
A Modular and Layered Cosimulator for Networked Control Systems

Stefano Falasca†, Christian Belsito†, Andrea Quagli∗ and Antonio Bicchi∗

Abstract— In this paper we present a simulation framework
that is intended to be used for a wide class of network control
systems. It is designed in order to allow interaction with
the Matlab/Simulink environment. The low-level structure is
written using the C++ language so that hardware/network in the
loop simulation can be readily done by substituting an arbitrary
set of software components with corresponding hardware in an
easy way. Sharp modularity of the code structure permits to
adapt the simulation to different needs changing only a few
modules.
We shall show the results of its specialization to a recently
proposed controlling approach, demonstrating the flexibility
and the accuracy of the simulator.

Index Terms— Networked systems, Modelling and simulation,
Industrial automation, manufacturing.

I. I NTRODUCTION

Network control system (NCS) is a relatively new research
field. It has proven to be highly stimulating for researchers
with different backgrounds. Much effort has been invested
in researching this interesting field and several promising
approaches have been proposed (and used in order to develop
useful results) [9], [2], [3], [5], [6], [11], [12], [15], [16].

Research in this field is mainly based on the development
of purely analytical results. These results are usually found
after developing a new model for the NCS. Statements
like ”this appears to be a novel formulation” and ”by such
modelling it is possible to describe most of the paradigms
proposed so far” are quite easily found in NCS related
papers. Although it is very easy to find papers (even recent
ones) containing no simulations at all, various authors, in
recent years, have simulated simple systems in their papers.
Particular emphasis has often been put on the description of
the implementation of the used simulator.

Significant efforts have been recently devoted to the devel-
opment of NCS simulators (e.g. [7]). So far, however, sim-
ulators only work with the same network control paradigms
proposed by their own authors.

These are the reasons why we have developed a simulation
framework aimed at being highly modular, able to provide
support to a variety of existent and new approaches and –
what seems to be new in this area – suitable for network in
the loop (NIL) as well as hardware in the loop (HIL) sim-
ulations. The latter requirement allows to ensure coherency
between simulation code and the code used during HIL/NIL
simulations.

This work was supported by the EC under contract ”CHAT - Control of
Heterogeneus Automation Systems”

∗Authors are with the Interdept. Research Center “Enrico Piaggio”, Uni-
versity of Pisa, via Diotisalvi, 2, 56100 Pisa, Italy. Phone: +39050553639.
Fax:+39050550650.andrea.quagli@centropiaggio.unipi.it,
bicchi@centropiaggio.unipi.it

†Authors are postgraduate students at the Faculty of Engi-
neering, University of Pisa. stefano.falasca@gmail.com,
christian.belsito@gmail.com

As it has been pointed out (e.g. in [8]), it is highly
convenient to have the ability to simulate the NCS right
into the Matlab/Simulink environment so that one can easily
take advantage of all the control design tools available there.
Nonetheless it appears to be appropriate to give a ”low level”
implementation of the components constituting the simulator
in order to promote code reuse. For this reason every single
component is implemented in C++ (the implementation being
completely unaware of the Matlab/Simulink environment)
and wrappers are written for Matlab.

As it has been said before, several different approaches
to the control over network problem have been proposed so
far (and many will come in the future). It will be useful
to distinguish the control platform and the control strategy.
Describing a network control platform means defining the
topology of network connections as well as the network
capabilities of transmitting data and guaranteeing data con-
sistency. Choosing a control strategy means to define how
received data are used to produce a control law and how
to tackle typical NCS’s problems such as packet drop-
outs (if such behaviour is possible within the given control
platform) and, of course, transmission delays. As far as we
know this distinction has never been pointed out before. Our
belief is that this is a possible source of misleading model
formulations.

This paper has the following structure. In section II it
is possible to find a description of the proposed simulation
environment. Section III points out the control platform and
control strategy proposed in [4] and describes their cast-
ing into the simulation environment’s structure. Section IV
presents the results of two different simulations, the firstone
(section IV-A) being related to a very simple example and
the second one (section IV-B) being a complete robotic arm.
Conclusions follow.

