (11)

allows to write the non linear discrete state representation
of (10) as


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




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, (12)

whereTc is the sampling time. From (12), a suitable EKF
can be designed which is effectively decoupled from the
stiffness observer (for some details see the appendix or [10]).
The stiffness observer, built in as explained in section II,is
discretized such as

K̂(k+1) = [α ˙̃Σsgn(qD − θD1 )]Tc + K̂(k), (13)

with ˙̃Σ defined as

˙̃Σ , ΣD − K̂D(qD − θD1 )−B1q
DD −D1q

DDD, (14)

with xD calculated, for a generic quantityx, as

[xD](k) =
x(k) − x(k−1)

Tc

. (15)

IV. RESULTS

The impedance observer was tested through simulations
and experiments on the Actuator with Adjustable Stiffness
(AwAS), developed by the Italian Institute of Technology
[11] (see Fig. 3). The dynamics of the AwAS actuator,
neglecting the gravity, can be described by the following
equations:







Iq̈ +Nq̇ + τE = τext
B1θ̈1 +D1θ̇1 − τE = τ1
B2θ̈2 +D2θ̇2 + τr = τ2

(16)

where I, N and M are the inertia, damping and mass of
the link with generalized coordinateq; Bi, Di and τi with
i ∈ [1, 2] are the inertia damping and command torque of the
motorsM1 andM2, respectively, with generalized coordinate
θi. The external torque applied at the joint is represented with
τext and the elastic torqueτE is formulated such as

τE = ksr
2 sin(2θs) (17)

whereks is the spring rate andθs = q − θ1 is the spring
deflection; the rotational stiffnessK = ∂τE

∂θs
is therefore

obtained such as

K = 2ksr
2cos(2θs). (18)
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(a) AwAS schematic (b) AwAS CAD (c) AwAS real prototype

Fig. 3. The Actuator with Adjustable Stiffness (AwAS) used as a testbed for the proposed impedance observer. Schematic (a), CAD image (b) and
prototype (c).

The joint stiffnessK depends on the lever armr, which is
the effective distance between the center of rotation of the
joint and the springs, and, in minor contribution, from the
deflection of the springs. The lever arm is adjusted through
a ball screw mechanism through the actuatorM2 such as

r = r0 − nθ2 (19)

wheren is the transmission ratio between the motor and the
ballscrew andr0 is the initial length. Finally, the torqueτr
which applies at the motorM2 is given by

τr = −2ksnrsin(θs)
2. (20)

Note that, to simplify the notation the motors inertia and
damping factors are already scaled by the transmission ratios.

A. Tuning

The observer was calibrated by trial and error as following.
1) Extended Kalman Filter: starting fromQ, R eP0|0 (see

section VII) matrices equal to the identity, diagonal
elements related to badly converging variables are
tuned.3

2) Stiffness observer: the only parameter to calibrate is
the observer gainα, it is obtained by optimizing the
trade-off between the effects of the measurement noise
on one side, and speed of convergence of the estimate
on the other.

B. Simulations

Results of simulations are shown in Fig. 4. The simulated
experiment consisted in feeding the two motors of the AwAS
actuator with two sinusoidal torque signals. Parameters ofthe
two observers are tuned as follows: the EKF (see section VII)
matrices are

Q = 0.001× I4×4

R = 0.001× I2×2,

with initial guesses

x0|0 =
[

0 0 0 0
]T

P0|0 = 10000× I4×4.

The stiffness observer gain (6) is set toα = 2000.

3In particular, elements ofQ are related to oscillation of the variables,
elements ofR (see section VII) to the convergence speed.P0|0, influences
the update speed on the initial moments in which EKF starts.

