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ABSTRACT. The aim of this paper is to address left invertibility for dynamical systems
with inputs and outputs in discrete sets. We study systems which evolve in discrete time
within a continuous state-space; quantized outputs are generated by the system according
to a given partition of the state-space, while inputs are arbitrary sequences of symbols in
a finite alphabet, which are associated to specific actions on the system. Our main results
are obtained under some contractivity hypotheses. The problem of left invertibility, i.e.
recovering an unknown input sequence from the knowledge of the corresponding output
string, is addressed using the theory of Iterated Function Systems (IFS), a tool developed
for the study of fractals. We show how the IFS naturally associated to a system and the
geometric properties of its attractor are linked to the invertibility property of the system.
Our main result is a necessary and sufficient condition for left invertibility and uniform left
invertibility for joint contractive systems. In addition, an algorithm is proposed to recover
inputs from output strings. A few examples are presented to illustrate the application of
the proposed method.

1. INTRODUCTION

Invertibility of dynamical systems is a fundamental problem of systems theory, and is
distinguished in two aspects: right invertibility, which is concerned with surjectivity of
the I/O map; and left invertibility, corresponding to injectivity of the map. While right
inversion allows to find inputs and initial conditions which can produce a given output, left
invertibility deals with the possibility of recovering unknown inputs applied to the system
from the knowledge of the outputs.

Invertibility problems are of interest in applications like fault detection in Supervisory
Control and Data Acquisition (SCADA) systems, system identification, and cryptography
[11, 18]. Invertibility of linear systems is a well understood problem, pioneered by [5], and
then considered with algebraic approaches [30], frequency domain techniques [20, 21], and
geometric tools [22]. More recent work has addressed the invertibility of nonlinear systems
[27]. Right-invertibility is studied with differential geometry methods for instance in [23]
and [26] for classes of smooth nonlinear systems. In [34], the left invertibility problem for
a switched system is discussed.

This paper deals with left invertibility of a class of discrete–time nonlinear dynamical
systems in a continuous state-space with inputs and outputs in discrete sets. In particular,
we consider the case in which inputs are arbitrary sequences of symbols in a finite alphabet,
each symbol being associated to a specific action on the system. Information available on
the system is represented by sequences of output values in a discrete set. Such outputs are
obtained by quantization, i.e. are generated by the system evolution according to a given
partition of the state-space.

Quantized control systems have been attracting increasing attention of the control com-
munity in recent years (see for instance [9, 24, 25] and references therein). The mathemat-
ical operation of quantization and the possibility of considering only finite inputs occurs
in many communication and control systems [19, 32]. Finite inputs may arise because of
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the intrinsic nature of the actuator, or anyway wherever the system operates under a log-
ical supervisor. On the other hand, output quantization may occur because of the digital
nature of the sensor, or if data need to be digitally transmitted. Most recently, the attention
to quantization has been stimulated by the growing number of application involving “net-
worked” control systems, which are systems interconnected through channels of limited
capacity [2, 7, 33].

The problem considered in this paper is that of determining whether a given quantized
system is left invertible (LI). To this purpose, we first define the properties of distinguisha-
bility and uniform distinguishability of two input sequences. Loosely speaking, two input
sequences are distinguishable if they generate two output strings that differ from each other
on a finite time horizon. The main tool used in the paper is the theory of Iterated Function
Systems (IFS), developed for the study of fractals. IFS have been already used as a model
in different fields [6, 28]. One can construct a natural map in the space of compact subsets
of the euclidean space, simply by mapping a set in the union of the images of all maps
forming the IFS. Under some contraction hypotheses the resulting dynamical system has a
unique attractor, which is also a compact set. Using recent results, we can determine the
properties of the original control systems in terms of such compact attractor. More pre-
cisely, for every finite subset C of the finite input alphabet, there exists an attractor AC. If
all attractors are not inside a particular ”diagonal” set, then almost every couple of distinct
output strings is distinguishable (see Theorem 2). These results are valid in a probabilistic
sense, i.e. they hold with probability one with respect to the invariant probability measure
for the given IFS.

