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Abstract— We consider the problem of estimating non-linear
time-varying stiffness of a mechanical system based only on
force and position measurements. A recent work presented a
non-parametric stiffness observer, which converges to within
an Uniformly Ultimately Bounded neighborhood of the real
stiffness value. The method provides excellent results for
applications where the system is persistently excited. In this
paper, we provide a parametric identification method that
complements the previous solution in that it can provide, after
a sufficiently long learning period, a complete model of the
nonlinear stiffness, which can be applied henceforth even in the
absence of excitation. Convergence conditions for the proposed
method are discussed. Simulation and experimental results
are provided, illustrating the performance of the proposed
algorithm.

I. INTRODUCTION

Stiffness plays a role of paramount importance in many
robotic applications, allowing safety [1], dominating inter-
action control [2], saving energy [3], and preserving mech-
anisms [4]. As a consequence, a new category of devices
is being developed, which goes under the name of Variable
Stiffness Actuators (VSA) [5].

From a general viewpoint, a VSA is a mechanical trans-
ducer unit presenting a certain input-output characteristic
which can be changed with (at least) two degrees of freedom,
providing the possibility to regulate both the output rest
position and the slope of the output characteristic.

Typical control architectures, as [6], proposed for such ac-
tuators aim to attain independent control of link position (or
force), and its stiffness with respect to external disturbances.
Although effective feedback control schemes using position
and force sensors are commonplace in robotics, the problem
of controlling stiffness is rather new. Indeed, to the best of
our knowledge, in all existing control schemes, a real closed-
loop control of stiffness is not possible, because stiffness is
not really measured in real-time. Rather, an estimate of the
actuator stiffness is inferred from the mathematical modelof
the actuator. Unfortunately, such practice is prone to errors,
as it is extremely sensitive to model inaccuracies, which are
typically large for the nonlinear mechanical systems used in
VSA.

With the above motivations, in [7] the authors proposed a
solution to the problem of measuring stiffness in real-time,
proposing a non-parametric observer capable of estimating
the non-linear time-varying stiffness of a mechanical system
based only on force and position measurements and their (nu-
merical) derivatives. The proposed observer estimation error
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Fig. 1. A two level control system for a Variable Stiffness Robot: On
the lowest level a position and stiffness controller tracksthe references
generated by the higher level trajectory planner. Both control loops rely on
knowledge on the stiffness of the actuator: the instantaneous value of the
stiffness is used by the inner loop while the shape stiffnessfunction is used
by the outer one.

was shown in theory to be Uniformly Ultimately Bounded,
and experimental results demonstrated the practicality ofthe
algorithm.

In this work we propose a different method for the
estimation of variable stiffness, which tries to overcome some
of the limitations of the previous approach. To pursue this
goal, the observation problem is projected on the vector
basis of a function space. This consists in describing the
characteristic output function of the system with a parametric
model, whose parameters are updated with an appropriate
law to converge to the real stiffness characteristic of the
device. The estimate model offers the advantage of being
applicable also when the trajectory of the system is not
exciting enough, allowing for reconstruction of the stiffness
value in a wider set of situations with respect the the non-
parametric approach. One further advantage of the parametric
structure lies in the possibility to define the model as a
function from Rn to R, exploiting a wider set of inputs
than the non-parametric observer. This, applied to the case
of VSA systems, allows to exploit of one additional, usually
available, measurement: the internal configuration of the
stiffness controlling mechanism.

An advantage of this approach is the possibility to avoid,
to a certain extent, the usage of derivatives of the input
signals, even if at the cost of convergence speed. A further
and stronger advantage offered by parametric observation lies
in the possibility to feed the estimate model to higher levels
of the control architecture, realizing the control system of
Fig. 1. Position-Stiffness trajectory planners can be thought,
which using the model information, generate optimized



(a) Agonist-Antagonist VSA (b) Explicit Stiffness Variator

Fig. 2. Two common categories of Variable Stiffness Actuators: the
definitions of the deformation angley, the stiffness angleu and the recoil
torquef are shown.

trajectories, guaranteeing safety [1], preserving energy, or
pursuing other goals, based on the particular control policy.