II. SIMULATION ENVIRONMENT

The purpose of this section is to describe the implemented
simulation environment in order to allow the reader to use it
for his objectives. The main emphasis is on giving a general
picture of the class of NCSs for which this simulator is
intended to be use. It is worth noting that not every NCS
problem studied so far is included in this class. The reader
is encouraged to read one of the available NCS’s surveys
(e.g. [14]) where problems such as adaptive remote control,
networked based auto-tuning, peer-to-peer NCSs are cited
and described.

It is convenient to recall and to be more precise about what
the distinction between control platform (CP) and control
strategy (CS) is about. The CP specifies the configuration
of the NCS and the kind of network at one’s disposal.
The CS specifies how the control problem is tackled and

how data communication capabilities are exploited. Reader
is invited to consider this simple example where every bit
of information used to describe the scenario is followed by
a tag contextualizing it. A 2-input/2-output (CS) plant is
connected with a controller by means of a wireless interface
(CP). Each smart sensor providing output has its own wifi
interface (CP). The actuators are connected to an embedded
system that generates the commands by using data received
from its network interface (CP & CS) and environmental
data that are locally sensed (CS). A controller computer is
located at distance such that only a portion of the data sent by
the sensors reach it (CP); in order to overcome this problem
the controller extrapolates the output behaviour when needed
(CS). Controller’s computations lead to the generation of a
control law that is sent over the network (CS). When the
plant does not receive control packets for too long it enters
a safety mode (CS).

CP is what the proposed simulator is mainly about. The
proposed CP defines whether a given NCS is liable to be
simulated within this environment or not. CS, on the other
hand, has not been defined in implementing this simulator;
much attention has been paid to make it possible to use
a variety of CS in this context. Proposed CSs have been,
of course, taken into account when defining the simulation
framework; the authors hope that it will be possible to use
the resulting implementation for CSs to come.

The possibility of HIL simulations permeates every com-
ponent of the simulator; it is therefore described through the
whole section.

A. Modularity and Stratification

In deciding how to implement the simulation infrastructure
some criteria had to be met:

1) independence from the external environment (e.g. Mat-
lab/Simulink);

2) encouragement of code reuse in terms of the actual
implementation of a real network controlled system
(code reusing allows fast and less error-prone imple-
mentations);

3) the possibility of doing HIL/NIL tests by substituting
an arbitrary set of software components with corre-
sponding hardware in an easy possible way;

4) low effort extension of the given code (if needed) and
5) ease in connecting the simulator to existing network

simulation infrastructures.
In order to reach such goals we decided to introduce a strat-
ification for every single component, as well as a modular
division.

As a first step toward stratification the simulator imple-
mentation has been detached from the Simulink environment.
This allows an easy porting of the overall structure toward
new simulation environments as well as (possibly several)
embedded computer systems. Every single Simulink block
uses an underlyingC++ object in order to fulfil its duties; by
this choice no relevant Matlab code is executed at any time
during the simulation. Attention has been paid to making
every component capable of fully asynchronous operations
so that executing every piece of code on a different processor

will not be an issue. This allows the substitution of a
Simulink block with the desired hardware without knowing
its actual implementation.

The second step made toward stratification is the designing
of smart packets. This will be clarified in section II-C. The
resulting software stratification structure is represented in
figure 1(a).

Matlab interface

Simulation block

Network stack

C++ objects

Packets

(a)

Net_A

Net_C

Net_B

(b)

Fig. 1. Representation of software stratification and communication channel
modularity

The whole simulation framework can be seen as composed
of smaller subsystems. Modularity is achieved by encap-
sulating every simulator entity working independently and
asynchronously from the others. An example of such a sharp
modularity referring to the communication channel can be
seen in figure 1(b). Details on the actual module structure
chosen can be found in section II-B.