The property of uniform left invertibility is of even greater interest for applications. We
address such problem using a graph that is associated to the attractor: paths on this graph
are associated to orbits of the system. The main result about uniform left invertibility is
Theorem 3, that provides necessary and sufficient conditions for left invertibility. The Ran-
dom Iteration Algorithm, abbreviated with RIA, [10] is also useful to study uniform left
invertibility. This consists simply in randomly choosing input sequences linked to given
probability distribution functions, and generating the corresponding orbits of the system.
A recent result in dynamical system theory (Theorem 7) indicates that the asymptotic prob-
ability of belonging to a given set in the state space is equal to the measure of the set, for
the probability measure which is invariant for the IFS. Moreover such number can be com-
puted by the RIA as its limiting behavior. Thus, a strategy can be set up using the RIA to
estimate such limit and then to derive information about the average size of time intervals
during which an orbit remains inside the given set. This provides in turn an average of the
waiting time for uniform left invertibility, with probability one. Finally, we illustrate our
approach on examples.

The paper is organized as follows. In Section 2 we review the background concepts.
Section 3 defines simple, uniform, and almost everywhere (AE) distinguishability and left
invertibility, and shows the link between IFS theory and invertibility: our main result,
Theorem 3, gives necessary and sufficient conditions for left invertibility and uniform left
invertibility. In section 4 a computationally tractable test probabilistic for AE left invert-
ibility is proposed, exploiting results about the invariant measure associated to an IFS.
Section 5 contains an algorithm to detect inputs, under the assumption of uniform left in-
vertibility. In section 6 we present examples about the application of the method described
in sections 3 and 4. Section 7 shows conclusions and future perspectives.

2. BASIC SETTING AND BACKGROUND

In this paper we consider discrete-time, autonomous, non-linear systems of the form{
x(k +1) = f

(
x(k),u(k)

)
= fu(k)(x(k))

y(k) = q
(
x(k)

) (1)
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where x(k)∈Rd is the state, y(k)∈Y is the output, and u(k)∈U is the input. We assume
that Y is a discrete set. The map q : Rd → Y is induced by a locally finite partition
P =

⋃̇
i∈Y Pi of Rd (

⋃̇
denotes the disjoint union) through q : (x ∈ Pi) 7→ i and will be

referred to as the output quantizer. We admit infinite partitions, but we assume that U is
a finite set of cardinality m. With no loss of generality (modulo redefining the dynamics
f (·, ·) and the function q), we will assume U = {1, . . . ,m}.

Remark 1. The results in this paper are indeed valid in every complete metric space: the
properties we are using depend only on the metric. We have chosen Rd to be the state
space for the sake of simplicity and to avoid some technicalities. ♦

Remark 2. If a real number pi with 0 < pi < 1, ∑
m
i=1 pi = 1, is associated to each symbol

ui ∈ {1, . . . ,m}, this can be interpreted as the probability that the symbol appears, i.e.
the event {u(k) = ui} occurs. This association entails a probabilistic interpretation of the
results in this paper. However, as we will observe explicitly, the main results about left
invertibility and uniform left invertibility of a system (Theorems 2, 3) do not depend on the
particular choice of the pi’s. ♦

Example 1. We call a system of type (1) I/O quantized linear if it is of the form{
x(k +1) = Ax(k)+Bu(k)
y(k) = q

(
Cx(k)

) (2)

where x(k) ∈Rd , y(k) ∈ Zp, A ∈Rd×d , B ∈Rd×m, u(k) ∈U ⊂Rm is the input, C ∈Rp×d ,
and q : Rd → Z is any quantizer. ♦

If x0 is an initial condition, k1 < k2 ∈ N and (u1, . . . ,uk2) a sequence of inputs, we let
f k2
k1

(x0,u1, . . . ,uk2) denote the sequence of outputs (yk1 , . . . ,yk2) generated by the system
(1) with initial condition x0 and input string (u1, . . . ,uk2).

2.1. Contractive IFS theory. In this paragraph we collect some basic results from the
Iterated Function System theory.

Definition 1. Let (X,d) be a complete metric space. A map F : X→ X is contractive if
∃c ∈ R, 0 < c < 1 such that d

(
F(x),F(y)

)
≤ cd(x,y) for all x,y ∈ X.

A map F : X→X is expansive if ∃e > 1 such that d
(
F(x),F(y)

)
≥ ed(x,y) for all x,y ∈X.

