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Abstract— This paper studies the controllability of formations
of n identical aircraft maintaining constant distances. Aircraft
are modeled as a planar kinematic system with constant
velocity and curvature bounds. The challenges of achieving
controllability of such system are that it is an affine system
with drift and its admissible controls are determined by its
configuration variables. We begin with the study of a pair
of aircraft maintaining a constant distance. As a result, we
show that if the specified distance is sufficiently large, a pair of
aircraft is completely controllable, i.e. can be steered between
any two arbitrary configurations. In case of small distances,
a description of the reachable sets is provided. Finally, we
provide the controllability results for three basic formations
of n aircraft.

I. INTRODUCTION

This paper provides the results of controllability for sys-
tems of identical aircraft maintaining a constant distance,
i.e., a formation of aircraft. Controllability results are funda-
mental for the design of the motion planning of formation
of aircraft and the existence and study of optimal formation
trajectories.

The formation problem for multiple robots has been ex-
tensively studied in the past. Different challenges have been
exploited and different approaches have been proposed, see
e.g. [1] and references therein. The importance of formation
flight is based on the advantages that the formation provides
such as the reduction of the fuel consumption by decreasing
turbulence. Motivations and applications of the formation
problem come also from search, rescue and security patrol.
In the literature, several aspects of the formations have been
taken into account such as the stability and the maintenance
of the formation. However, to the authors’ best knowledge,
the controllability properties have not been determined.

A system is controllable if, for every pair of points p
and q in the configuration space, there exists a control that
steers the system from p to q (see [2],[3]). The controllability
of a system answers the question about the existence of an
admissible trajectory between given any two configurations,
which is an important condition for a feasible design of
motion planning ([4]) and for the existence of an optimal
trajectory (see e.g. [2]). Moreover, the study of pairs of
vehicles maintaining a constant distance helps the design
of navigation strategies for a group of aircraft moving in
formation (see e.g. [5], [6] and [7]).
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Aircraft that cruise within a given altitude layer can be
modeled as a kinematic system with constant velocity and
curvature bounds, i.e. as Dubins vehicles, [8]. In robotics
there are five most common types of robot vehicles: Dubins
[9], Reeds-Shepp (RS) [10], differential drive (DDV) [11],
[12], car-like (Car) [13], [14] and convexified Reeds-Shepp
(CRS) [2]. Compared with the other four types of vehicles,
whose controllability properties were discussed in [15], the
system for pairs of Dubins vehicles is not symmetric and it is
an affine control system with drift. Moreover, the ranges of
its admissible controls are determined by its configuration
variables. Hence, the controllability for Dubins vehicles is
the most complex one. We apply a geometric method to
prove that it is a weakly reversible system, and then use
the accessibility rank condition to prove its controllability.

Controllability results for pairs of Dubins vehicles main-
taining costant distances are discussed in three cases in terms
of relationships between the distance D to be maintained and
the minimal turning radius Rmin: D = 2Rmin; D < 2Rmin

and D > 2Rmin. In each case, the configuration space
and reachable set are provided. As a result, within the
defined configuration space, the reachable sets consist of two
independent subsets when D ≤ 2Rmin. On the other hand,
the system is controllable within the defined configuration
space when D > 2Rmin.

Finally, the controllability results provide a direct ex-
tension for the controllability of formations of n identical
aircraft for D > 2Rmin. In section VI, controllability
properties for star, chained and ring formations are reported.

II. KINEMATIC MODEL AND SUBSYSTEMS

We first study the controllability properties for a pair of
identical aircraft maintaining a constant distance D. In [8] it
has been shown how aircraft, cruising at a constant altitude,
can be modeled as a kinematic system with constant velocity
and curvature bounds. Under those assumptions aircraft can
be modeled as Dubins vehicles. Hence, let (xi, yi, θi) ∈ R2×
S1, i = 1, 2 denotes a configuration of Dubins aircraft i,
where (xi, yi) is the position of aircraft i and θi denotes
the forward direction angle of aircraft i with respect to the
positive x-axis. Without loss of generality we can assume
the minimum turning radius Rmin = 1, although in order to
emphasize its influence Rmin often remains.

