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Controllability for Pairs of Vehicles
Maintaining Constant Distance

Huifang Wang, Lucia Pallottino and Antonio Bicchi

Abstract—This paper studies the controllability of pairs of
identical nonholonomic vehicles maintaining a constant distance.
The study provides controllability results for the five most com-
mon types of robot vehicles: Dubins, Reeds-Shepp, differential
drive, car-like and convexified Reeds-Shepp. The challenge of
achieving controllability of such systems is that their admissible
control domains depend on configuration variables. A theorem
of controllability specifical for such systems has been obtained
based on known controllability theorems. As a result, we show
that pairs of the latter three types are completely controllable,
i.e. can be steered between any two arbitrary configurations.
The same does not hold for pairs of Dubins or Reeds-Shepp
vehicles, and a description of the reachable sets in these cases
is provided. Finally, as direct extension of controllability results
of pairs of identical vehicles, the controllability results for two
kinds of formation of n identical vehicles are presented.

I. INTRODUCTION

This paper provides the results of controllability for pairs
of identical vehicles maintaining a constant distance. The
controllability of a system answers the question about the
existence of an admissible trajectory between any given two
configurations, which is an important condition for a feasible
design of motion planning ([1]) and for the existence of an
optimal trajectory (see e.g. [2]). Moreover, the study of pairs
of vehicles maintaining a constant distance helps the design of
navigation strategies for a group of robots moving in formation
(see e.g. [3], [4] and [5]).

In this paper we adopt the notation used in [2],[6]. A system
is controllable if, for every pair of points p and q in the
configuration space, there exists a control that steers the system
from p to q. It is small-time locally controllable (STLC) from
a point p if the set of points reachable before a given time
T contains a neighborhood of p for any T . A control system
will be said to be small-time controllable if it is small-time
controllable from any point of the configuration space. The
small-time controllability can be used to answer the problem
about existence of collision-free admissible paths (see e.g. [1]).
The challenging aspect in the controllability of the considered
systems is that admissible controls depend on the configuration
variables. Therefore, based on existing controllability theorems
and on the accessibility rank condition of weakly reversible
systems, we provide controllability theorems specific for such
systems. Furthermore, conditions to verify the controllability
of such systems are also provided.

This paper provides the results of controllability for the
five most common types of robot vehicles which are widely
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Fig. 1. The admissible controls for five types of robot vehicles.

discussed in the literature: Dubins [7], Reeds-Shepp (RS) [8],
differential drive (DDV) [9], [10], car-like (Car) [11], [12] and
convexified Reeds-Shepp (CRS) [2]. As a result, we show that
while pairs of the latter three types of vehicle can be steered
between any two arbitrary configurations, the same does not
hold for pairs of vehicles of the first two types. For these two
cases, a description of the reachable sets is provided. To the
authors best knowledge, in the current literature no result on
the controllability of pairs of vehicles that maintain a given
distance is reported.

II. CONTROLLABILITY THEOREMS

We first introduce the controllability theorems and lemmas
that we will use in the following sections to prove controlla-
bility for the considered systems.

A. Controllability Definitions and Theorems

The systems we will study are affine control systems that
can be written as

Σaff :

{
ẋ = f(x, u) = g0(x) +

∑m
i=1 giui;

x ∈ X ⊆ Rn, u ∈ U(x) ⊆ Rm.
(1)

Let A := {fu = f(., u), u ∈ U} be the set of system’s
vector fields.

Definition 1: The Lie algebra ALA of vector fields A is
called the accessibility Lie algebra associated to the system.
The accessibility rank condition (ARC) holds at x0 ∈ X if
ALA(x0) = Rn.

Accessibility rank condition in [13] is also called control-
lability rank condition in [14], and Lie algebra rank condition
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in [2] and [15]. The verification of the accessibility rank
condition is not straightforward. However, from [16] and [13]
it holds

Lemma 1: If 0 ∈ conv(U) and aff(U) = Rm, then U is
called almost proper and ALA = {g0, · · · , gm}LA.
Where conv(U) and aff(U) are the convex hull and the affine
hull of U , respectively.

Recall that a system is symmetric if every trajectory run
backwards in time is also a trajectory.