♦

Example 2. A linear map is contractive if its associated matrix has norm less than 1,
where the norm of a matrix A is defined by ‖A‖= supx∈Rd

‖Ax‖
‖x‖ . A linear map is expansive

if for its associated matrix holds infx∈Rd
‖Ax‖
‖x‖ > 1. ♦

Definition 2. An Iterated Function System with probabilities is a collection

{X,F1, . . . ,Fn, p1, . . . , pn}, (3)

where (X,d) is a metric space, Fi : X→X for i = 1, . . . ,n, and pi ∈R such that ∑
n
i=0 pi = 1,

0 < pi < 1, for i = 1, . . . ,n. When the pi’s are not specified we refer to {X,F1, . . . ,Fn}
simply as an IFS. ♦

An Iterated Function System with probabilities is related to a Markov jump system.
Investigations about Markov jump systems include for instance almost sure stability [4]
and methods of secure communication [29]. In this paper we use the theory of Iterated
Function Systems to attack left invertibility of such systems.

Definition 3. Given an IFS {X,F1, . . . ,Fn} such that Fi is contractive for every i, define
the contractivity factor of the IFS to be

s = min
{

c ∈ R : ∀i = 1, . . . ,n ∀x,y ∈ X d(Fi(x),Fi(y))≤ cd(x,y)
}
. ♦
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Definition 4. Given the IFS with probability (3), define

Fp =
{
{Fi1 ◦ . . .◦Fip} : i1, . . . , ip ∈ {1, . . . ,n}

}
.

The IFS is joint contractive if there exists p ∈ N such that all elements of Fp are contrac-
tions. The IFS is joint expansive if there exists p ∈ N such that all elements of Fp are
expansive. ♦

Example 3. An I/O quantized linear system is joint contractive if and only if for every
eigenvalue λ of the matrix A it holds |λ | < 1. It is joint expansive if and only for every
eigenvalue λ of the matrix A it holds |λ |> 1. ♦

We refer to [1, 13] for general theory of Iterated Function Systems (also called Iterated
Function Schemes). In what follows we use σ = {σi}∞

i=1 to indicate a sequence of indices
in {1, . . . ,n}. Moreover, for every C ⊂ {1, . . . ,n} we indicate by ΣC the set of all sequence
in C, and we let Σ = Σ{1,...,n}.

Definition 5. An orbit for the IFS (3) is a sequence {x(k)}∞
k=0 = {x(k)x(0),σ}∞

k=0 ⊂ X
given by the choice of an initial condition x(0) ∈ X and a sequence σ ∈ Σ, according to
the following rule: x(k +1) = Fσk(x(k)).♦

We now define, in a standard way, a measure on {1, . . . ,n}N.

Definition 6. For i1, . . . , ir ∈ N, j1, . . . , jr ∈C, the cylindrical subsets ν
j1,..., jr

i1,...,ir of ΣC, is the
set of strings defined by:

σ ∈ ν
j1,..., jr

i1,...,ir ⇔ σk =

 j1 f or k = i1
. . .

jr f or k = ir
♦

A cylindrical subset ν
j1,..., jr

i1,...,ir is the set of all strings for which the ik− th component as-
sumes the value jk, for k = 1, . . . ,r. The collection of all cylindrical subsets of Σ generates
a σ−algebra B on Σ. On these subsets we define the measure µ by

µ[ν j1,..., jr
i1,...,ir ] = p j1 · . . . · p jr . (4)

This corresponds to the fact that the probability of the choice of the map Fi is pi inde-
pendently of the time. Equality (4) uniquely defines a probability measure on the entire
σ−algebra B denoted by the same symbol µ [16].

Definition 7. [3] A set AC ⊂ X is an attractor for the IFS (3) with respect to the index
set C if for all initial condition x(0) ∈ X and for all σ ∈ ΣC limk→∞ d

(
x(k)x(0),σ ,AC

)
= 0,

where d
(
x,AC

)
= infa∈AC d(x,a). ♦

The orbit is thus forced to asymptotically approach the attractor.