Let x̄ = (x1, y1, θ1, x2, y2, θ2) ∈ R2×S1×R2×S1 be a
configuration of a pair of aircrafts, the kinematic model of
system is:

˙̄x = (cos θ1, sin θ1, v1, cos θ2, sin θ2, v2)
T (1)

subject to the constant distance constraint

d(t) = (y2(t)− y1(t))2 + (x2(t)− x1(t))2 = D2. (2)



Fig. 1. For given (x1, y1, θ1, φ), the configuration of aircraft 2 is
determined with two possible angles a : θ2 = θ1 in (a) and b : θ2 = 2φ−θ1
in (b). In the right side of (a) and (b), configurations are represented by 4-
dimensional parameters plus two possible angular relations a and b. Their
combined cases are shown in (c).

Let ΣD denote the system (1) with constraint (2). And
for each aircraft, its admissible control (angular velocity) is
vi ∈ U = [−1, 1].

Given the distance constraint (2), another possible config-
uration of ΣD is thus q = (x1, y1, θ1, φ, θ2) where φ is the
angle of vector (x2−x1, y2−y1) = (D cosφ, D sinφ) with
respect to the x-axis, illustrated in fig.1. As shown in [8], in
order to maintain a constant distance (ḋ(t) = 0), either one
of two angular relationships must hold:

a : θ1 = θ2; b : θ1 + θ2 = 2φ. (3)

Once (x1, y1, θ1, φ) is given, the configuration
(x2, y2, θ2) can be obtained as follows: x2 = D cosφ+ x1,
y2 = D sinφ + y1 and θ2 = θ1 or θ2 = 2φ − θ1, shown in
fig.1 (a) and (b). The combined cases for angular relation a
and b is a∧ b : θ1 = φ ∨ θ1 = φ−π, shown in fig.1 (c). For
simplicity and clarity of representation, the 4-dimensional
parameters (x1, y1, θ1, φ) plus one of the two possible
conditions, a or b, are introduced as shown in the right side
of fig.1.

Let ΣaD denote the system ΣD when relation a holds.
Notice that θ1 ≡ θ2 implies v1 = v2. From the definition
of φ, when a holds, we also have φ̇ = 0.

Thus, the kinematic model of ΣaD can be written as:
ẋ1
ẏ1
θ̇1
φ̇

θ̇2

 =


cos θ1
sin θ1

0
0
0

+


0
0
1
0
1

 v1 (4)

with v1 ∈ [−1, 1].
Let ΣbD be the system ΣD when relation b holds, in which

θ2 = 2φ− θ1 now implies v2 = 2φ̇− v1.
From the definition of φ and the vehicles kinematics we

obtain

v1 + v2 = 2φ̇ =
4 sin(φ− θ1)

D
(5)

Finally, accordingly to (5) and −1 ≤ v1, v2 ≤ 1, we can
derive v1 ∈ U1 with:

U1 = [max{−1, 4 sin(φ− θ1)
D

− 1},min{1+ 4 sin(φ− θ1)
D

, 1}].
(6)

Thus, the kinematic model of ΣbD can be written as:
ẋ1
ẏ1
θ̇1
φ̇

θ̇2

 =


cos θ1
sin θ1

0
2 sin(φ−θ1)

D
4 sin(φ−θ1)

D

+


0
0
1
0
−1

 v1 (7)

where v1 ∈ U1.
Notice that the distance parameter D influences the evolu-

tion of the system, according to the kinematic model of ΣbD
(7), hence , it also influences the configuration space and the
reachable set of system ΣD. Therefore, we will analyze the
controllability of the system in three cases in terms of the
relationships between D and Rmin:
1) D − 2Rmin = 0: this case is denoted as ΣD0 ;
2) D − 2Rmin < 0: this case is denoted as ΣD− ;
3) D − 2Rmin > 0: this case is denoted as ΣD+ .

III. CONTROLLABILITY FOR ΣD0

We start focusing on the particular case D = 2Rmin.
Let Sa be a subset of S1 with angular relation constraint

a holding and Sb be a subset of S1 with angular relation
constraint b holding. Let Ma = R2 × S1 × S1 × Sa and
Mb

D0 = R2 × S1 × S1 × Sb.
Remark 1: (Configuration Space of System ΣD0 ) For D =

2Rmin, let (x1, y1, θ1, φ, θ2) be a configuration of ΣD0 . The
configuration space of ΣD0 is MD0 =Ma ∪Mb

D0 .
For simplicity, in the rest of this section, we omit the

subscript D0.
Let R(q) denote the set of points reachable from q. For

Σ from qs = (xs1, y
s
1, θ

s
1, φ

s, θs2), we will characterize R(qs)
by investigating evolutions of the subsystems Σa and Σb.