Section II states the problem and resumes briefly the
solution proposed in [7]. Section III derives the new para-
metric approach and discusses its properties. Sections IV
and V report some results obtained applying the observer
on simulated and experimental data-sets, with a compari-
son between results obtained by both parametric and non-
parametric approaches.

II. PROBLEM STATEMENT

Given a generic nonlinear spring whose reaction force
f depends on its displacementy and a vector of internal
configuration variablesu, its stiffnessσ can be defined as

σ(y, u) =
∂f(y, u)

∂y
.

An approach for the measurement of non-linear time-
varying stiffness of a mechanical system was recently pro-
posed in [7]. It consists in a non-parametric observer which
based on the sensed values of torque (or force) and defor-
mation, estimates the stiffness with an Uniformly Ultimately
Bounded error defined by
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In equation 1, the letterv is an upper bound of the ratio
between the rates of change ofu(t) and the measured
deformationy(t), namely∀t : v > |u̇(t)|/|ẏ(t)|.

Equation 1 defines the limitations of the non-parametric
observation approach. The first limitation, somehow intrinsic
to the observation problem, is due to fact that the algorithm
uses movement of the device to estimate its stiffness, so it
cannot estimate when the movement speed is null.

The second limitation to the non parametric approach
comes from the dependency of the characteristic function
f on the variableu. In the worst conditions, if the stiffness
is changing while outside of observability conditions, the
change can not be tracked by the non-parametric observer,
which simply stops observing.

A smarter approach to the observation problem should
try to exploit the knowledge of the variableu: Its value is
not accessible in every situations, as an example consider

the measurements in biological systems that were also con-
sidered in [7]. However access to this value is, in variable
stiffness actuators, taken for granted. Most of VSA, in fact,
can be described as mechanical systems with 3 degrees
of freedom: one for rest position of the output shaft, one
for the configuration of the stiffness adjusting mechanism
(u) and one for the deflection of the output shaft from its
rest position (y)1. Values of those coordinates, or of an
equivalent basis, are always measured for feedback control,
thus their knowledge should be used to improve estimation
performance.

III. PARAMETRIC APPROACH

We propose now a method for circumventing some of
the limitations just mentioned, namely by the adoption of
a parametric observer which tries to reconstruct the whole
force functionf(y, u).

Without loss of generality, group the two inputs of the
force/displacement characteristic,y andu in a vectorx, as in
f(y, u) = f(x). Assume that it is possible to write down the
elastic force expression on a series expansion on the vector
basis of function space, defined on functions fromR2 to R,
we get2

f(x) =

∞∑

i=1

fi(x)ci, (2)

whereci areconstant parameters.
The above expression can be truncated to theN th term,

obtaining

f(x) =

N∑

i=1

fi(x)ci + fr(x) = cTF (x) + fr(x) (3)

c andf(x) are column vectors of lengthN , andfr(x) is the
residual term, neglected with the truncation.

The partial derivatives off(x) with respect to the elements
of the vectorx are collected in the row-vector
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]
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]
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Exploiting the structure given to the functionf(x) by
equation 3, the above can be rendered as

Σ = cTS +Σr(x), (5)

where S = S(x) is a matrix with the derivatives of the
elements of the vectorf with respect to the elements ofx:

S =
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∂xj

]
=
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The output stiffness to be estimated is one of the partial
derivatives contained inΣ, thus if an approximation̂c of the

1Figure 2 shows the definition of these angles on two of the most common
Variable Stiffness designs: an Agonist-Antagonist VSA andan Explicit
Stiffness Variator.