B. Control Platform

The components that constitute the NCS are: the plant,
the controller and two network channels which allow data
to be sent from the controller to the plant and vice-versa.
Separating the network into two different channels allows
the user of the simulator to easily model asymmetric com-
munication conditions (it is, of course, possible to join the
two channels if needed). Most of the time, if the network
separation capability of the proposed simulator is used, the
two channels will probably be unidirectional. Figure 2 shows
the described structure.

All network related components make use of a single
wrapper class (NetSocket) that hides all the necessary oper-
ating system calls and delivers the functionality needed for
building up and managing a unidirectional or bidirectional
communication channel. This allows a complete decoupling
from the operating system in use and therefore the switch
to a different platform (e.g. embedded real time operating

Plant

Controller

Sensor packet
(network)

Control packet
(network)

Fig. 2. Control platform.

systems) would simply require the reimplementation of the
relative routines of NetSocket. This architecture provides also
the ability to use simulated networks, real networks (NIL) or
a combination of both. As we will see the actual implementa-
tion of NetSocket used for the simulations presented later in
this paper makes use of the TCP protocol. To use protocols
other than TCP it would be sufficient to reimplement only
this software component leaving the others untouched. To
make NetSocket more powerful and to allow its use in a
broader range of scenarios (e.g. NIL or using it with existing
network simulation programmes) the operating mode can be
server (i.e. accepting incoming connection requests) or client
(i.e. connecting to listening server ports). This can be useful
when modifying components others than the simulator is not
possible for some reasons. NetSocket’s interface is packet
oriented and completely unaware of the packet’s data format.

For the reasons stated before the simulator makes use of
unidirectional data streams. Each stream is composed of 3
main blocks:

• sender block (NetA)
• communication channel (NetB)
• receiver block (NetC)

This simple yet powerful structure is represented in fig-
ure 1(b). This design choice allows a simple communication
channel replacement (e.g. with a real communication channel
or a simulated one). This leads to the ability of fast and easy
robustness analysis with respect to:

• the use of a different network stack;
• the introduction of limited variable delays;
• packet-loss or data corruption and
• presence of multiple agents on the network.

Therefore it is possible to fine-tune the behaviour of the
system before deploying it in a production environment.
Besides this, such a structure provides the ability to obtain
statistics about the network channel usage and behaviour
like average and min/max packet throughput, informations
regarding non deterministic delays introduced by the network
stack (most of the stacks available on today’s mainstream
operating systems introduce unknown delays) and so on.

By virtue of the described structure it is also possible to get
rid of the network stack and easily substitute it with a simple
data-passing model such as the one described in [14] or with
complex networks like the ones in [10], [13], [1]. Simple
channel models are used very often in defining the control
platform. In such cases using a proper network stack would
probably be the source of misleading results. Nonetheless it

c l a s s C o n t r o l l e r{
p r i v a t e :

/ / . . .
pub l i c :

C o n t r o l l e r () ;

vo id d a t a I n (char∗ u p d a t e S e r i a l ,
double t imestamp ,
double∗ s t a t e ,
double∗ cmd) ;

vo id exec () ;
vo id da taOu t (double∗& s t a r t S t a t e ,

double∗ s ta r tT im e ,
double∗ r e s e t P o r t ,
char∗& t o T c p S e r i a l) ;

˜ C o n t r o l l e r () ;
} ;

Listing 1. A possible controller automaton interface

can be useful to test such control platforms in a more realistic
environment; this simulator allows to plug in different kinds
of network with no effort.

An application simulating the network with its delays is
also presented. It is structured as a multi-threaded application
and uses the Posix API to provide real time timing control.

C. Simulator’s Capabilities in Describing Control Strategies

Control strategy, as has been said before, is not defined
within the implemented simulation environment. This is
because of the will to make the simulator able to be used as
far as different CSs are concerned. Flexibility of the proposed
design is the main concern of this section.