Theorem 1: For a symmetric system, if the accessibility
rank condition holds at every point x0 ∈ X , the system is
STLC from every x0. In particular, if X is connected, then it
is controllable.
The theorem follows from results in [2], [16] and [13].

B. Proposed Controllability Theorems

From the results on complete controllability for a weakly
reversible system which is stated in Theorem 2 in [13], we
can state the controllability theorem for the special systems in
which the control domains vary with configurations.

Definition 2: A system with state space X is weakly re-
versible if x1 ∈ R(x0) if and only if x0 ∈ R(x1), ∀x0, x1 ∈
X .

Theorem 2: [13] For a weakly reversible system, if the
accessibility rank condition holds at every state x0 ∈ X and
X is connected, then the system is completely controllable.
Notice that any symmetric system is definitely a weakly
reversible system.

For systems in which there exists a set of points in X such
that the ARC does not hold, controllability can still be ensured
(based on a trivial extension of Theorem 2) whenever from this
set it is possible to reach points in which the ARC holds:

Theorem 3: Given a weakly reversible affine control sys-
tem, such as 1, with X connected, and given S1 ⊂ X such
that

1) ∀x0 ∈ S1, U(x0) ⊆ Rm almost proper, ALA(x0) = Rn;
2) ∀x0 ∈ S2 := X \ S1, U(x0) ⊆ Rl, l < m, ALA(x0) ̸=

Rn; but R(x0) ∩ S1 ̸= ∅,
then the system is completely controllable. Moreover, if it is
symmetric, then it is also STLC.

Remark 1: Whenever S2 does not have interior points and
it is such that its boundary function Φ(x) is differentiable,
a sufficient condition for R(x0) ∩ S1 ̸= ∅ is that there
exists an admissible control ω ∈ U(x0), x0 ∈ S2 such
that ⟨f(x0, ω),

∂Φ
∂x ⟩ ̸= 0. This condition will be used to

prove the controllability of Car and RS vehicles. And if
⟨f(x0, ω),

∂Φ
∂x ⟩ = 0, S2 is invariant under all admissible

control ω, hence the system is not controllable, see fig.2.

III. KINEMATIC MODELS

In this section the kinematic model for two identical ve-
hicles (Dubins, Reeds-Shepp, differential drive, car-like and
convexified Reeds-Shepp) traveling at constant distance is
obtained starting from the kinematic model of a single vehicle.
It is worthwhile noticing that the models will differ in the
control set and not in the kinematics.

Fig. 2. Illustration of the sufficient condition for R(x0) ∩ S1 ̸= ∅ when
int(S2) = ∅ and its boundary function Φ(x) is differentiable.

A. Kinematic Models for Single Vehicles

The kinematic model of the considered vehicles can be
described as ẋi

ẏi
θ̇i

 =

 cos θi
sin θi
0

ui +

 0
0
1

 vi (2)

where ξi = (xi, yi, θi) ∈ R2 × S1 denotes a configuration
of vehicle i, i.e. (xi, yi) is the position and θi is the forward
direction angle with respect to the positive x-axis.

The controls ui and vi describe the linear and angular
velocities of vehicle i, respectively. We write (ui, vi) ∈ U ,
where U is the admissible control domain. Fig. 1 shows the
different admissible control domains for the above five types
of vehicles. Without loss of generality, we consider normalized
maximal and minimal velocities and assume that the minimum
turning radius Rmin = 1 for Dubins, RS and car-like robots, al-
though in order to emphasize its influence Rmin often remains.
For DDV the wheel angular velocities are bounded, hence
the admissible control domain is a diamond (rhombus), i.e.
UDDV = {(ui, vi))|0 ≤ |ui| ≤ 1; 0 ≤ |vi| ≤ 1−|ui| ≤ 1}. For
car-like vehicles, Ucar = {(ui, vi))|0 ≤ |vi| ≤ |ui| ≤ 1}. A
Dubins vehicle is a car-like vehicle which is only able to move
forward with constant velocity, i.e. UDubins = 1× [−1, 1]. RS
vehicles, can move both forward and backward at constant
velocity 1, i.e. URS = {−1, 1} × [−1, 1]. For CRS robots,
UCRS = [−1, 1] × [−1, 1] is obtained by convexifying URS

and CRS is the kinematic model of a tricycle.