Definition 8. A set IC ⊂ X is an invariant set for the IFS (3) with respect to the index set
C if

IC =
⋃
i∈C

Fi(IC).♦ (5)

Note that, if IC is an invariant set, given any initial condition x(0) in IC, every possible
orbit of the IFS (3) with indices in C is contained in IC. The next two results show that
attractors and invariant sets exist for joint contractive IFS and are compact for all input sets
C.

Theorem 1. Let the IFS (3) be joint contractive and let C ⊂ {1, . . . ,n} be given. Then, for
every σ ∈ ΣC the limit

φ(σ) = lim
k→∞

Fσ1 ◦ . . .◦Fσk(x)
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exists for every x ∈ X and is independent of x. The set φ(ΣC) = AC is the unique compact
attractor and invariant set with respect to {Fi : i ∈C}. Moreover, for all initial condition
x(0) and µ−AE σ ∈ ΣC, the set {x(k)}k∈N

⋂
AC is dense in AC.

Proof: See [15] and [3]. ♦

Proposition 1. [1] Let C1,C2 ⊆ {1, . . . ,n} be such that C1 ⊆C2. Then AC1 ⊆AC2 ♦.

The attractor AC in Theorem 1 is easily algorithmically computable with the so called
Random Iteration Algorithm [10]. See section 4 for further details.

Definition 9. An address of a point a ∈A{1,...,n} is any member of the set φ−1(a) = {σ ∈
Σ : φ(σ) = a}. The attractor is said to be totally disconnected if each point possesses a
unique address. ♦

Proposition 2. [1] The attractor A =A{1,...,n} is totally disconnected if and only if Fi(A )∩
Fj(A ) = /0 ∀i 6= j.♦

3. ATTRACTORS AND LEFT INVERTIBILITY

In this section we define left invertibility of a system, and we show that, if the system is
joint contractive, left invertibility is strictly connected with the properties of the system’s
attractor.

Definition 10. A pair of inputs strings u = {ui}i∈N, u′ = {u′i}i∈N is distinguishable if
∀x0,x′0 ∈ Rd ∃k = k(x0,x′0,{ui},{u′i}) ∈ N such that

f k
0 (x0,u1, . . . ,uk) 6= f k

0 (x′0,u
′
1, . . . ,u

′
k).♦

Definition 11. A pair of input strings {ui}i∈N, {u′i}i∈N is uniformly distinguishable in k
steps, k ∈ N, (or with distinguishability time k) if for every compact set K ∈ Rd×Rd there
exists l = l(K) such that ∀(x0,x′0) ∈ K and ∀m > l the following holds:

um 6= u′m ⇒ f m+k
m (x0,u1, . . . ,um+k) 6= f m+k

m (x′0,u
′
1, . . . ,u

′
m+k).

In this case, we say that the strings are uniformly distinguishable with waiting time l. ♦

Fact: A pair of strings is not uniformly distinguishable if and only if there exists a
compact set K ∈ Rd×Rd with the following property: ∀k ∈ N ∃(x0,x′0) ∈ K such that

um 6= u′m and f m+k
m (x0,u1, . . . ,um+k) = f m+k

m (x′0,u
′
1, . . . ,u

′
m+k) (6)

for some m ∈ N.

Proof: Suppose that two strings are not uniformly distinguishable. Then, there there
exists a compact set K ∈ Rd ×Rd with the property: (∀l) ∀k ∈ N ∃(x0,x′0) ∈ K such that
(6) holds. So the necessity proof is complete.
For the sufficiency, if ∀k ∈ N ∃(x0,x′0) ∈ K such that (6) holds for some m ∈ N, then the
existence of a waiting time (l in the definition of uniform distinguishability) is not possible.
♦

Definition 12. A system is left invertible (LI) if for any two input strings u,u′ there exists
l(u,u′) ∈ N such that, if ui 6= u′i, i > l, the outputs after the instant l are different for any
pair of initial states, i.e. u,u′ are distinguishable. ♦

So, for a LI system, it is possible to recover infinite input strings observing the corre-
sponding infinite output strings.

Definition 13. A system of type (1) is uniformly left invertible (ULI) in k steps if, for
initial conditions in a compact set K ⊂ Rd ×Rd , every pair of distinct input sequences is
uniformly distinguishable in k steps after a finite time l, where k is constant and l depends
only on K. ♦
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For a ULI system, it is possible to recover the input string until instant m observing
the output string until instant m + k. For applications, however it is important to obtain
an algorithm to reconstruct the input symbol used at time m > l by processing the output
symbols from time m to m+ k.