Our main concern has been writing a simulator which
could be easily modified with minimal prior knowledge about
it. In such a context the purpose and algorithms of functional
blocks vary often. The proposed implementation provides a
common interface for every functional block.

The basic idea behind the design of every single functional
block is that they have to behave like automata, thus having
internal states, input vectors and output vectors. Input data as
well as output data can be of different nature. A functional
block implementing the network protocol, for example, can
have the set of sensors’ acquisitions as its input and a packet
to be sent over the network as its output. The controller
block, on the contrary will have a packet as its input data
as well as its output. The automaton’s state is intended to
represent its memory and can be used to determine which
step of the algorithm it is into as well as some kind of history
of received inputs. Listing 1 is part of the interface of the
controller class used for the simulations presented later in
this paper.

By such representation of functional blocks asynchronous
operations are made possible. It is possible, for instance,
to have an automaton whose goal is to receive packets
from the network and to send appropriate commands to
the plant’s actuators (in a HIL scenario this automaton will
execute on an embedded processor). On the other hand
these packets would have been sent by another automa-
ton executing right into the Matlab/Simulink environment
simulating the controller behaviour. It is clear that such a

scenario would lead to arbitrary operation interleaving. The
behaviour of the described system would be as follows:
the receiver’s embedded computer would execute a thread
that, through polling, senses the network waiting for a new
packet. Thread’s operations would be simply the calling of
the exec() automaton’s function followed by the calling of
the getData() function. The results of getData() would be,
at each execution, the best command to be given to each
actuator.

The coding paradigm described so far has been used
in implementing NetA, Net C and NetSocket objects and
needs to be used when implementing the application specific
controller block.

In order to complete the description of what makes the
proposed simulation environment able to be adapted to a
variety of CSs the packet structure has to be described.

Different control platforms and control strategies often
perform similar tasks in different portions of the control
loop. We shall consider as an example a control platform
having only a couple of sensors and a controller algorithm
that allows the refresh of only one state at a time. The
sensors’ data are very likely to be sent on a single packet and
the controller computer will execute the network protocol in
order to choose between the two states. If, on the contrary,
a lot of sensors are spread on a large plant, each one having
a separate network access they must execute a network
protocol in order to decide which one will gain the network
access. In order to tackle this problem the authors’ decision
has been toempowerpackets by giving them, beyond the
mere task of containing the payload, also data-managing
functionalities. Packets, in fact, represent the entity travelling
over the network and, therefore, can be seen as something
similar to shared data structures. Packets’ member functions,
therefore, can execute on the plant’s computer as well as
on the controller’s computer, allowing the user to adapt
the simulation environment to its needs. Moreover packets
provide the data-carrying entity and, therefore, it is actually
a good idea to let their implementation, depending on the
type of the packet, be the only piece of code aware of what
needs to be communicated over the network and, of course,
how data are encoded.

In order to clarify what has been said so far it is ap-
propriate to consider the scenarios presented above in more
detail. For the sake of ease of discussion only the case in
which every single NCS’s component is simulated will be
considered hereafter. For the sake of simplicity only the fully-
simulated case is considered hereafter.

1) The full plant state is transmitted over the network at
each network access. This can be done by instantiating
a packet object having a public method that has the
timestamp and full state information as input and that
builds a data structure containing them. This object can
then be serialized and sent over the network.
The controller, on the other side, has to execute a
network protocol in order to build an estimate of the
plant’s state. This can be easily done by building a
packet object by de-serializing the received data. Such
an object should have a public method that, given a

c l a s s P a c k e t S t a t e U p d a t e : pub l i c P a c k e t I n t e r f a c e{
p r i v a t e :

/ / packe t data goes here
pub l i c :

/ / . . .
vo id c r e a t e S e r i a l (char∗& s e r i a l) ;
vo id l o a d S e r i a l (cons t char∗ s e r i a l) ;

double∗ b u i l d E s t i m a t e (double∗ e s t i m a t e) ;

vo id d a t a S e t (double∗ e x t e r n a l S t a t e) ;
} ;

Listing 2. PacketStateUpdate interface

state estimate, uses one of the sensors’ value received
in order to enhance the estimate.