Fig. 2. The steps for deriving the reachable set of system ΣD0 .

A. Reachable set in Ma

Referring to Σa in (4), we have φ̇ = 0. Hence, aircraft
fly maintaining the same angular velocity (parallel Dubins
paths). From the controllability of a Dubins vehicle (c.f [2]),
we can steer the system between any two configurations with
constant φ. Hence, a preliminary result is the following.

Lemma 1: The reachable set R(qs) with qs ∈ Ma con-
tains all configuration in Ma with φ ≡ φs, see fig.2 (a).

B. Reachable set in Mb

Let Σ̃b be the 4-dimensional system obtained from Σb

projecting on the first four coordinates. Consider new coor-
dinates for Σ̃b as q̃ = (x1, y1, θ1, γ) with

γ = φ− θ1. (8)

The associated vector fields are

g1 =

 cos θ1
sin θ1

0
sin γ

 ; g2 =

 0
0
1
−1

 (9)

Therefore, the kinematic model of Σ̃b is

˙̃q = g1 + g2v1. (10)

Fig. 3. Admissible control v1 ∈ U1
D0 with respect to γ for Σb.

where, from (5), v1 ∈ U1 = [max{−1, 2 sin γ −
1},min{1 + 2 sin γ, 1}]. Fig. 3 shows U1 with respect to
γ ∈ Γ = [−π2 ,

3π
2 [= ΓI ∪ ΓII ∪ Γs, where

ΓI =]− π
2 ,

π
2 [, ΓII =]π2 ,

3π
2 [, Γs = {−π2 ,

π
2 }. (11)

Correspondingly, we denote M̃b
I = R × S1 × ΓI , M̃b

II =
R× S1 × ΓII , and M̃b

s = R× S1 × Γs.
Let ẋ = f(x, u), where x ∈ X ⊆ Rn and u ∈ U ⊆ Rm.

Let A := {fu = f(., u), u ∈ U} be the set of system’s vector
fields.

Definition 1: The Lie algebra ALA of vector fields A is
called the accessibility Lie algebra associated to the system.
The accessibility rank condition (ARC) holds at x0 ∈ X if
ALA(x0) = Rn.

Accessibility rank condition in [16] is also called control-
lability rank condition in [17], and Lie algebra rank condition
in [2] and [18].

Definition 2: A system with state space M is weakly
reversible if q1 ∈ R(q0)⇔ q0 ∈ R(q1), ∀q1, q0 ∈M.

Theorem 1: For a weakly reversible system, if the acces-
sibility rank condition holds at every state q0 ∈ M and M
is connected, then the system is completely controllable.
The theorem follows straightforward from results in [16].

Proposition 1: For Σ̃b, ARC holds at q̃ ∈ M̃b
I ∪M̃b

II ; but
ARC fails at q̃ ∈ M̃b

s.
Proof: Given Σ̃b, for any configuration q̃, we take

vα, vβ ∈ U1. Considering two distinct control values v1 =
vα and v1 = vβ , from (9), we have the following vector
fields:

f1(q̃) =

 cos θ1
sin θ1
vα

sin γ − vα

 ; f2(q̃) =

 cos θ1
sin θ1
vβ

sin γ − vβ

 .

(12)
Computing the Lie brackets, we obtain:

f3(q̃) = [f1(q̃), f2(q̃)] =

 −(vα − vβ) cos θ1
(vα − vβ) sin θ1

0
−(vα − vβ) cos γ

 ;

f4(q̃) = [f1(q̃), f3(q̃)] =

 vα(vβ − vα) cos θ1
vα(vβ − vα) sin θ1

0
(vβ − vα)(vα sin γ − 1)

 .



Fig. 4. The trajectory always exists from q̃s to q̂f which has a same γ as
q̃f for Σb on M̃b

I .

Notice that det(f1(q̃), f2(q̃), f3(q̃), f4(q̃)) =
−(vβ − vα)3 at any q. Hence, if vα 6= vβ ,
rank(f1(q̃), f2(q̃), f3(q̃), f4(q̃)) = 4.