2the limitation to R
2 is just practical for our case, but most of the

conclusion drawn in this work can be generalized to functions with domain
in R

n.



vector c is known, and the residual termσr = ∂fr
∂y

is small
enough, stiffness can be approximated as

σ = Σ1 ≈ ĉTS1 = σ̂. (7)

To discuss the dynamics of the stiffness estimate, we analyze
the Lyapunov function and derivative

VΣ = Σ̃Σ̃T ⇒ V̇Σ = Σ̃ ˙̃ΣT + ˙̃ΣΣ̃T

whereΣ̃ is defined as the estimation error onΣ. Regarding
the derivative ˙̃Σ, it holds

˙̃Σ = Σ̇−
˙̂
Σ = Σ̇r + cT Ṡ − ˙̂c

T
S − ĉT Ṡ =

= Σ̇r + c̃T Ṡ − ˙̂c
T
S. (8)

Choose
˙̂c , S(STS)−1A sgn(ẋ) ˜̇

f (9)

where, here, the operation sgn(ẋ) is intended component

wise,A is a positive definite gain matrix and˜̇f is defined as

˜̇
f , ḟ −

˜̇
f = cTSẋ+Σrẋ− c̄TSẋ =

= c̃TSẋ+Σrẋ. (10)

This implies

˙̂c = S(STS)−1A sgn(ẋ)ẋT
(
ST c̃+ΣT

r

)
=

= S(STS)−1A sgn(ẋ)ẋT Σ̃T ,

leading to

˙̃Σ = Σ̇r + c̃T Ṡ −
(
S(STS)−1A sgn(ẋ)ẋT Σ̃T

)T
S

= Σ̇r + c̃T Ṡ − Σ̃ ẋ sgn(ẋ)T AT (STS)−1STS

= Σ̇r + c̃T Ṡ − Σ̃ ẋ sgn(ẋ)T AT . (11)

The definiteness of the outer productP (ẋ) = ẋ sgn(ẋ)T ,
should be discussed. First notice that the matrix, generated
by the outer product of two vectors, has all but one of its
eigenvalues equal to zero. Being the trace of the matrix equal
to the sum of all the eigenvalues, it also equals, in this case,
the only non-zero eigenvalue. Looking at the trace ofP (ẋ),
it can be easily shown to be

trace(P (ẋ)) =
∑

i

|ẋi| ≥ 0, (12)

Implying that the matrixP (ẋ) is non-negative definite.
Going back to

V̇Σ = 2
(
Σ̇r + c̃T Ṡ − Σ̃ ẋ sgn(ẋ)T AT

)
Σ̃T ,

it is non-positive definite but for the two termṡΣrΣ̃
T and

c̃T ṠΣ̃T . Suppose that the first can be neglected due to
negligibility of the residual term, the convergence of the
second to zero and the Persistent Excitation of the trajectory
of x(t), that is

∀t, δt : α1I ≤

(∫ t+δt

t

A sgn(ẋ) ẋT dt

)
≤ α2I (13)

will ensure the convergence of the estimate to the real value
of stiffness (see [8] for details). If, on the other hand the
contribution of the residual term can not be ignored, a
bounded error result will be obtained. The discussion of this
case is more complicate and is not reported.

To check the convergence ofc̃T Ṡ to 0, analyze now the
dynamic of the error̃c = c− ĉ with the Lyapunov function,
and its Lyapunov derivative:

Vc = c̃T c̃ ⇒ V̇c = c̃T ˙̃c+ ˙̃cT c̃. (14)

Exploiting the equivalent expression of˜̇f it holds that

˙̃c = − ˙̂c =

= −S(STS)−1A sgn(ẋ) ẋTST c̃+

−S(STS)−1A sgn(ẋ) ẋTΣT
r (15)

the first of the two terms, namelySMST =
S(STS)−1A sgn(ẋ)xTST , can be easily shown to be
non-negative definite, this becauseM is the product of