2) Only one plant state (coming from a single sensor) is
transmitted over the network. This can be implemented
through the use of a packet object having a public
member which, given sensors’ data, executes a network
protocol and builds a data structure containing the
value read by the appropriate sensor. This object can
then be serialized and sent over the network.
The controller has to use the received data to build
an as good an estimate as possible. It is possible to
do so by building a packet object (by, as usual, de-
serializing the received data) and, therefore, calling a
public method of such an object that, given an estimate
of the plant’s state, uses received data to improve it.

It is worth noticing that the solution described above is by no
means the most straightforward neither to the first problem
nor to the second. The reader, however, may have already
noticed that the described data structures have common
interfaces (that can be seen in listing 2).

The tipping point here is that simulating the two scenarios
involves (by virtue of the common packet interface) the
writing of two packet object’s implementations and that the
remaining simulation code would be the same.

As can be easily noticed there is no point in letting entities
different from the packet itself knowing anything about how
data are sent and how data are used as far as the proposed
implementation is concerned.

The same reasoning led to the definition of the interface
for the second type of packets that the NCS will use.
This packet is intended to carry control laws as well as,
within certain CSs (e.g. model-predictive based CSs) state
estimates or tuning values. The interface can be seen in
listing 3. Here, beside the serialization-related functions,
class members simply allow to get and set the data that have
to be carried by the packet.

Finally it is important to mention that the simulators’
simulink structure uses a defined communication interface
that allows a simple substitution with custom plant models.
Insofar as the actual hardware plant is used in an HIL
scenario this clarification is not needed. The block containing
the system model (if any) must have the following input/out-
put signals:

1) input vectoru representing the commands sent to the
model;

c l a s s Packet Command : pub l i c P a c k e t I n t e r f a c e{
p r i v a t e :

/ / packe t data goes here
pub l i c :

/ / . . .
vo id c r e a t e S e r i a l (char∗& s e r i a l) ;
vo id l o a d S e r i a l (cons t char∗ s e r i a l) ;

double∗ getCmd (unsigned i n t s t e p) ;
vo id setCmd (unsigned i n t s tep , double∗ v e c t) ;

double∗ g e t S t a t e (unsigned i n t s t e p) ;
vo id s e t S t a t e (unsigned i n t s tep , double∗ v e c t) ;

} ;

Listing 3. PacketCommand interface

2) output vectory representing the model output values;
some particular CSs may require it to provide the system
with additional signals (e.g. output vectorx representing the
state variables; paremeters’ values; . . .).

III. D ELAY COMPENSATION IN PACKET-SWITCHING

NETWORK CONTROL SYSTEMS

In this section the control platform and control strategy
proposed in [4] are briefly reviewed.

Afterwards a description of a specialized version of the
simulation framework applied to this particular case is given.

Interested readers are invited to note the ease with which
the hybrid formulation proposed in [4] has been translated
into an equivalent problem that can be simulated within the
simulation framework.

A. Problem Description

In [4] the authors consider the problem of stabilizing suf-
ficiently smooth non-linear time-invariant plants over a net-
work where feedback is closed through a limited bandwidth
digital channel. Reliable packet-based networks are explicitly
considered, for which both the time between consecutive
accesses to the network and the delay by which each data
packet is received, processed, and fed back to the plant are
unknown but bounded. A model-prediction based strategy is
used.

One of the main problems in the NCSs is how to perform
the control action minimising the network congestion. For
this purpose the relatively high payload which can be as-
sociated to each packet is exploited. Whenever the data are
small enough to be encoded in a single packet, the associated
communication overhead remains the same. It is therefore a
profitable choice to take advantage of this property and send,
whenever possible, packets of the maximum allowed size.

