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Abstract— We consider the problem of estimating non-linear e ‘
time-varying stiffness of a mechanical system based only on planner
force and position measurements. A recent work presented a RE
non-parametric stiffness observer, which converges to within 5| |8 Stiffness
an Uniformly Ultimately Bounded neighborhood of the real Sl |8 Stiffness Observer
stiffness value. The method provides excellent results for 5| |8 estimate
applications where the system is persistently excited. In this g| | angles &
paper, we provide a parametric identification method that RINE torques |l
complements the previous solution in that it can provide, after Position & -
a sufficiently long learning period, a complete model of the B Stiffness . N |
nonlinear stiffness, which can be applied henceforth even in the s Controller "Bad | e
absence of excitation. Convergence conditions for the proposed
method are discussed. Simulation and experimental results
are provided, illustrating the performance of the proposed
algorithm. Fig. 1. A two level control system for a Variable Stiffnesst®t On
the lowest level a position and stiffness controller traths references
[. INTRODUCTION generated by the higher level trajectory planner. Both rebibops rely on

- : - owledge on the stiffness of the actuator: the instantane@lue of the
Stiffness plays a role of paramount importance in man tiffness is used by the inner loop while the shape stiffifiesstion is used

robotic applications, allowing safety [1], dominatingént by the outer one.
action control [2], saving energy [3], and preserving mech-
anisms [4]. As a consequence, a new category of devices

is being developed, which goes under the name of Variable . . .
Stiffnesgs Actuatrt))rs (VSA) [g] was shown in theory to be Uniformly Ultimately Bounded,

From a general viewpoint, a VSA is a mechanical transf_ind experimental results demonstrated the practicalithef

ducer unit presenting a certain input-output characteristalgor'thm' ,

which can be changed with (at least) two degrees of freedom,!n this work we propose a different method for the

providing the possibility to regulate both the output resf:stlmatl_or? of_varlable stlffnes§, which tries to overcorome _

position and the slope of the output characteristic. of the limitations of the previous appr(_)ach. To pursue this
Typical control architectures, as [6], proposed for such ad0@l, the observation problem is projected on the vector

tuators aim to attain independent control of link position ( Pasis of a function space. This consists in describing the

force), and its stiffness with respect to external distodes. characteristic output function of the system with a parainet

Although effective feedback control schemes using pasitio™del, whose parameters are updated with an appropriate
and force sensors are commonplace in robotics, the probldyV t0 converge to the real stiffness characteristic of the

of controlling stiffness is rather new. Indeed, to the best dlevice. The estimate model offers the advantage of being
our knowledge, in all existing control schemes, a real dese @PPlicable also when the trajectory of the system is not

loop control of stiffness is not possible, because stifiniss €XCiting enough, allowing for reconstruction of the stiffs
not really measured in real-time. Rather, an estimate of tf{@/ue in a wider set of situations with respect the the non-
actuator stiffness is inferred from the mathematical madel Parametric approach. One further advantage of the parametr
the actuator. Unfortunately, such practice is prone torgyro Stucture lies in the possibility to define the model as a
as it is extremely sensitive to model inaccuracies, whigh afunction from R™ to R, exploiting a wider set of inputs
typically large for the nonlinear mechanical systems used {han the non-parametric observer. This, applied to the case
VSA. of VSA systems, allows to exploit of one additional, usually
With the above motivations, in [7] the authors proposed g\(ailable, measurement: th_e internal configuration of the
solution to the problem of measuring stifiness in real-timeStifiness controlling mechanism.
proposing a non-parametric observer capable of estimatingAn advantage of this approach is the possibility to avoid,
the non-linear time-varying stiffness of a mechanicaleyst 0 @ certain extent, the usage of derivatives of the input
based only on force and position measurements and their (rtignals, even if at the cost of convergence speed. A further

merical) derivatives. The proposed observer estimaticor er @nd stronger advantage offered by parametric observagisn |
in the possibility to feed the estimate model to higher Isvel
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(a) Agonist-Antagonist VSA (b) Explicit Stiffness Variator

_ the measurements in biological systems that were also con-
mb G +1, =) m b §t|fﬁ1essylotor

sidered in [7]. However access to this value is, in variable
stiffness actuators, taken for granted. Most of VSA, in fact
can be described as mechanical systems with 3 degrees
of freedom: one for rest position of the output shaft, one
for the configuration of the stiffness adjusting mechanism
(u) and one for the deflection of the output shaft from its
rest position {)!. Values of those coordinates, or of an

co o ' _ _ equivalent basis, are always measured for feedback control
defitions of the deformation angks the sifnese angle. and the recol 1US their knowledge should be used to improve estimation
torque f are shown. performance.