(STS)−1 > 0

A > 0

sgn(ẋ)xT = PT (ẋ) ≥ 0

and thus is non-negative definite. Once again, when the
second term is negligible, the error on the estimate ofc
is non-divergent, Persistent Excitation of the trajectory, this
time in terms of

∀t, δt : (16)

α1I ≤

(∫ t+δt

t

S(STS)−1A sgn(ẋ) ẋTST dt

)
≤ α2I

makes the estimatêc converge to the correct value.
Going back to the evolution of̃Σ, it is important to notice

that whenever
‖c̃‖ṠṠT < ‖c‖ṠṠT , (17)

it yields
‖c̃T Ṡ‖ < ‖cT Ṡ‖. (18)

Note that the right term‖cT Ṡ‖ of the last equation the
variation induced bẏy andu̇ on the stiffness, this is the point
where the advantage of the parametric observer over the non
parametric one becomes clear. Recall, in fact, that in 1 the
error bound is proportional tȯσ, one of the two elements
of Σ̇ = cT Ṡ. Equation 18 implies that there exist, in the
parametric observer, conditions for which the error bound is
smaller than the non-parametric observer error, which are,in
substance, those of equation 17.

A. On the speed of convergence

Equation 16 shows, in ultimate analysis, the convergence
conditions for the error on the parametersc̃. These alone are
enough to imply the convergence of the stiffness estimate,
in fact

lim
c̃→0

Σ̃ = lim
c̃→0

c̃TS = 0. (19)



However, all the analysis about the errorΣ̃ was not pointless:
remember that analyzing the dynamics ofc̃ and Σ̃, we fall
in both cases on negative semi-definite Lyapunov derivative
function, and must resort to ask Persistent Excitation condi-
tions to ensure convergence of the error. In both situations
the error can decrease just along one direction of the error
space, but an important difference exists: the dimension of
the state-space of̃c is usually much bigger than that of̃Σ
which is just of dimension 2. This consideration leads to state
that while the convergence speed of the parameters vectorĉ
could be slow, convergence of the estimateΣ̂ will be, in
practice, much faster. Experiments and simulations of latter
sections will show it is in fact comparable to the speed of
the non-parametric observer.

B. Overcoming the need for derivatives

One limitation of the current approach is the need for
derivatives of signalsx andf . Equation 19 hints a possibility
to overcome it, which consists in building an update law
which converges̃c. Such an update law can be built based
solely on the prediction error on the estimate off as follows.

Given an estimatêc of the vectorc, an estimate of the
force f can be built asf̂ = ĉTF , whereF = F (x) as in
equation 3, from which the error̃f for which holds

f̃ , f − f̂ = Fr(x) + cTF − ĉTF = Fr(x) + c̃TF . (20)

Defining an update law

˙̂c∗ , α(FTF )−1F f̃ , (21)

whereB is a positive definite gain matrix (the subscript∗ is
used to distinguish from the update law in 9), yields for the
dynamics of thẽc

˙̃c = − ˙̂c = −α(FTF )−1F
(
Fr(x) + c̃TF

)
=

= −α(FTF )−1FFT c̃− α(FTF )−1FFr(x),

which renders the derivative of the Lyapunov functionVc of
equation 14 non-positive definite provided that the truncation
error termFr(x) is negligible. Persistent excitation in terms
of

∀t, δt : α1I ≤

(∫ t+δt

t

α(FTF )−1FFT dt

)
≤ α2I (22)

will make the estimatêc converge on the real valuec.
Convergence of vector̂c yields convergence of the parametric
model to the real mechanical characteristic represented bythe
function f(x); this, by virtue of 19, yields convergence of
estimation of stiffness calculated asĉtS1. Nevertheless, de-
riving the innovation from the error̃f instead of ˜̇f , prevents
considerations on convergence speed similar to those derived
in subsection III-A. This translates, in practice, in a slower
convergence of the estimate of the stiffness value. Given a
point x where to measure stiffness, the estimate becomes
accurate only after the model has converged in the whole
neighborhoodx. This renders, at the moment, the derivative-
free approach less feasible for real-time measurements like
those needed for closed loop control, unless an already

accurate initial guess for the vectorc is available. A deeper
analysis on this possibility is demanded to future works.