For such reason the controller’s computer provides the
plant with along feed-forward control signal, valid between
two consecutive transmission instants. Roughly speaking,at
each reception of a new measurement the controller updates
an internal model-based estimate of the current state of the
plant. Based on this estimate, the controller computes a
prediction of the control signal on a fixed time horizon by
simulating the plant’s behaviour. This signal is then coded
and sent in a single packet during the next network access.
When received by the plant it is decoded and resynchronized

by an embedded computer, this action is performed according
to the time-stamping of the original measurement.

A detailed description of the platform and the control
strategy is provided in the following sections.

B. The Control Platform

The digital network is seen as a couple of reliable uni-
directional communication channels. The first one’s task is
transmitting control signals (i.e., it connects the controller
to the plant). The second one (the one from the plant to
the controller) is in charge of transmitting (partial or total)
state measurements. On each channel only one node can send
its information at a given time (i.e., if several sensors are
present, only partial instantaneous knowledge of the plant’s
state can be achieved). Of course this is not an issue as far as
the control side of the network is concerned (the controller
is the only node sending data over this channel).

The presence of a network protocol is required. This pro-
tocol is an algorithm that chooses at each time instant which
node is granted the access to the communication channel.
Such decision is based on the errorz (being the difference
between an estimate of the plant’s state and its actual state)
and, of course, on data availability. A protocol is said to be
UGES when it imposes an exponential convergence of the
discrete update law induced by the protocol. The definition
of invariably UGES also requires that this property remains
valid when the update is not made at each step but according
to an arbitrary increasing sequence. Using an invariably
UGES protocol is a requirement within this context. There
is a great variety of network protocols in literature. For
example, a simple protocol is Round Robin (RR) in which
the state sensed by nodei is transmitted periodically with
periodN, whereN is the total number of nodes. An example
of a more complex protocol is given by the Try-Once-Discard
(TOD) approach: access to the network is granted to the node
with the greatest weighted error from the last reported value.
For further details on such protocols, their classifications
and for important results within this framework the reader is
referred to [9].

The network is supposed to introduce variable delays. We
assume that the time between two consecutive successful
accesses to the network – the usual name given to this
number ismaximum allowable time interval(MATI) – is
bounded both on the measurement side and on the control
side. In the same way, we assume that the transmission
delays, on both sides, cannot exceed a certain limit.

C. The Control Strategy

It is important to recall, as mentioned in the previous
section, that the network channels only allow one node at
a time to send their data. This constraint can be seen as
dictated by the following reasoning: it is realistic to assume
that the plant sensors are dislocated in different places (big
chemical plants are easy examples of such an environment)
thus making it impossible to have an instantaneous global
knowledge of the latter. This can be taken account of by
modelling an ad-hoc network protocol. Of course such a
protocol has to be invariably UGES.

We recall that the approach consists in exploiting the
possibly large payload available on each packet by sending,
whenever possible, not only the value of the control law
to be applied at a given instant, but also a prediction of
the control law that will be applied in the future instants,
obtained based on the (imprecise) model of the plant. The
so-obtained control-packet, thus containing a sequence of
control values valid on a given time-horizon, is then sent
over the channel. The plant is now able to compensate the
effects introduced by communication delays in the control
loop via local re-synchronization. Details of this algorithm
follow.

The plant computer is required to accomplish two main
tasks. The simpler one is receiving the packets sent by the
controller and deliver controls to the actual plant with the
appropriate timing (we will refer to this as theinterpolating
function). The second one is choosing what portion of the
available sensor data have to be sent over the network in
order to allow the controller to generate a new control packet.
This decision can be made according to several different
criteria. (as described in section III-B).

The controller’s computer uses received sensor data, state
estimates (if any) and a (possibly inaccurate) plant model in
order to generate two main data streams:

• a control law that is valid during a given time interval
and

• the estimated behaviour that the plant would exhibit if
controlled with the aforementioned control law (and if
the model were correct).