0,-(0,+0)/2=y

I1l. PARAMETRIC APPROACH

trajectories, guaranteeing safety [1], preserving eneogy =~ We propose now a method for circumventing some of
pursuing other goals, based on the particular control policthe limitations just mentioned, namely by the adoption of

Section Il states the problem and resumes briefly the parametric observer which tries to reconstruct the whole
solution proposed in [7]. Section Il derives the new paraforce functionf(y,u).
metric approach and discusses its properties. Sections IVWithout loss of generality, group the two inputs of the
and V report some results obtained applying the observésrce/displacement characteristicandw in a vectorz, as in
on simulated and experimental data-sets, with a comparf{y, ) = f(z). Assume that it is possible to write down the
son between results obtained by both parametric and noglastic force expression on a series expansion on the vector
parametric approaches. basis of function space, defined on functions frRhto R,

we get
I[I. PROBLEM STATEMENT

Given a generic nonlinear spring whose reaction force

f depends on its displacemeptand a vector of internal

configuration variables, its stiffnesss can be defined as Wherec; areconstant parameters.
The above expression can be truncated to AHB term,

o U ..
o(y,u) = fg;) obtaining

N
An approach for the measurement of non-linear time- f(z) = Zfi(gj)ci + fr(z) = c"F(z) + fr(x)  (3)
varying stiffness of a mechanical system was recently pro- i=1

posed in [7]. It consists in a non-parametric observer which i .
based on the sensed values of torque (or force) and def$ and f(x) are column vectors of lengti, and f, (x) is the

mation, estimates the stiffness with an Uniformly Ultimgte Esidual term, neglepted with th? truncation.
) The partial derivatives of () with respect to the elements
Bounded error defined by
of 1

of the vectorz are collected in the row-vector
95
(1)

OF (x) OF (x)
du Z_{axi}_[a 8u]
In equation 1, the letter is an upper bound of the ratio Exploiting the structure given to the functiofi(z) by
between the rates of change oft) and the measured equation 3, the above can be rendered as
deformationy(t), namelyVve : v > |a(t)|/|y(¢)]. T
Equation 1 defines the limitations of the non-parametric L= S+E (), ®)
observation approach. The first limitation, somehow isiGn \\here 5 — S(z) is a matrix with the derivatives of the
to the observation problem, is due to fact that the algorithigiements of the vectof with respect to the elements of
uses movement of the device to estimate its stiffness, so it
cannot estimate when the movement speed is null. o [Wi(ﬂ?)} _ [5fi(3?) ‘afi($>:| _[S11S)]. (6)
The second limitation to the non parametric approach Ox; Jy Ou
comes from the dependency of the characteristic function The output stiffness to be estimated is one of the partial

.f on the_varlab l.e“' In th_e worst condmo_n_s, i the_s_uffness derivatives contained iix, thus if an approximatio@ of the
is changing while outside of observability conditions, the

Ch?-nge_can not be traCke(_j by the non-parametric observerngigyre 2 shows the definition of these angles on two of the muateon
which simply stops observing. Variable Stiffness designs: an Agonist-Antagonist VSA amd Explicit
A smarter approach to the observation problem shoulfgfifiness variator. = .
. . . the limitation to R“ is just practical for our case, but most of the
try to exploit the knowledge of the variable Its value is

) - : ; . conclusion drawn in this work can be generalized to funatinith domain
not accessible in every situations, as an example considem”.

flz) = _Z fi(z)ei, )
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vector ¢ is known, and the residual term. = %’; is small will ensure the convergence of the estimate to the real value
enough, stiffness can be approximated as of stiffness (see [8] for details). If, on the other hand the
T contribution of the residual term can not be ignored, a

c=Y1~¢ S =0. () bounded error result will be obtained. The discussion o thi
To discuss the dynamics of the stiffness estimate, we a@aly$aSe is more complicate and is not reported.