C. On the choice of the Function basis

The discussions of this work prescind from the particular
function basis chosen to represent the functionf(y, u).
The only strict requirements lie on the derivability of the
functions composing the basis, such that the matrixS can
be derived from the vectorf . Nevertheless, a deeper analysis
of this aspect of the problem could lead to improvement on
the performance of the estimator.

The simplest aspect to consider is that the error dynamic
is excited by the derivative of the residual termfr(y, u),
a good choice for the function basis should take this into
account. Thus, whenever some information on the shape
of the function f(y, u) exists, the design process of the
estimator should pick a basis where the functionf can be
represented exactly by a finite set of basis elementsfi(y, u),
or otherwise, try to minimize the approximation error.

Even this aspect of the problem is, in our opinion, deep
and unexplored, and needs a more exhaustive analysis, which
is demanded to future investigations.

IV. SIMULATION RESULTS

In this section of the paper results of the proposed stiffness
observer are presented and compared with the performance
of the non-parametric method proposed in [7].

A. Simulation 1

In this first application the parametric observer is applied
to estimate the stiffness of an Agonist-Antagonist VSA
mechanism (as the one shown in Fig. 1(a)) realized with
two identical cubic springs, whose force-displacement char-
acteristic is described by

f = (yi − yL)
3.

This determines a VSA system where the equilibrium point
of the link is, in the absence of external loads, in the
middle positionyE = (y1 + y2)/2. The link deflectiony, in
consequence, is quantified byy = yL−yE . The configuration
of the stiffness can be easily described by completing the
configuration space of the mechanism, for example with the
variableu = (y2− y1)/2. Under these hypotheses the force-
displacement characteristic of the system can be easily shown
to be f(y, u) = (2y3 + 6yu2) . As a consequence, the
stiffness function isσ(y, u) = 6(y2 + u2). This particular
function can be completely represented on a the function
basis of the kind

fk(y, u) = yiuj with k =
(
(i− j)

2
+ i+ j

)
/2, (23)

using only the first 9 elements of the basis, byc =
[0 0 0 0 0 0 0 2 6 0 · · · ]T . This ensures that if expressing the
function with at least 9 terms of the basis 23 the residual
term fr and its derivatives are null.

The parameters of the two observers are set as follows:
for the non-parametric observer, the gain is set toα = 100,
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Fig. 3. Results of Simulation 1: performance of the parametric and non-
parametric observers tracking the stiffness of an Agonist-Antagonist VSA
system featuring a stiffness function which is completely representable on
the truncated basis adopted by the parametric observer.
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Fig. 4. Results of Simulation 1: observation of the functionsdescribing
the recoil force and the stiffness of the system. Blue color isused for the
real functions and red color for the estimate ones respectively.

for the parametric one we adopt the first 10 elements of the
basis equation 23 and set the gain matrix toA = 100I.

Results are shown in Fig. 3: both techniques exhibit
analogous satisfactory performance as expected. Panel (c)of
Fig. 3 shows the time evolution of the Lyapunov functions
VΣ and Vc on a semi-logarithmic scale: as expected the
magnitude ofVc is always non-increasing but after a fast
start its convergence speed is sensibly slowed down. The
magnitude ofVΣ, on the other hand, is not always decreasing
because of the influence of̃cṠ, but, in practice, it is much
faster, shrinking its magnitude by two orders in the first few
seconds, and remaining contained afterwards.

Panels on Fig. 4 show a comparison of the reconstructed
model in term of the functionŝf and σ̂ with the real one,
highlighting a good conformance between the two.