Algorithm 1 Plant computerdealing with sensor data
loop

PacketStateUpdate = executeProtocol()
gainNetworkAccess(sensor signal network)
sendData(sensor signal network, PacketStateUpdate)

end loop

Algorithm 1 shows a pseudo-code version of what the
plant computer executes when dealing with sensor data.
Operations are repeated indefinitely and the time between
subsequent executions is variable.

The controller acts in the following way:
• at time t j uses the data received from the sensor(s) in

order to initialize the plant model state variables;
• starts the simulator and records its behaviour and the

control values used;
• uses (a portion of the) recorded data in order to build

a packet that will be sent to the plant via the network
channel.

State variables are initialized by completing, if needed,
the data received from the sensors by using the state estimate
previously computed. Operations are, once again, indefinitely
repeated and the time between subsequent executions is
limited. At the start of the simulation, if more than one packet
has been sent by the plant’s computer, only the latest one will
be used. Algorithm 2 shows a pseudo-code of what has been
described so far.

Algorithm 2 Controller algorithm
loop

repeat
PacketStateUpate = recvData(sensor signal network)

until isNew(PacketStateUpdate) = true
τ j = t
initSimulator(PacketStateUpdate, oldSimulationData)
recordedData = 0
repeat

recordedData += getSimulatorOutput()
until t − τ j ≥ T̂0
PacketCommandSequence=buildPacket(recordedData)
gainNetworkAccess(control signal network)
sendData(control signal network,
PacketCommandSequence)

end loop

Each packet created by the controller has its own times-
tamp assigned. This information is sent over the network and
will be used by the plant’s computer in order to synchronize
with the absolute clock the predicted state variable values
and commands to be used to control the plant.

In conclusion this strategy preserves global exponential
stability under network communication, provided that the in-
volved MATI and delays remain below a certain limit. Upper
bounds on the previous quantities are explicitly provided,
based on the parameters characterizing the quality of the
plant’s model and the stability properties of the protocol and
the nominal closed-loop plant.

IV. SIMULATION RESULTS

A. Single Integrator

In this example we show how to apply the simulation
framework to an extremely simple dynamic system consist-
ing of a single state variablex and one control inputu.

The dynamics of the system are described by the following
differential equation:

ẋ = x+u. (1)

A suitable feedback control law that stabilizes the system
starting from any initial condition is given byk(x) = −2x.

It is easy to see that this system, together with the given
control law, does satisfy all the assumptions of [4]. This
means that this system will exhibit a stable behaviour when
controlled via the proposed CP/CS.

Figure 3 shows the results of the simulation of the NCS
as well as the behaviour resulting by the use of a TCP stack
as a communication channel.

B. Robotic Manipulator

To show how the simulation framework behaves in a more
realistic environment a PRP1 robotic manipulator described
by the following generic differential equation was chosen:

B(~q)~̈q+C(~q,~̇q)~̇q+G(~q) =~τ (2)

1The manipulator is constituted by a chain of three links connected via
a prismatic joint, a revolute coupling and a prismatic joint

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

Time (sec)

A
m

pl
itu

de

State variables

Data delay
TCP

Fig. 3. Single integrator simulations - network delay: 0.01s.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (sec)

A
m

pl
itu

de

State variables

Data delay
TCP

q1

q3

q2

Fig. 4. Robotic manipulator simulations - network delay: 0.01s

For the sake of compactness the expansion of each term
was omitted. The feedback control law chosen to stabilize
the manipulator’s end effector when a positioning task is
considered is known asComputed Torque. The resulting
controlled system is linear and stable but, nonetheless, itdoes
not verify all the requirements of [4]. It is worth noting that,
being the main result of [4] a sufficient (and not necessary)
condition for the stability of the NCS, it is not meaningless
to simulate it.

Simulations have been carried out for this system using
the CP and CS described in section III. Moreover a TCP
stack has been used as a replacement for the simple network
model given in [4]. Figure 4 shows the differences between
the two behaviours obtained. As it is possible to see both
simulations exhibit a stable behaviour for the system.