the Lyapunov function and derivative To check the convergence 6f S to 0, analyze now the
o ) . . dynamic of the errof = ¢ — ¢ with the Lyapunov function,
Ve =SS = v =227 4 237 and its Lyapunov derivative:
whereX is defined as the estimation error &h Regarding Vi=éle=V,.=clé+éle. (14)

the derivativeY, it holds . , s
Exploiting the equivalent expression ¢fit holds that

$ = $-S=5.4T5-F5-Ts= . -
. . .T c = —Cc=
= 2, +&8-C 8. ®) —S(STS) *Asgn(i) a7 ST+
Choose . 3 —5(STS) "t Asgni) it xT (15)
¢ 5(8TS)tAsgn) f ©9)

the first of the two terms, namelySMST =
where, here, the operation g is intended component S(S7S)~'Asgn(i)«”S”, can be easily shown to be

wise, A is a positive definite gain matrix anflis defined as Non-negative definite, this becausé is the product of

e jof=c"Sit+5i—c"Si= CE.
= FSi+ 3, (10) A >0
o sgr(i)a” = PT(i) > 0
This implies
. S P - and thus is non-negative definite. Once again, when the
¢ = S(sT8)TAsgn)it (STe+3y) = second term is negligible, the error on the estimatec of
= S(STs)tAsgni)zTxT, is non-divergent, Persistent Excitation of the trajectainjs
) time in terms of
leading to

Vt, 6t - (16)

K3 . . - T
5 = 2r+aTs—(S(STS)*lAsgr(i)j;TzT) S 1ot
ol < / S(STS)tAsgni) a7 STdt | < asl
t

3, + 'S —Sisgni)” AT (878)~1sTs

— Y ~T & S NT AT
= X+ S-Xasgi) AT (1) makes the estimate converge to the correct value.
The definiteness of the outer produéfi) = i sgn(i)7, Going back to the evolution df, it is important to notice
should be discussed. First notice that the matrix, gengratihat whenever
by the outer product of two vectors, has all but one of its €l ggr < llellggrs (17)
eigenvalues equal to zero. Being the trace of the matrixlequg ields
to the sum of all the eigenvalues, it also equals, in this,casI y e I
the only non-zero eigenvalue. Looking at the tracePgk), 1S < lle™ S (18)
it can be easily shown to be Note that the right term|c” $|| of the last equation the
trace P(i)) = Z s > 0 (12) variation induced by and on the stiffness, this is the point

- where the advantage of the parametric observer over the non
parametric one becomes clear. Recall, in fact, that in 1 the
Implying that the matrixP() is non-negative definite. error bound is proportional té, one of the two elements
Going back to of ¥ = ¢T'S. Equation 18 implies that there exist, in the
parametric observer, conditions for which the error bound i
smaller than the non-parametric observer error, whichiare,
substance, those of equation 17.

Vi =2 (zr + TS — Sisgrd)” AT) sT,

it is non-positive definite but for the two terms, =7 and
¢"S¥T. Suppose that the first can be neglected due t§ O the speed of convergence
negligibility of the residual term, the convergence of the

second to zero and the Persistent Excitation of the trajgcto =duation 16 shows, in ultimate analysis, the convergence
of z(t), that is conditions for the error on the parametérd’hese alone are

enough to imply the convergence of the stiffness estimate,
in fact

t+6t
Vit ot s onl < (/ Asgnt) det) <al (13) lim Y = lim 7S = 0 (19)
; .

c—0 c—0



However, all the analysis about the ertdmwas not pointless: accurate initial guess for the vectoiis available. A deeper

remember that analyzing the dynamicsdo&nd &, we fall  analysis on this possibility is demanded to future works.

in both cases on negative semi-definite Lyapunov derivative ) ) ]

function, and must resort to ask Persistent Excitation gondC: On the choice of the Function basis

tions to ensure convergence of the error. In both situations The discussions of this work prescind from the particular

the error can decrease just along one direction of the errfunction basis chosen to represent the functipfy,u).