B. Kinematic Models for Pairs of Vehicles

Consider a pair of vehicles (ξ1 and ξ2) traveling while
maintaining a constant distance D. Let ϕ denote the angle
of vector (x2 − x1, y2 − y1) with respect to the x-axis, see
fig.3. Thus we can write:

x2 − x1 = D cosϕ; y2 − y1 = D sinϕ. (3)

We choose ξ1−2 = (x1, y1, θ1, ϕ, θ2) as the configuration
vector of the system consisting of two identical vehicles
maintaining a constant distance. The nonholonomic constraint
for each vehicle is:

ẋi sin θi − ẏi cos θi = 0.

From (3), we have that ẋ2 = −Dϕ̇ sinϕ + ẋ1 and ẏ2 =
Dϕ̇ cosϕ+ ẏ1.
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Fig. 3. The kinematic model of pairs of identical vehicles.

Finally, the constraints for a pair of vehicles maintaining
distance D can be written as:

ẋ1 sin θ1 − ẏ1 cos θ1 = 0

(−Dϕ̇ sinϕ+ ẋ1) sin θ2 − (Dϕ̇ cosϕ+ ẏ1) cos θ2 = 0.
(4)

Hence, a system of 5 unknowns (ẋ1, ẏ1, θ̇1, ϕ̇, θ̇2) and 2 linear
equations (4) have been obtained. By computing the null space
of the constraint matrix we obtain that there exists u such that
the kinematic model of a pair of identical vehicles maintaining
distance D is:


ẋ1

ẏ1

θ̇1
ϕ̇

θ̇2

 =


D cos θ1 cos(ϕ − θ2)
D sin θ1 cos(ϕ − θ2)

0
sin(θ2 − θ1)

0

u+


0
0
1
0
0

 v1 +


0
0
0
0
1

 v2 (5)

Let q = (x1, y1, θ1, γ1, γ2) be the new configuration of the
system with γ1 = ϕ− θ1, γ2 = ϕ− θ2. The kinematic model
of a pair of identical vehicles maintaining distance D can be
written as:

q̇ = f1u+ f2u1 + f3u2, (6)

where the system vector fields are:

f1 =


D cos θ1 cos γ2
D sin θ1 cos γ2

0
sin(γ1 − γ2)
sin(γ1 − γ2)

 ; f2 =


0
0
1
−1
0

 ; f3 =


0
0
0
0
−1


(7)

The relationship between u in (6) and u1 and u2 must be
found. To maintain distance D, the velocity of both vehicles
along distance direction should be the same, i.e.

u1 cos γ1 = u2 cos γ2. (8)

Hence, from (2) and (6), we obtain that

u1 = uD cos γ2;u2 = uD cos γ1. (9)

The systems of pairs of identical vehicles maintaining a
constant distance will be denoted by ΣDDV , ΣCar, ΣDubins,
ΣRS and ΣCRS for differential drive, car-like, Dubins, RS and
CRS vehicles, respectively.

(b) (c)(a)

Fig. 4. The admissible UDDV at configurations with (a): γ1 = γ2 = π
2

;
(b): γ1 = π

6
, γ2 = π

4
; and (c): γ1 = π

2
, γ2 = π

4
.

IV. CONTROLLABILITY FOR DDV, CAR AND CRS
SYSTEMS

A. Controllability for DDV

Theorem 4: ΣDDV is STLC and controllable on the con-
figuration space MDDV = R2 × S1 × S1 × S1.

Proof: For DDV, the control is |ui| ≤ 1, and no constraint
limits the configuration variables θ1, γ1 and γ2. Hence the
configuration space is MDDV = R2 × S1 × S1 × S1

Moreover, from (8) and |ui| ≤ 1 it follows

|u1| ≤ min

{
| cos γ2|
| cos γ1|

, 1

}
; |u2| ≤ min

{
| cos γ1|
| cos γ2|

, 1

}
.