From (11), when γ ∈ ΓI ∪ ΓII there always exists two
different controls v1 = vα and v1 = vβ with vα 6= vβ , see
fig.3. Hence, ARC holds at q̃ ∈ M̃b

I ∪M̃b
II . On the contrary,

when γ ∈ Γs only one feasible control v1 = 1 for γ = π
2

(v1 = −1 for γ = π
2 ) exists, hence ARC fails at q̃ ∈ M̃b

s.
To study the reachable set from points inMb we first start

considering R(q̃s) with q̃s ∈ M̃b
I . Similar reasonings can be

applied if q̃s ∈ M̃b
II .

Let q̃s = (xs1, y
s
1, θ

s
1, γ

s) and q̃f = (xf1 , y
f
1 , θ

f
1 , γ

f ) be
initial and final configurations with q̃s, q̃f ∈ Mb

I . We want
to prove that there always exists a trajectory from q̃s to q̃f

that evolves in Mb
I , see fig.2 (b).

A preliminary result is the following.
Proposition 2: From any q̃s ∈Mb

I , for any γf ∈ ΓI there
exist x1, y1, θ1 and a control that steers the system in Mb

I

from q̃s to q̂f = (x1, y1, θ1, γ
f ), see fig.4.

Proof: Referring to fig.3, starting from q̃s and applying
a control v1 ∈ U1

D0 , we are able to steer γ from γs to γf .
Indeed, given γs ∈ ΓI with γs ≥ 0 (γs < 0) it is possible
to apply v1 = 1 (v1 = −1) until γ = 0 then v1 = 1 +
2 sin γ (v1 = 2 sin γ − 1) until γ = γf if γf ≤ 0 (γf > 0).
Otherwise, from γs ≥ 0 (γs < 0), apply v1 = 1 (v1 = −1)
until γ = 0, and then switch to v1 = 2 sin γ − 1 (v1 =
1 + 2 sin γ) until γ = γf if γf ≥ 0 (γf < 0). The point
reached with such control law is a point q̂f = (x1, y1, θ1, γ

f )
for some x1, y1, θ1, see fig.4.

Notice that we chose the control law to let γ be zero at
least one time when steering from γs to γf . Also notice that,
when γ = 0, Dubins aircraft can move along a straight line
while when v1 = sin γ, the trajectory is a circle C of radius
|v−11 | along which γ is constant. Let Cq̃ be the trajectory
circle through q̃ = (x1, y1, θ1, γ) with radius

∣∣∣ 1
sin γ

∣∣∣ and let
Oq̃ be its center.

Theorem 2: There always exists a trajectory from q̃s to
q̃f that evolves in Mb

I .
Proof: Consider Cq̃s with center Oq̃s and Cq̃f with

center Oq̃f . Let δ be the distance between Oq̃s and Oq̃f .
Let q̂f = (x1, y1, θ1, γ

f ) for some x1, y1, θ1 be the final

Fig. 5. (a) The trajectory is extended for δ = d, (b) The trajectory exists
from q̃s to q̃f by beginning with an arc of Cq̃s and ending with an arc of
Cq̃f .

point reached with the control law used in the proof of
Proposition 2. For the chosen control law there always exists
a point along the trajectory from q̃s to q̂f with γ = 0. Hence,
the distance d between Oq̃s and Oq̂f can be continuously
increased by keeping v1 = 0 at γ = 0 as long as it is
needed. Two cases are now possible:

1) If δ ≥ d it is possible to generate a control law such
that the final point q̂f of the new trajectory T is such
that δ = d. There exist a rotation centered in Oq̃s that
moves Oq̂f in Oq̃f and Cq̂f on Cq̃f , see fig.5 (a). The
trajectory from q̃s to q̃f consists in a circle arc on Oq̂s
followed by T and a circle arc on Oq̂f , shown in fig.5
(b).

2) If δ < d it is possible to reach a point q̂f such that
the distance between Oq̂f and Oq̃f is arbitrary large.
Hence, using the similar reasoning and the result of
above case δ ≥ d, a trajectory from q̂f to q̃f can be
obtained.

Theorem 2 implies that Σb is a weakly reversible system
for q̃ ∈ M̃b

I . The same reasoning can be applied to q ∈ M̃b
II .



Fig. 6. The reachable configurations are on the limited circles with γ ∈ Γs
of Σ̃b.