Definition 14. A system of type (1) is µ-AE LI if for µ-almost every couple of strings u,u′

there exists l(u,u′)∈N such that, if ui 6= u′i, i > l, the outputs after the instant l are different
for any pair of initial states.
A system of type (1) is µ-AE uniformly left invertible in k steps if, for initial conditions in
a compact set K ⊂Rd×Rd , µ-almost every pair of distinct input sequences are uniformly
distinguishable in k steps after a finite time l, where k is constant and l depends only on K
(µ is the measure defined in (4)). ♦

We introduce now a technique that links the left invertibility problem to the theory of
Iterated Function Systems and the properties of their attractors, so that we can apply all the
results described in Section 2. Define

Q =
⋃

y∈Y
{q−1(y)×q−1(y)} ⊂ R2d

i.e. the union of the preimages of two identical output symbols. In other words, Q con-
tains all pairs of states that are in the same element of the partition P . To address left
invertibility, we are interested in studying the following system on R2d :

X(k +1) = FU(k)(X(k)) =
[

f (x1(k),u(k))
f (x2(k),u′(k))

]
(7)

where X(k) =
(

x1(k)
x2(k)

)
∈ R2d ; U(k) = (u(k),u′(k)) ∈U ×U .

If it is possible to find an initial state in Q and an appropriate choice of the strings
{uk},{u′k} such that the orbit of (7) remains in Q, it means that the two strings of inputs
give rise to the same output for the system (1). Conditions ensuring that the state is outside
Q for some k will be seeked to guarantee left invertibility. Similarly, if the state exits Q
at least once every k iterations after a finite transient, then the system (1) is uniformly left
invertible in time k.

Definition 15. Define P(i, j) = pi p j. Given a compact set K ⊂Rd , the IFS with probabilities
associated to the system (7) is

{K×K;F(1,1),F(1,2), . . . ,F(m,m);P(1,1),P(1,2) . . . ,P(m,m)}. ♦ (8)

Thanks to Theorem 1, given a system of type (1) and a subset of input symbols C for the
corresponding system of type (7), it is possible to describe a set AC that is both an attractor
and an invariant set.

Note that the attractor associated to a single U ∈U ×U , indicated by XU , by Contrac-
tion Theorem [14], is a unique fixed point, and it can be approximated iterating the map
FU . For every U ∈ U ×U , for all X ∈ R2d , let XU = limk→∞ Fk

U (X). The relative posi-
tion of these fixed points with respect to Q is sufficient to conclude about the µ-AE left
invertibility. Let ∆ denote the diagonal of U ×U , i.e. ∆ = {(1,1),(2,2), . . . ,(m,m)}.

Theorem 2. If there exists U 6∈ ∆ such that XU ⊂ Q, then the system (1) is not LI. If every
XU ,U 6∈ ∆ is not in Q̄, the closure of Q, the system (1) is µ-AE LI. ♦

Proof: Suppose that there exists U 6∈ ∆ such that XU ⊂Q. Select XU as initial condition
and choose σ to be the constant sequence σi =U ∀i∈N. The resulting orbit is the constant
orbit X(i) = XU ∀i∈N, and it is clearly contained in Q, so the system is not LI, since U 6∈∆.

Suppose that U ∈ U ×U ,U 6∈ ∆ ⇒ XU 6∈ Q̄. First observe that in this hypothesis
no attractor AC,C 6⊂ ∆, is included in Q, because of Proposition 1: indeed every attractor
AC,C 6⊂ ∆, must contain a XU ,U 6∈ ∆.
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Then Theorem 1 assures that for µ-almost every couple of input strings the trajectory
is dense in A . So, if A has a point p not in Q̄, the generic trajectory contains points
arbitrarily close to p and so contains points that are not included in Q. This proves the
µ-AE left invertibility result. ♦

Remark 3. As already observed in Remark 2, µ-almost everywhere left invertibility does
not depend on the probabilities pi’s. ♦

We now introduce a graph, whose properties are linked to left invertibility.