(10)
From |vi| ≤ 1 − |ui| ≤ 1, we obtain that if
γ1 = γ2 = π

2 , its admissible control set is UDDV =
{(v1, v2, u)||vi| ≤ 1; |u| ≤ 1}, shown in fig. 4 (a); otherwise,
UDDV =

{
(v1, v2, u)||vi| ≤ 1; |u| ≤ min

{
1−|v1|
cos γ2

, 1−|v1|
cos γ1

}}
,

shown in fig.4 for two kinds of configuration with (b): γ1 =
π
6 , γ2 = π

4 ; (c):γ1 = π
2 , γ2 = π

4 . Thus for any configuration,
it satisfies 0 ∈ conv(U) and aff(U) = Rm.

Computing the vector fields (7), we have f4 = [f1, f2]=
(D sin θ1 cos γ2, −D cos θ1 cos γ2, 0, cos(γ1 − γ2), cos(γ1 − γ2))

T

and f5 = [f1, f3]= (−D cos θ1 sin γ2, −D sin θ1 sin γ2, 0,

− cos(γ1 − γ2), − cos(γ1 − γ2))
T .

Notice that rank([f1, . . . , f5]) = 5, hence ARC holds at every
q ∈ MDDV . ΣDDV is also symmetric, thus from Theorem
1, ΣDDV is STLC. Moreover MDDV is connected, and the
system is controllable.

B. Controllability for CRS

Theorem 5: ΣCRS is STLC and controllable on the config-
uration space MCRS = R2 × S1 × S1 × S1.

Proof: MCRS = R2 × S1 × S1 × S1 follows directly
from |ui| ≤ 1 with the same reasoning used in the previous
theorem.

Similarly to the proof of Theorem 4, the admissible
control set is UCRS = {(v1, v2, u)||vi| ≤ 1; |u| ≤ 1} if
γ1 = γ2 = π

2 , shown in fig. 5 (a); otherwise, UCRS ={
(v1, v2, u)||vi| ≤ 1; |u| ≤ min

{
1

D| cos γ2| ,
1

D| cos γ1)|

}}
,

shown in fig.5 (b) at a specified configuration. The admissible
control set UCRS is proper for all configurations, ΣCRS is
symmetric and MCRS is connected. Hence the thesis.

C. Controllability for Car

Theorem 6: Σcar is STLC and controllable on the config-
uration space Mcar = R2 × S1 × S1 × S1.
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(b)(a)

Fig. 5. The admissible UCRS at configurations with (a): γ1 = γ2 = π
2

;
(b): γ1 = π

6
, γ2 = π

4
.

(a) (c)(b)

Fig. 6. The admissible Ucar at configurations with (a): γ1 = γ2 = π
2

;
(b):γ1 = π

6
, γ2 = π

4
; and (c): γ1 = π

2
, γ2 = π

4
.

Fig. 7. The admissible Ucar at a configuration with cos γ1 = 0 and cos γ2 ̸=
0.

Proof: Mcar = R2 × S1 × S1 × S1

follows directly from |ui| ≤ 1. From (10) and
|vi| ≤ |ui| ≤ 1, we can get that if γ1 = γ2 = π

2 ,
UCar = {(v1, v2, u)||vi| ≤ 1; |u| ≤ 1}; otherwise UCar ={
(v1, v2, u)||v1| ≤ min

{
| cos γ2|
| cos γ1| , 1

}
; |v2| ≤ min

{
| cos γ1|
| cos γ2| , 1

}
;

|u| ≤ min
{

1
D| cos γ2| ,

1
D| cos γ1|

}}
. As shown in fig.6, UCar

is almost proper at all configurations except at γi = π
2 and

γj ̸= π
2 , i, j = 1, 2. For such configurations U is shown in fig.

6(c) and aff(UCar) = R2. Considering γ1 = π
2 , γ2 ̸= π

2 (see
fig.7), we have Φ(x) = γ1− π

2 . If we choose u1 = 1, v1 = −1,
then f(x0, ω) = (∗, ∗, ∗, 1/D + 1, ∗) and ∂Φ

∂x = (0, 0, 0, 1, 0).
Thus ⟨f(x0, ω),

∂Φ
∂x ⟩ > 0. Thus the thesis follows from

Theorem 3.