C. Reachable set for ΣD0

Going back to the 5-dimensional space, let Mb
I , Mb

II

and Mb
s be the subsets of Mb

D0
whose projection on the

4-dimensional space are M̃b
I , M̃b

II and M̃b
s respectively.

Theorem 3: The reachable setR(qs) for system ΣD0 from
configuration qs ∈Mb

I ∪Mb
II contains Mb

I ∪Mb
II .

Proof: From Theorem 1, Proposition 1, Theorem 2 and
the fact that M̃b

I is connected we obtain that the reachable
set R(qs) for system Σb with qs ∈Mb

I (qs ∈Mb
II ) contains

Mb
I (Mb

II ). Indeed the fifth component θ2 depends on θ1
and angular relation b.

Without loss of generality, we assume qs ∈Mb
II and qf ∈

Mb
I (the vice versa can be solved equivalently). From qs,

point q1 = (x11, y
1
1 , θ

1
1, γ

1, 2γ1 + θ11) ∈Mb
II with γ1 = π is

reachable, as shown in fig.2 (c). From q1, the system evolves
as Σa, by maintaining φ(t) ≡ φ1 = γ1 + θ1, so that the
trajectory can reach a configuration q2 = (x21, y

2
1 , θ

2
1, γ

2, θ21)
with γ2 = 0. Finally, letting the system evolve as Σb, qf can
be reached. In the same way, we can find a feasible trajectory
from ∀qs ∈Mb

I to ∀qf ∈Mb
II .

Lemma 2: The reachable set R(qs) for qs ∈ Mb
s lays

on a circle with radius Rmin and centered at Os : (xs1 −
Rmin sin θs1 sin γs, ys1 +Rmin cos θs1 sin γs) along which γ =
γs.

Proof: If γs = π
2 (γs = −π2 ), v1 ≡ 1 (v1 ≡ −1) is the

unique admissible control value and reachable configurations
lay on a circle through qs with radius Rmin, see fig.6.

Finally we are able to extend Lemma 1 proving that
Lemma 3: The reachable set for system ΣD0 from qs ∈

Ma contains Ma.
Proof: For qs = (xs1, y

s
1, θ

s
1, γ

s, θs1) ∈ Ma, Lemma 1
implies that any configuration with φ = φs can be reached
in Ma. Referring to fig.2 (e), if the final configuration in
Ma is such that φ 6= φs we proceed as follows: 1) from
qs, achieve a configuration q1 = (x11, y

1
1 , θ

1
1, γ

1) with θ11 =
φ1 = φs, notice that q1 ∈Mb with γ1 = 0. 2) From q1 it is
possible to reach q2 with θ21 = φ2 = φf , evolving with Σb

from Theorem 3. 3) From q2, qf can be reached evolving
according to Σa (Lemma 1).

Concluding, for system ΣD0 we have the following con-
trollability property:

Theorem 4: ΣD0 is controllable on the configuration
space MD0 = Ma ∪ Mb

I ∪ Mb
II . But, if q ∈ Mb

s, the
reachable configurations are on a limit circle.

Fig. 7. An example (D = Rmin) for the feasible configurations of system
ΣD− . The feasible positions of aircraft 2 are on the thick red curves for
angular relation b.

Fig. 8. An example (D = Rmin) for the admissible controls v1 ∈ U1
D−

with respect to γ1 for system Σb.

IV. CONTROLLABILITY FOR ΣD−

Let U1
D− denote the admissible control set U1 when D <

2Rmin. According to (6) and (8), if v1 is admissible, it has
to satisfy the following inequalities, 4 sin γ

D − 1 ≤ 1 and 1 +
4 sin γ
D ≥ −1, hence | sin γ| ≤ D

2 .
If D < 2Rmin, γ1 ∈ ΓI ∪ ΓII ∪ Γs, where

Γ−I =]− arcsin(D2 ), arcsin(D2 )[,
Γ−II =]− arcsin(D2 ) + π, arcsin(D2 ) + π[,
Γ−s = {γ1|| sin γ1| = D

2 }.
(13)

For example, for D = Rmin feasible configurations are
represented in fig. 7 and admissible controls (Γ−I =]− π

6 ,
π
6 [,

Γ−II =] 5π6 ,
7π
6 [, and Γ−s =

{
−π6 ,

π
6 ,

5π
6 ,

7π
6

}
) are represented

in fig. 8.
We denote withMb

D− = R2×S1×{Γ−I ∪Γ−II}×Sb and
Mbs

D− = R2 × S1 × Γ−s × Sb.
Proposition 3: (Configuration Space of System ΣD− )

When D < 2Rmin, let (x1, y1, θ1, φ, θ2) be a configuration
of ΣD− , then its configuration space is MD− = Ma ∪
Mb

D− ∪Mbs

D− .
Theorem 5: (Reachable set of system ΣD− ) ΣD− is con-

trollable on the configuration space MD− = Ma ∪Mb
D− .