B. Simulation 2

In this second simulated experiment, both observers are
used to track the stiffness of an Agonist-Antagonist VSA, re-
alized with exponential springs. This device, fully described
in [7], is characterized by the force and stiffness functions

f(y, u) = k(ey+u − eu−y) ⇒ σ(y, u) = k(ey+u + eu−y).
(24)

The gain of both observers is kept the same as in the previous
simulation, but the state-space of the parametric observeris
increased, using up to the15th element of the function basis
of equation 23. This modification is introduced to face the
fact that the exponential functions of equation 24 can not be
completely represented over a finite sub-set of this basis, and
thus, to render the residual term small enough.

Results are shown in Fig. 5. Notwithstanding the imperfect
representability of the function over the chosen function
basis subset, the parametric observer performance keeps
satisfactory.

Another important result is visible in the second simula-
tion, which is an advantage of the parametric observer over
the non-parametric one. Looking at the two time intervals
[10, 20]s and [40, 50]s in Fig. 4(c), it can be noted that the
evolution ofy stops: this leads to a drop of the convergence
conditions of the non-parametric observer, which simply
stops observing. The parametric observer, on the other hand,
is building its estimate also on the knowledge ofu. Thanks to
the model it learned already, it keeps estimating the stiffness
of the system even in those adverse conditions. The error
is sensibly lower justifies the increased complexity of the
algorithm.

V. EXPERIMENTAL RESULTS

A. Set-up description

Finally, to validate the performance of the new parametric
observer, ensuring a fair comparison between parametric
and non-parametric approaches, the authors chose to apply
the observer to the very same data set recorded during the
experimental sessions described in [7].

We briefly recall here that the data are relative to an
Agonist-Antagonist VSA with exponential springs, similar
to that described in section IV-B. Due to uncertainties in the
model of the actuator and in the identification of the model
parameters, the knowledge of the “true stiffness” is reliable
up to an error of about 25%, represented by the horizontal
green line in Fig. 5(b) (For full details on the experimental
set-up, model identification and data collection, please refer
to [7]).

The gain of the non-parametric observer is set toα = 1.
The parametric observer, uses the function basis adopted in
IV-B, while the gain matrix is set toA = I. Once again,
gains of the two observers are kept comparable for sake of
fairness.

B. Results

Results, reported in Fig. 6, show the substantial similarity
between the performance of the two methods. Neverthe-
less, the advantage of the parametric approach, exposed in
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Fig. 5. Results of Simulation 2: performance of the parametric and non-
parametric observers tracking the stiffness of an Agonist-Antagonist VSA
system featuring a stiffness function which is not completely representable
on the truncated basis adopted by the parametric observer.

previous sections, is evident once again: due to the drop
of speed ofy in conjunction with a tangible change in
u after time t = 24s, the non-parametric observer suffers
for a drop of performance. The parametric observer on the
other hand, exploiting the information relative tou, and
the collected information about the model, does not suffer
from this inconvenience, keeping the relative error small,
comparable to the model reliability threshold of 25%.

VI. CONCLUSIONS AND FUTURE WORK

This work presented a parametric observer designed to
measure the non-linear, time-varying stiffness of a VSA
device, using force and position sensors. The method is an
evolution of a non-parametric observer recently presented
in literature. At the cost of using a bigger state-space the
proposed solution is proven to present two main advantages
over the former one: the possibility to use the measurement
of the stiffness-setting angle, and the capacity to reconstruct
the shape of the stiffness function. Finally, an interesting
aspect of the new algorithm, i.e. the possibility not to use
the derivative of the input signals, was introduced to be
addressed deeply in future works.

Conditions for the convergence of the algorithm were
derived and then performance of the observer was compared
with results obtained with the former approach, both with
simulations and experimental data.
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Fig. 6. Experimental Results: results obtained using the parametric and
non-parametric algorithm are compared in terms of tracking andrelative
error on panels a and b, in panel c the evolution ofy and u is shown.
Notice how the performance of the two observers are similar formost of
the experiment but differ (in favor of the parametric observer) after second
24.
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