V. CONTROLLABILITY FOR RS

For RS vehicles, ui = ±1. Hence, from (8), we have:

cos γ1 = ± cos γ2. (11)

Four possible angular relationships between two vehicles
can thus be obtained (see fig. 8 ):

Fig. 8. Four angular relationships for ΣRS and configuration representation
by 4-dimensional parameters plus angular relationships {a1, a2, b1, b2}.

Fig. 9. Four angular relationships for pairs of RS vehicles and the combined
cases.

a1 : γ1 = γ2; a2 : γ1 = γ2 − π;
b1 : γ1 = −γ2; b2 : γ1 = −γ2 − π.

(12)

For simplicity and clarity of configurations representation
for ΣRS , we reduce the variables to 4 (x1, y1, θ1, γ1) and
we use a parameter (a1, a2, b1, or b2) to denote the angular
relationship (12). In fig.9 four possible angular relationships
are represented together with the shared cases: |γ1| = |γ2| = 0
and |γ1| = |γ2| = π

2 .
We denote with ΣA

RS the system ΣRS when relation a1 or
a2 holds (in this case v1 = v2). From (5), the kinematic model
of ΣA

RS is
ẋ1

ẏ1
θ̇1
γ̇1
γ̇2

 =


cos θ1
sin θ1
0
0
0

u1 +


0
0
1
−1
−1

 v1, (13)
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Fig. 10. Feasible configurations ΣB
RS when D = Rmin.

with u1 ∈ {−1, 1} and v1 ∈ [−1, 1].
Remark 2: Notice that γ̇1 = −θ̇1, hence there always exists

a control (u1, v1) that steers γ1 between any two values
keeping ϕ = γ1 + θ1 constant.

We denote with ΣB
RS the system ΣRS when relation b1 or b2

holds (in this case v2 = 4 sin γ1

D u1−v1). From uD cos γ2 = u1

and (11), we have that the kinematic model of ΣB
RS is


ẋ1

ẏ1
θ̇1
γ̇1
γ̇2

 =


cos θ1
sin θ1
0

2 sin γ1

D
−2 sin γ1

D

u1 +


0
0
1
−1
1

 v1. (14)

Let the 4-dimensional system Σ̃B
RS be system ΣB

RS projected
on the first four coordinates. Hence, the configuration of Σ̃B

RS

is q̃ = (x1, y1, θ1, γ1) and the vector fields are

g1 =


cos θ1
sin θ1
0

2 sin γ1

D

 ; g2 =


0
0
1
−1

 . (15)

Therefore, the kinematic model of Σ̃B
RS is:

˙̃q = g1u1 + g2v1, (16)

where u1 ∈ {−1, 1} and

max

{
−1,

4u1 sin γ1
D

− 1

}
≤ v1 ≤ min

{
4u1 sin γ1

D
+ 1, 1

}
.

(17)
To satisfy (17) we have 4u1 sin γ1

D −1 ≤ 1 and 1+ 4u1 sin γ1

D ≥
−1, hence

| sin γ1| ≤
D

2
. (18)

It is now important to explicit the dependence of the results
with respect to Rmin. Indeed, (18) would be | sin γ1| ≤ D

2Rmin
.

If D > 2Rmin, γ1 ∈ S1. On the other hand, if D ≤ 2Rmin

γ1 ∈ ΓI ∪ ΓII ∪ Γs, where

ΓI =]− arcsin(D2 ), arcsin(
D
2 )[,

ΓII =]− arcsin(D2 ) + π, arcsin(D2 ) + π[,
Γs = {γ1|| sin γ1| = D

2 }.
(19)

For example, for D = Rmin feasible configurations are
represented in fig. 10 and admissible controls (ΓI =]− π

6 ,
π
6 [,

Fig. 11. If D = Rmin, the admissible control v1 with respect to γ1.

Fig. 12. If D = 2Rmin, the admissible control v1 with respect to γ1.

Fig. 13. If D = 4Rmin, the admissible control v1 with respect to γ1.