But the reachable configurations are on a limit circle, if
q ∈M bs

D− .
Proof: The proof can be done applying the reasoning

used for deriving the reachable sets of system ΣD0 . If the
system evolves according to Σa, ΣD− has the same evolution



Fig. 9. An example (D = 4Rmin) for the admissible controls v1 ∈ U1
D+

with respect to γ1 for system Σb.

equations as ΣD0 . The difference between the two systems
is in Σb because of the different admissible controls. ARC
property fails on qs ∈ Mbs

D− with | sin γs| = D
2 , hence the

thesis.

V. CONTROLLABILITY FOR ΣD+

When D > 2Rmin, we denote with Mb
D+ = R2 × S1 ×

S1 × Sb.
Proposition 4: (Configuration Space of System ΣD+ )

When D > 2Rmin, let (x1, y1, θ1, φ, θ2) be a configuration
of ΣD+ , then its configuration space isMD+ =Ma∪Mb

D+ .
Theorem 6: (Reachable set of system ΣD+ ) ΣD+ is com-

pletely controllable on the configuration space MD+ .
Proof: The proof can be done applying the reasoning

used for deriving the reachable sets of system ΣD− . Let
U1
D+ denote admissible control set U1 when D > 2Rmin

fig.9 illustrates an example of the admissible controls with
respect to γ, where D = 4Rmin. For ΣD+ , at any q ∈MD+ ,
there exist two feasible values for v1. From Proposition 1,
ARC holds at any configuration for Mb

D+ . Therefore ΣD+

is controllable.

VI. CONTROLLABILITY FOR AIRCRAFT FORMATIONS

Based on results obtained from the case of two aircraft,
we now study controllability properties of the multi-aircraft
formations. In particular we will consider formations in
which n aircraft maintain a constant distance from a single
reference one (star formation), or between consecutive pairs
of aircraft, both open (chain formation) and closed (ring
formation). We do not consider possible collisions between
aircraft (as if e.g. they were actually flying on different
altitude layers).

From the discussion above, we already know that, already
for n = 2, complete controllability does not hold if the
distance between the aircraft is not larger than twice the
minimum radius of rotation. Hence, in what follows we
will assume that for every pair in the formation, it holds
Di > 2Rmin.

A. Controllability for star formations

Let Σns be the system of n aircraft Vi, i = 1, · · · , n, where
the distances to be maintained are the distances Di between

Fig. 10. The star formation for n aircraft.

Fig. 11. The chain formation for n aircraft.

V1 and Vi, i = 2, · · · , n. Let γ1,i (γi,1), i = 2, · · · , n denote
the angle from the heading direction of V1 (Vi) to the distance
direction from V1 to Vi, see fig.10. A configuration q̄ of
Σns is q̄ = (x1, y1, θ1, γ1,2, γ2,1, · · · , γ1,n, γn,1). Let Sa be a
subset of S1 with angular relation a : γ1,i = γi,1 and Sb be
a subset of S1 with angular relation b : γ1,i = −γi,1. The
configuration space of Σns is therefore M̄s = R2 × S1 ×(
S1 × (Sa ∪ Sb)

)n−1
.

A simple result for controllability is obtained in the
assumption that distances are sufficiently large, namely
Di > 4Rmin, i = 2, · · · , n. Indeed in this
case the set of admissible v1, described by −1 +
max{0, 4 sin γ1,2/D2, · · · , 4 sin γ1,n/Dn} ≤ v1 ≤ 1 +
min{4 sin γ1,2/D2, · · · , 4 sin γ1,n/Dn, 0} contains an open
subset in R1 for any γ1,i, hence two distict controls can
always be applied, and ARC follows froma direct exten-
sion of the Lie algebra calculations reported above. Weak
reversibility can be shown constructively by the motion
planning algorithm proposed in [19], hence the claim of
complete controllability in this case.