space, but an important difference exists: the dimension @he only strict requirements lie on the derivability of the

the state-space df is usually much bigger than that & functions composing the basis, such that the maftigan

which is just of dimension 2. This consideration leads ttestabe derived from the vectof. Nevertheless, a deeper analysis

that while the convergence speed of the parameters véctoof this aspect of the problem could lead to improvement on

could be slow, convergence of the estimatewill be, in  the performance of the estimator.

practice, much faster. Experiments and simulations oéfatt The simplest aspect to consider is that the error dynamic

sections will show it is in fact comparable to the speed ok excited by the derivative of the residual terfn(y,u),

the non-parametric observer. a good choice for the function basis should take this into

account. Thus, whenever some information on the shape

of the function f(y,u) exists, the design process of the
One limitation of the current approach is the need fogstimator should pick a basis where the functjpran be

derivatives of signals and f. Equation 19 hints a possibility represented exactly by a finite set of basis elemgrits u),

to overcome it, which consists in building an update lawy otherwise, try to minimize the approximation error.

which convergeg. Such an update law can be built based gyen this aspect of the problem is, in our opinion, deep

solely on the prediction error on the estimatefais follows.  and unexplored, and needs a more exhaustive analysis, which
Given an estimate: of the vectorc, an estimate of the s demanded to future investigations.

force f can be built asf = ¢7F , where F = F(z) as in

B. Overcoming the need for derivatives

equation 3, from which the errof for which holds IV. SIMULATION RESULTS
fef—f=F(2)+F-¢"F=F,(z)+&F . (20) In this section of the paper results of the proposed stiffnes
o observer are presented and compared with the performance

Defining an update law of the non-parametric method proposed in [7].

~ T — rs

& £ a(FTF)F/, (21) A Smulation 1
where B is a positive definite gain matrix (the subscripis In this first application the parametric observer is applied
used to distinguish from the update law in 9), yields for theo estimate the stiffness of an Agonist-Antagonist VSA
dynamics of the mechanism (as the one shown in Fig. 1(a)) realized with

two identical cubic springs, whose force-displacement-cha
acteristic is described by

3
which renders the derivative of the Lyapunov functignof f==ye)”
equation 14 non-positive definite provided that the truiocat This determines a VSA system where the equilibrium point
error termF,.(z) is negligible. Persistent excitation in termsof the link is, in the absence of external loads, in the
of middle positionyr = (y1 + y2)/2. The link deflectiony, in
t+5t consequence, is quantified py= y;, —yr. The configuration
Vi, 0t : ol < (/ a(FTF)—lFFTdt> < ayl (22) of the stiffness can be easily described by completing the
t configuration space of the mechanism, for example with the
variableu = (y2 —y1)/2. Under these hypotheses the force-

will make the estimatec converge on the real value. c -~ ]
Convergence of vectaryields convergence of the parametricd'Splaceme”t characteristic of the system can be easilyrsho
= (2% + 6yu?) . As a consequence, the

model to the real mechanical characteristic representdiey to_ be f(y,u) -\ N ) ! -
function f(z); this, by virtue of 19, yields convergence of Stiffnéss function iso(y,u) = 6(y* + *). This particular
estimation of stiffness calculated @sS;. Nevertheless, de- function can be completely represented on a the function
riving the innovation from the errof instead off, prevents basis of the kind

considerations on convergence speed similar to thoseederiv. ¢, () = y'u/ with k = ((Z' — )P+ +j) /2, (23)

in subsection IlI-A. This translates, in practice, in a stow

convergence of the estimate of the stiffness value. Givenusing only the first 9 elements of the basis, by =
point 2 where to measure stiffness, the estimate becomé000000260 ---]7. This ensures that if expressing the
accurate only after the model has converged in the whofanction with at least 9 terms of the basis 23 the residual
neighborhood:. This renders, at the moment, the derivativeterm f,. and its derivatives are null.

free approach less feasible for real-time measuremenrds lik The parameters of the two observers are set as follows:
those needed for closed loop control, unless an alreadlyr the non-parametric observer, the gain is setvte 100,

¢ = —¢=—aFTF)'F (F.(z) +&F) =
= —a(F'F)'FF'é — o(FTF)"'FF,.(2),
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Fig. 3. Results of Simulation 1: performance of the parametfmit @on-
parametric observers tracking the stiffness of an Agonigagonist VSA
system featuring a stiffness function which is completelyresentable on
the truncated basis adopted by the parametric observer.