ΓII =]5π6 , 7π
6 [, and Γs =

{
−π

6 ,
π
6 ,

5π
6 , 7π

6

}
) are represented

in fig. 11.
We denote with M̃B+

RS = R2 × S1 × S1 the configuration
space when D > 2Rmin, and with M̃B−

RS = R2×S1×ΓI ∪ ΓII

and M̃Bs

RS = R2×S1×Γs the configuration space when D ≤
2Rmin. Notice that M̃Bs

RS consists of singular configurations.
Lemma 2: For Σ̃B

RS , ARC holds at any q̃ ∈ M̃B+

RS if D >

2Rmin and q̃ ∈ M̃B−

RS if D ≤ 2Rmin. But ARC fails at q̃ ∈
M̃Bs

RS .
Proof: We start applying remark 1 for D ≤ 2Rmin

and q̃ ∈ M̃Bs

RS . In this case sin γ1 = D
2Rmin

. The only two
admissible controls are either (u1

1, v
1
1) = −(u2

1, v
2
1) = ±(1, 1)

or (u1
1, v

1
1) = −(u2

1, v
2
1) = ±(−1, 1), see fig.12. Notice that
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Fig. 14. All q̃ ∈ M̃Bs

RS can only reached points on a circle through q̃ of
radius Rmin.

Fig. 15. ΣB
RS is controllable for any given distance D.

aff(U) ̸= R2 implies that only one motion direction is feasible
at q̃. In this case Φ(x) = γ1−arcsin( D

2Rmin
). For all possible

controls, f(x0, ω) = (∗, ∗, ∗, 0) and ∂Φ
∂x = (0, 0, 0, 1). Thus

⟨f(x0, ω),
∂Φ
∂x ⟩ = 0. Hence, all reachable configurations from

q̃0 = (x0
1, y

0
1 , θ

0
1, γ

0
1) ∈ M̃Bs

RS lays on a circle with radius
Rmin and centered at (x0

1 − Rmin sin θ
0
1sign(sin γ

0
1), y

0
1 +

Rmin cos θ
0
1sign(sin γ

0
1)), see fig.14.

For q̃ ∈ M̃B+

RS , or q̃ ∈ M̃B−

RS , 0 ∈ conv(U) and aff(U) =
Rm, see fig.13, 11 and 12. From (15) and (16), we have:

[g1, g2] =


sin θ1

− cos θ1
0

2 cos γ1

D

 ; [g1, [g1, g2]] =


0
0
0
−1

 (20)

The accessibility rank condition holds and hence the thesis.
Lemma 3: Σ̃B

RS is STLC at any q̃ ∈ M̃B+

RS and any q̃ ∈
M̃B−

RS .
Proof: ΣB

RS is symmetric because for any required dis-
tance D, at any q ∈ M̃B+

RS (or M̃B−

RS ), if (u1, v1) is a feasible
control, then (−u1,−v1) is also feasible, see fig. 12. From
Theorem 1 and Lemma 2 the thesis follows.

If D ≥ 2Rmin, M̃B+

RS is connected, so we can get the
following corollary.

Corollary 1: If D ≥ 2Rmin, Σ̃B
RS is also controllable.

We are now able to prove controllability for the 5-
dimensional system ΣRS . With a slight abuse of notation
we denote with MA

RS = R2 × S1 × S1 × {a1, a2} and
MB

RS = M̃B
RS×{b1, b2} the configuration spaces for ΣA

RS and
ΣB

RS , respectively. Furthermore let, M̃B
RS = M̃B+

RS (M̃B−

RS ) if

Fig. 16. ΣA
RS is controllable for both ϕ = ϕs and ϕ ̸= ϕs.

D ≥ 2Rmin (D < 2Rmin). Finally, let MAi

RS be associated to
relations ai and MBi

RS to relations bi.
Theorem 7: ΣRS is controllable on MRS = MA

RS∪MB
RS .

Proof: Corollary 1 states that ΣB
RS for D ≥ 2Rmin is

controllable.
We now prove that for D < 2Rmin, the system can be

steered between any two configurations in M̃B−

RS crossing
MA

RS . Without loss of generality let q0 ∈ M̃B
II = R2 ×S1 ×

ΓB
II , a trajectory from q0 to q1 = (x1, y1, θ1, π) for some

(x1, y1, θ1) that evolves in M̃B
II always exists for Lemma 3,

see fig. 15. The system then evolves in MA
RS (as ΣA

RS),
and can reach q2 = (x̂1, ŷ1, θ̂1, 0) for some (x̂1, ŷ1, θ̂1) for
Remark 2. Then system can evolves in M̃B

I to achieve any
qf ∈ M̃B

I for lemma 3. There exists an equivalent control law
that steers the system from q0 ∈ M̃B

I to qf ∈ M̃B
II .