If 2Rmin < Di ≤ 4Rmin for some i, there exist configu-
rations of the formation for which no admissible controls
exist that could keep the formation. A detailed study of
the reachable sets in this case is rather complex, and is the
subject of further studies.

B. Controllability for chain formations

Let Σnc be the system of n aircraft Vi, i = 1, · · · , n that
maintain constant distances Di, i = I = {1, · · · , n − 1}
between Vi and Vi+1, with Di > 2Rmin ∀i. Let γi,i+1

(γi+1,i), i = 1, · · · , n−1 denote the angle from the heading
direction of Vi (Vi+1) to the line from Vi to Vi+1, see fig.11.



Fig. 12. For aircraft ring formation, the system configurations with
angular relation a maintain the formations for any polygons: (a) concave
quadrilateral; (b) convex pentagon.

Let Ib be the set of indices i ∈ I such that the angles of Vi
and Vi+1 satisfy condition b.

A configuration q̄ of Σnc is q̄ =
(x1, y1, θ1, γ1,2, γ2,1, · · · , γn−1,n, γn,n−1). Let Sa be a
subset of S1 with angular relation a : γi,i+1 = γi+1,i

and Sb be a subset of S1 with angular relation
b : γi,i+1 = −γi+1,i. The configuration space of Σnc
is M̄c = R2 × S1 ×

(
S1 × (Sa ∪ Sb)

)n−1
.

Consider first the case I = Ib, and let vi be the angular
velocity of Vi. By applying (5) recursively along any sub-

chain, we have vk =
j−1∑
i=k

(−1)i−k 4
Di

sin γi,i+1 + (−1)j−kvj ,

∀j ∈ {1, . . . , n− 1}, ∀k ∈ {j + 1, . . . , n}. A necessary and
sufficient condition to ensure the existence of an open control
set hence is∣∣∣∣∣
j−1∑
i=k

(−1)i−k 4

Di
sin γi,i+1

∣∣∣∣∣ < 2, for any j, k : 1 ≤ k < j ≤ n.

Again, a simple result for controllability is obtained in the
assumption that distances are sufficiently large. Under the

hypothesis that
n−1∑
i=k

1
Di

< 1
2 , the set of admissible controls

for every chain formation with I = Ib contains an open
set, hence the ARC holds. When Ib ⊂ I, i.e. there exist
aircraft pairs satisfying condition a, the condition above is
sufficient a fortiori (indeed, condition a imposes a simple
constraint on the velocities, i.e. vi = vi+1, and may only
reduce the length of the summation to compute vk reported
above). Weak reversibility can be shown constructively by
the motion planning algorithm described in [19].

C. Controllability for ring formations

Let Σnr be the system of n aircraft Vi, i = 1, · · · , n, that
maintain constant distance Di, i = 1, · · · , n between Vi and
Vi+1, where Vn+1 denotes aircraft V1. Let φi, i = 1, · · · , n
be the angle of vector from the position of Vi to the position
of Vi+1 with respect to the x-axis, see fig. 12. A configuration
q̄ of Σnr is q̄ = (x1, y1, θ1, φ1, θ2, φ2 · · · , θn, φn). If for
all pairs of aircraft, angular relation a : θi = θi+1 ∧

Fig. 13. All reachable configurations are located on the limited trajectories
shown in (a) for n = 3 and (b) for n = 5.

θ1 = θn holds, then all θi are equal, see fig.12. The
reachable configurations can be any x1, y1 and any equivalent
θi, i = 1, · · · , n with constant φi = φsi , i = 1, · · · , n from
q̄s = (xs1, y

s
1, θ

s
1, φ

s
1, θ

s
1, φ

s
2 · · · , θs1, φsn), i.e. all aircraft travel

following a parallel Dubins path and maintain the form of
the initial polygon which has been determined by q̄s.

If all pairs of aircraft have angular relation b, then the
following equations must be satisfied:{

θi+1 = 2φi − θi, for i = 1, . . . , n− 1 and
θ1 = 2φn − θn

(14)

The behaviors of systems Σnr are totally different for even
or odd n.