C. Experimental Setup

The setup of the AwAS system, employed for the exe-
cution of the experimental trials, is shown in Fig. 3. The
AwAS unit consists of two actuators. The main joint actuator
(Link Motor) is based on a combination of an Emoteq HT-
2300 frameless brushless motor (capable of a peak torque of
2.3Nm) and a harmonic reduction drive CSD 20 (reduction
ratio of N = 50 and peak rated torque of80Nm). The
stiffness adjusting actuator (Stiffness Motor) is realized by a
DC motor from Faulhaber (peak torque of0.8Nm) combined
with a ball screw reduction drive which converts the rotary
motion of this motor into a linear displacement, allowing to
change the effective lever arm and efficiently tune the joint
stiffness. More details on the mechanical implementation of
the AwAS unit can be found in [11] and [12]. The sensing
system of AwAS includes four position sensors and one
torque sensor; one optical encoder measures the position
of the link motor, two absolute magnetic encoders measure
position of the joint before (at the harmonic drive output)
and after the compliance module (link position) while an
incremental encoder monitors the position of stiffness motor
and subsequently the displacement of the linear drive. A
torque sensor is located between the harmonic drive and the
intermediate link and senses the torque applied by the link
motor. The general specifications of AwAS are presented
in Table I. The unit controller and power driver used to
control the AwAS unit are custom control boards based on
the Motorola DSP 56F8000 chip with CAN communication
interface.

TABLE I

GENERAL SPECIFICATION OFAWAS

Range of Motion(deg) -120÷120
Range of Stiffness (N m/rad) 30÷130
Peak Output Torque (N) 80
Length (m) 0.27
Width (m) 0.13
Total Weight (Kg) 1.8

The experiment consisted in feeding the two motors of the
AwAS actuator with two sinusoidal torque signals. Parame-
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Fig. 4. Simulation result. Mean values of relative errors:5.1% for the link
stiffness,6.7% for link damping and9.8% for link inertia.

ters of the two observers are tuned as follows: the EKF (see
section VII) matrices are

Q = 0.00001× I4×4

R = 0.000001× I2×2,
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Fig. 5. Experiment result. Mean values of relative errors:38.2% for the
link stiffness,9.4% for link damping and12.2% for link inertia.

with initial guesses

x0|0 =
[

0 0 0 0
]T

P0|0 = 100× I4×4,

while the stiffness observer gain (6) is set toα = 8.



D. Results Discussion

Results of simulations are shown in Fig. 4, while results
of experiments are presented in Fig. 5. The main differences
that can be noticed consist in a solwer convergence speed and
a larger error on the stiffness estimate. They arise mostly due
to the quantization error on the position sensor, which has
a negative relapse on the calculation of the derivatives, and
force the gains to be smaller.

V. CONCLUSIONS

This work proposed the development of an impedance
observer for Variable Impedance Actuators. The observer
was designed by combining a stiffness observer, designed
for non-linear systems, and an Extended Kalman Filter. The
clever placement of the torque sensor on the device allowed
the decoupling of the two observers, thus avoiding possible
instability issues that could have arised from the interaction
of the two observation dynamics. The resulting observer was
successfully tested on the AwAS variable stiffness actuator,
in numerical simulation in a first phase, and in physical
experiments subsequently.
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VII. APPENDIX: THE EXTENDED KALMAN
FILTER

The EKF is a discrete algorithm to estimated non linear
dynamics affected by noise. Given the nonlinear discrete
dynamic system







xk = f(xk−1, uk−1) + wk−1

yk = h(xk) + vk

, (21)

wherewk and vk are the process and observation noises,
both assumed as zero mean multivariate Gaussian noises
with covariance matricesQk and Rk respectively. Given
the Jacobian matrices of the state transition and observation
defined as

Fk−1 =
∂f

∂x

∣

∣

∣

∣

x̂k−1|k−1,uk

Hk =
∂h

∂x

∣

∣

∣

∣

x̂k|k−1

. (22)

Starting form the initial conditionsx0|0 (initial guess) and
P0|0 (covariance matrix of its likelihood), the EKF itera-
tively computes the current state prediction and the current
estimated covariance matrix of the filter from previous state

x̂k|k−1 = f(x̂k−1|k−1, uk−1)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk−1;

(23)

then, the algorithm updates the current state estimation from
(23) and the current estimation error (first equation of (24))

ỹ = rk − h(x̂k|k−1)

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1

x̂k|k = x̂k|k−1 +Kkỹk,

(24)

whererk is the current measurement of the non linear system
and Kk is the, so called, Kalman filter gain. Finally, the
EKF updates the estimation covarianace matrix for the next
interaction

Pk|k = (I −KkHk)Pk|k−1. (25)
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