We now prove that the system can be steered between
any two configurations in M̃A

RS crossing MB
RS . For q0 =

(x0
1, y

0
1 , θ

0
1, γ

0
1) ∈ MAi

RS , Remark 2 implies that any point with
ϕ = γ1 + θ1 = γ0

1 + θ01 = ϕ0 can be reached in MAi

RS , see
fig.16 (a). Referring to fig.16 (b), if the final point in MAi

RS is
such that ϕ ̸= ϕ0 we proceed as follows: 1) from q0, achieve
a configuration q1 = (x1

1, y
1
1 , θ

1
1, γ

1
1) with θ11 = ϕ1 = ϕ0,

notice that q1 ∈ MB
RS with γ1

1 = 0. 2) from q1, reach q2 with
θ21 = ϕ2 = ϕf , evolving with ΣB . This is possible for the first
part of this proof. 3) from q2, reach qf evolving according to
ΣA

RS (Remark 2).
Finally, the four systems ΣAi

RS and ΣBi

RS are controllable
for each angular relationship. The switches between them are
shown in fig.9, so that ΣRS is controllable.

VI. CONTROLLABILITY FOR DUBINS

For Dubins vehicles, ui = 1, hence from (8), we have:

cos γ1 = cos γ2. (21)

Thus we have two possible angular relationships between two
vehicles

a : γ1 = γ2; b : γ1 = −γ2. (22)

Angular relationships and their intersection cases a ∧ b :
γ1 = γ2 = kπ, k = 0, 1 are reported in fig.17.

Using the same reasoning used for ΣRS , when a : γ1 = γ2
(v1 = v2), the kinematic model of ΣA

Dubins is
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Fig. 17. Two angular relationships a, b for ΣDubins.


ẋ1

ẏ1
θ̇1
γ̇1
γ̇2

 =


cos θ1
sin θ1
0
0
0

+


0
0
1
−1
−1

 v1, (23)

where u1 ∈ {−1, 1} and v1 ∈ [−1, 1].
If two vehicles have the angular relationship b, then kine-

matics of ΣB
Dubins is:
ẋ1

ẏ1
θ̇1
γ̇1
γ̇2

 =


cos θ1
sin θ1
0

2 sin γ1

D
−2 sin γ1

D

+


0
0
1
−1
1

 v1. (24)

The range of v1 is given by max
{
−1, 4 sin γ1

D − 1
}
≤ v1 ≤

min
{

4 sin γ1

D + 1, 1
}

and | sin γ1| ≤ D
2 .

The controllability of ΣDubins requires similar reasoning
as the controllability of ΣRS . However, it is much more chal-
lenging to prove that ΣDubins is a weakly reversible system,
details of the proof can be found in [17]. For space limitations,
we only report the controllability results for ΣDubins.

Let MA
Dubins = R2 × S1 × S1 × {a} and MB

Dubins =
R2×S1×ΓDubins×b. Let also ΓDubins = {γ1|| sin γ1| < D

2 }
and Γs

Dubins = {γ1|| sin γ1| = D
2 }.

Theorem 8: [17] ΣDubins is controllable on the configura-
tion space MDubins = MA

Dubins ∪MB
Dubins.

When D ≤ Rmin, if q ∈ MBs

Dubins = R2×S1×Γs
Dubins×b,

the reachable configurations is a limit circle.

VII. CONTROLLABILITY FOR n VEHICLES

This section gives a direct extension of above controllability
results for pairs of vehicles to n identical vehicles both for a
star formation with a leader and for a chain formation.

Fig. 18. The admissible controls UDubins with respect to γ1.

1θ

Fig. 19. The star formation for n vehicles.