1) Odd number of aircraft:
If n is odd and each pair of aircraft has angular relation

b, from (14), we have: θ1 =
(n+1)/2∑
i=1

φ2i−1 −
(n−1)/2∑
i=1

φ2i;

θ2 =
(n−1)/2∑
i=1

φ2i + φ1 −
(n−1)/2∑
i=1

φ2i+1; · · · ; θn = φn +

(n−1)/2∑
i=1

φ2i−
(n−1)/2∑
i=1

φ2i−1. It implies that all feasible θi, i =

1, · · · , n can be uniquely determined by φi, i = 1, · · · , n
and all admissible angular controls vi for aircraft Vi can be
uniquely determined by φ̇i, i = 1, · · · , n. φ̇i = 4 sin(φi−θi)

Di

implies that for a given configuration q̄, only one admissible
control value vi exists.

Fig.13 shows all reachable configurations with n = 3
and n = 5 respectively. If n = 3, three aircraft forms a
triangle. We can prove that v1 = v2 = v3 = −2 sin β3

D1
=

−2 sin β1

D2
= −2 sin β2

D3
, where βi denotes the corresponding

angle of Vi as vertex of the triangle. The circumscribed circle
has radius rt = D1

2 sin β3
= D2

2 sin β1
= D3

2 sin β2
. Thus the feasible

directions for three aircraft are tangent to the circumscribed
circle of the triangle. A feasible trajectory is this circle along
which aircraft travel anticlockwise or clockwise with angular
velocity 2 | sin β3|

D1
, as shown in fig.13 (a).

If n > 3, all reachable configurations are located on a
limited trajectory (see e.g. fig.13 (b)). Note that unlike n =
3, the form of a polygon changes along its only feasible
trajectory. If a ring formation is not on one line, there is no
shared case between angular relations a and b.

2) Even number of aircraft:



Fig. 14. The ring formations for (a) n = 4 and (b) n = 6.

If n is even and each pair of aircraft has angular relation
b, from (14), we have:

n/2∑
i=1

φ2i−1 =

n/2∑
i=1

φ2i. (15)

Thus any polygon of even n with angular relation b
must satisfy the condition (15). Moreover admissible
control U1 6= ∅ on feasible configurations. We can
get U1 = [−1 + max{0, 4 sin(φ1−θ1)

D1
, 4 sin(φ1−θ1)

D1
−

4 sin(φ2−θ2)
D2

, · · · ,
n−1∑
i=1

(−1)i−1 4 sin(φi−θi)
Di

, 4 sin(φn−θn)
Dn

}, 1 +

min{0, 4 sin(φ1−θ1)
D1

, 4 sin(φ1−θ1)
D1

− 4 sin(φ2−θ2)
D2

, · · · ,
n−1∑
i=1

(−1)i−1

4 sin(φi−θi)
Di

, 4 sin(φn−θn)
Dn

}. Fig.14 illustrates two examples of
n = 4 and n = 6 ring formations with angular relation b.
Moreover the reachable configurations for ring formations
with even n are contained in a limited area and satisfy
conditions (15) and U1 6= ∅.

A ring formations can have mixed angular relation a and
b. From (14), the behavior of such systems depends on the
number of the pairs with angular relation b. If the number of
pairs with b is nb, the system Σn runs as the ring formation
Σnb

for the nb pairs while the other pairs move in parallel
(same angular velocity).

VII. CONCLUSIONS

In this paper the configuration spaces and controllability
results for the systems of n identical Dubins aircraft for-
mations maintaining constant distances have been provided.
First a system of a pair of airplanes maintaining a constant
distance D has been studied. The proposed study proves that
the system is controllable when D > 2Rmin, while limit
circles for particular configurations have been proved to exist
when D ≤ 2Rmin.

Controllability results for three basic formations of n
aircraft (star formations, chain formations and ring forma-
tions) are provided. The systems consisting is star formations
are completely controllable when all given distance are
D ≥ 4Rmin. The chain formation systems are completely

controllable if given distances satisfy
n−1∑
i=1

1
Di
≤ 1

2 . For the

ring formations at most two cases exist. For any polygon
formed by aircraft in ring formations, all vehicles can travel

parallel to each other as a single Dubins vehicle. In addition,
if some aircraft in the formation verify angular relation b,
the reachable configurations are contained in a uniquely
determined trajectory when n is an odd number, while the
reachable configurations are contained in a limited area when
n is an even number.

Based on the results of this paper on the controllability of
aircraft formations, we provided the results of the motion
planning of formation of aircraft in [19]. The results of
controllability of aircraft formations also provide important
conditions for the proof of the existence of optimal formation
trajectories.
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