V. CONCLUSIONS

In this paper the importance of having at one’s disposal a
cosimulator when researching the network control systems’
field is pointed out. Such cosimulator should allow its user

to substitute arbitrary portions of software by hardware
components as well as third-party components’ simulators.

The problem of writing a simulation framework being as
flexible as the variety of different network control approaches
proposed so far demands has been faced.

A strongly layered and sharply modular software solution
is proposed.

We specialized the simulation framework to a recently
proposed, complex network control paradigm in order to
show the capabilities of the proposed framework.

The cosimulator can serve as a push toward the develop-
ment of simulation modules implementing different network
control paradigms.

REFERENCES

[1] Anon. Scale communicates via profinet. InProf. Eng., volume 17,
pages 45–46. 2004.

[2] R.W. Brockett and D. Liberzon. Quantized feedback stabilization of
linear systems.Automatic Control, IEEE Transactions on, 45(7):1279–
1289, Jul 2000.

[3] W. Brockett. Minimum attention control. InDecision and Control,
1997., Proceedings of the 36th IEEE Conference on, volume 3, pages
2628–2632 vol.3, Dec 1997.

[4] A. Chaillet and A. Bicchi. Delay compensation in packet-switching
networked controlled systems. InDecision and Control, 2008. CDC
2008. 47th IEEE Conference on, pages 3620–3625, Dec. 2008.

[5] N. Elia and S.K. Mitter. Stabilization of linear systemswith limited
information. Automatic Control, IEEE Transactions on, 46(9):1384–
1400, Sep 2001.

[6] H. Ishii and B.A. Francis. Stabilizing a linear system byswitching
control with dwell time. Automatic Control, IEEE Transactions on,
47(12):1962–1973, Dec 2002.

[7] M. Tabbara J.J.C. van Schendel, D. Nesic and W.P.M.H. Heemels. Net-
worked control system simulation & analysis. Internal Report (2008)
DCT 2008.119, Eindhoven University of Technology, Department of
Mechanical Engineering, 2008.

[8] G.P. Liu, D. Rees, and S.C. Chai. Design and practical implementation
of networked predictive control systems. InNetworking, Sensing and
Control, 2005. Proceedings. 2005 IEEE, pages 336–341, March 2005.

[9] D. Nesic and A.R. Teel. Input-output stability properties of net-
worked control systems.Automatic Control, IEEE Transactions on,
49(10):1650–1667, Oct. 2004.

[10] E. Tovar and F. Vasques. Real-time fieldbus communications using
profibus networks. Industrial Electronics, IEEE Transactions on,
46(6):1241–1251, Dec 1999.

[11] G.C. Walsh and Hong Ye. Scheduling of networked controlsystems.
Control Systems Magazine, IEEE, 21(1):57–65, Feb 2001.

[12] G.C. Walsh, Hong Ye, and L.G. Bushnell. Stability analysis of
networked control systems.Control Systems Technology, IEEE Trans-
actions on, 10(3):438–446, May 2002.

[13] J. Wang and Binoy Ravindran. Time-utility function-driven switched
ethernet: packet scheduling algorithm, implementation, and feasibility
analysis. Parallel and Distributed Systems, IEEE Transactions on,
15(2):119–133, Feb 2004.

[14] T.C. Yang. Networked control system: a brief survey.Control Theory
and Applications, IEEE Proceedings -, 153(4):403–412, July 2006.

[15] Hong Ye, G.C. Walsh, and L.G. Bushnell. Real-time mixed-traffic
wireless networks. Industrial Electronics, IEEE Transactions on,
48(5):883–890, Oct 2001.

[16] Wei Zhang, M.S. Branicky, and S.M. Phillips. Stabilityof networked
control systems.Control Systems Magazine, IEEE, 21(1):84–99, Feb
2001.