A. Controllability for n vehicles with star formation

Given n vehicles Vi, i = 1, · · · , n, let V1 be a leader.
Assume the distances Di, i = 2, · · · , n between V1 to Vi are
different such that no collision between vehicle occurs. Let
γ1,i (γi,1), i = 2, · · · , n denote the angle from the heading
direction of V1 (Vi) to the distance direction from V1 to Vi,
see fig.19. Such system is denoted by Σn

s .
Let q̄ = (x1, y1, θ1, γ1,2, γ2,1, · · · , γ1,n, γn,1) be the config-

uration of Σn
s . If vehicles are all DDV, Car or CRS types,

the configuration spaces can be written as M̄ = R2 ×
S1 × · · · × S1︸ ︷︷ ︸

2n−1

. From Theorems4, 5 and 6 corresponding Σn
s

are completely controllable.
For RS and Dubins vehicles, since for Di ≤ 2Rmin the

admissible control v1 does not exist for all possible configura-
tions, we assume that Di > 2Rmin for all i = 1, . . . , n. For
RS vehicle, define SA = S1 with angular relation a1 : γ1,i =
γi,1 and a2 : γ1,i = γi,1 − π; SB = S1 with angular relation
b1 : γ1,i = −γi,1 and b2 : γ1,i = −γi,1 − π. For Dubins vehi-
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1θ

Fig. 20. The chain formation for n vehicles.

cles, define SA = S1 with angular relation a : γ1,i = γi,1 and
SB = S1 with angular relation b : γ1,i = −γi,1. Then we can
write M̄ = R2×S1×S1 × SA ∪ SB × · · · × S1 × SA ∪ SB︸ ︷︷ ︸

n

.

From Theorems7 and 8 corresponding Σn
s s are completely

controllable.

B. Controllability for n vehicles with chain formation

This part gives another extension of controllability results
for chain formations consisting of n vehicles Vi, i = 1, · · · , n.
Assume the distances Di, i = 1, · · · , n−1 between Vi to Vi+1

are specified such that no collision between vehicle occurs.
Let γi,i+1 (γi+1,i), i = 1, · · · , n − 1 denote the angle from
the heading direction of Vi (Vi+1) to the distance direction
from Vi to Vi+1, see fig.20. Such system is denoted by Σn

c .
Let q̄ = (x1, y1, θ1, γ1,2, γ2,1, · · · , γn−1,n, γn,n−1) be the

configuration of Σn
c . If vehicles are all DDV, Car or CRS

types, the configuration spaces can be written as M̄ = R2 ×
S1 × · · · × S1︸ ︷︷ ︸

2n−1

. From Theorems4, 5 and 6 corresponding Σn
c

are completely controllable.
For RS and Dubins vehicles, we assume that all distance

Di > 2Rmin. For RS vehicle, define SA = S1 with angular
relation a1 : γi,i+1 = γi+1,i and a2 : γi,i+1 = γi+1,i − π;
SB = S1 with angular relation b1 : γi,i+1 = −γi+1,i and
b2 : γi,i+1 = −γi+1,i − π. For Dubins vehicles, define SA =
S1 with angular relation a : γi,i+1 = γi+1,i and SB = S1

with angular relation b : γi,i+1 = −γi+1,i. Then we can
write M̄ = R2×S1×S1 × SA ∪ SB × · · · × S1 × SA ∪ SB︸ ︷︷ ︸

n

.

From Theorems7 and 8 corresponding Σn
c s are completely

controllable.

VIII. CONCLUSIONS

This paper has provided controllability results for pairs of
identical vehicles (Dubins, Reeds-Shepp, differential drive,
car-like and convexified Reeds-Shepp) that move maintaining
a constant distance. Known theorems of controllability have
been extended to solve the controllability problem for spe-
cial affine control systems whose admissible control domains
depend on their configurations. Furthermore, a practical con-
dition has been provided to apply the proposed theorem for
studied systems.

As a result, for differential drive, car-like and convexi-
fied Reeds-Shepp vehicles complete controllability has been

proved. The same does not hold for pairs of Dubins or Reeds-
Shepp vehicles, and a description of the reachable sets in
these cases has been provided. Limit circles for particular
configurations have been proved to exist in case of small
distance to be maintained.

Finally, controllability results have been presented, as a
direct extension of pairs, for n identical vehicles with star
formations and chain formations. The optimal control for
larger groups of robots are under study.
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