(a) Approx. of the force function (b) Approx. of the stiffness function

yirad]

Fig. 4. Results of Simulation 1: observation of the functiaiescribing
the recoil force and the stiffness of the system. Blue colarsisd for the
real functions and red color for the estimate ones respégtive

for the parametric one we adopt the first 10 elements of t

basis equation 23 and set the gain matrixAte= 1001.

Results are shown in Fig. 3: both techniques exhib
analogous satisfactory performance as expected. Panaf (c)
Fig. 3 shows the time evolution of the Lyapunov function
Vs and V., on a semi-logarithmic scale: as expected the
magnitude ofV, is always non-increasing but after a fastT
start its convergence speed is sensibly slowed down. TW.
magnitude ofl’s;, on the other hand, is not always decreasin
because of the influence @, but, in practice, it is much

S0

B. Smulation 2

In this second simulated experiment, both observers are
used to track the stiffness of an Agonist-Antagonist VSA, re
alized with exponential springs. This device, fully deked
in [7], is characterized by the force and stiffness function

Fyu) = k(e — e7Y) = o(y,u) = k(e+" + e 7¥),

(24)
The gain of both observers is kept the same as in the previous
simulation, but the state-space of the parametric obsésver
increased, using up to th&!" element of the function basis
of equation 23. This modification is introduced to face the
fact that the exponential functions of equation 24 can not be
completely represented over a finite sub-set of this bast, a
thus, to render the residual term small enough.

Results are shown in Fig. 5. Notwithstanding the imperfect
representability of the function over the chosen function
basis subset, the parametric observer performance keeps
satisfactory.

Another important result is visible in the second simula-
tion, which is an advantage of the parametric observer over
the non-parametric one. Looking at the two time intervals
[10,20]s and [40, 50]s in Fig. 4(c), it can be noted that the
evolution ofy stops: this leads to a drop of the convergence
conditions of the non-parametric observer, which simply
stops observing. The parametric observer, on the other,hand
is building its estimate also on the knowledge:oflhanks to
the model it learned already, it keeps estimating the &tif$n
of the system even in those adverse conditions. The error
is sensibly lower justifies the increased complexity of the
algorithm.

V. EXPERIMENTAL RESULTS

A. Set-up description

Finally, to validate the performance of the new parametric
observer, ensuring a fair comparison between parametric
and non-parametric approaches, the authors chose to apply
the observer to the very same data set recorded during the
experimental sessions described in [7].

We briefly recall here that the data are relative to an
Agonist-Antagonist VSA with exponential springs, similar
to that described in section I1V-B. Due to uncertainties ia th

H@odel of the actuator and in the identification of the model

parameters, the knowledge of the “true stiffness” is rééiab
4P to an error of about 25%, represented by the horizontal
green line in Fig. 5(b) (For full details on the experimental
set-up, model identification and data collection, pleaserre
[7]).

The gain of the non-parametric observer is setvte 1.

he parametric observer, uses the function basis adopted in

B, while the gain matrix is set tod = . Once again,

%ains of the two observers are kept comparable for sake of

fairness.

faster, shrinking its magnitude by two orders in the first few

seconds, and remaining contained afterwards.

B. Results

Panels on Fig. 4 show a comparison of the reconstructedResults, reported in Fig. 6, show the substantial simylarit

model in term of the function§ and g with the real one,
highlighting a good conformance between the two.

between the performance of the two methods. Neverthe-
less, the advantage of the parametric approach, exposed in
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Fig. 5. Results of Simulation 2: performance of the parametit mon-  Fig. 6. Experimental Results: results obtained using tharpatric and

parametric observers tracking the stiffness of an Agonigiagonist VSA  non-parametric algorithm are compared in terms of tracking ratative

system featuring a stiffness function which is not compietepresentable error on panels a and b, in panel c the evolutionyoind « is shown.

on the truncated basis adopted by the parametric observer. Notice how the performance of the two observers are similamfost of
the experiment but differ (in favor of the parametric obseredter second
24,

previous sections, is evident once again: due to the drop

of speed ofy in conjunction with a tangible change in VIl. ACKNOWLEDGMENTS
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