Definition 16. The graph Gk of depth k associated to the attractor A is given by:
• The set of vertices V = {Aσ1...σk = Fσk ◦ . . .◦Fσ1(A ) : σi ∈ Σ}
• There is an edge from Aσ1...σk to Aω1...ωk if and only if σi+1 = ωi, for i = 1, . . . ,k−1. In
this case we say that the edge is induced by the input ωk. ♦

Remark 4. It follows from the definition of Gk that
(1) If there is an edge between Aσ1...σk and Aω1...ωk , then there exists U ∈ U ×U

such that FU (Aσ1...σk)⊂Aω1...ωk .
(2)

⋃
σi∈Σ Aσ1...σk = A ; i.e. the union of vertexes of Gk, considered as sets, is the

whole attractor.
(3) If the attractor A is totally disconnected, the vertices of Gk provide a partition of

the attractor. ♦

Definition 17. Consider the graph Gk, and collapse to a single vertex, denoted by AI ,
all vertices Aσ1...σk such that Aσ1...σk ∩{R2d \Q} 6= /0. Moreover every edge from AI is
deleted. This new graph is called internal invertibility graph, and denoted with IGk. The
set of vertices of IGk is denoted by VIGk .

Consider the graph Gk, and collapse to a single vertex, denoted by AE , all vertices
Aσ1...σk such that Aσ1...σk ∩Q = /0. This new graph is called external invertibility graph,
and denoted by EGk. The set of vertices of EGk is denoted by VEGk .

As done with Gk, in the following we use the symbols VIGk ,VEGk to denote the vertices
of the graphs as well as the set of points that they represent. ♦

Definition 18. A path {Vi}∞
i=0 on EGk or IGk is called proper path if the first edge is

induced by an input not in ∆. ♦

Proposition 3. There exists an orbit of the system (7) included in the set of vertices of
VIGk \AI , if and only if there exists an infinite path in IGk.

Proof: If there is an orbit {Xi}= {Fσi ◦ . . .◦ Fσ1(X0)}∞
i=1 included in VIGk \AI , then we

can construct an infinite path on IGk by associating to each Xi, i≥ k the vertex Aσi−k,...,σi−1 :
it is a path (of infinite length) on the graph IGk, and never touches AI .

Conversely, if there exists an infinite path {V1,V2, . . .} in IGk, first note that it cannot
touch AI because there is no edge starting from AI . Then, thanks to the first point of
Remark 4, it is possible to exhibit an orbit included in VIGk \AI . Indeed if any X1 ∈ V1
is chosen, then there exists an σ1 ∈ U ×U such that X2 = Fσ1(X1) ∈ V2; there exists
σ2 ∈ U ×U such that X3 = Fσ2(X2) ∈ V3. Continuing in this way for every i ∈ N it is
found an σi−1 ∈ U ×U such that Xi = Fσi−1(Xi−1) ∈ Vi. This procedure gives rise to an
orbit of the system (7) included in VIGk \AI . ♦

Proposition 4. Fix i ∈ N. A sufficient condition for the uniform left invertibility of the
system (7) is the absence of an infinite proper path on EGi.

Proof: Suppose that the system (1) is not ULI. Then, for every j ∈ N there exists an
orbit {Xp} = {Fσp ◦ . . . ◦Fσ1(X0)}∞

p=1 such that σ1 6∈ ∆ and {Xp} j
p=0 ⊂ Q∩A . Then we

can construct a path on EGi by associating at each Xp, p≥ i the vertex Aσp−i,...,σp−1 such
that Xp ∈Aσp−i,...,σp−1 . It is a finite proper path on the graph EGi thanks to the Remark 4,
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and for every p ≤ j Vp 6= AE , because AE ∩Q = /0 and {Xp} j
p=0 ⊂ Q. It remains to note

that, since this construction can be made for every j ∈ N and, since the invertibility graph
is finite, there is an infinite proper path in EGi. ♦

Proposition 5. Suppose that no point of A belongs to the boundary ∂Q of Q, or equiva-
lently that infa∈A d(a,∂Q) > 0. Then there exists a k ∈ N such that VIGk \AI = VIGk ∩Q.
This in turn implies that IGk = EGk

Proof: We first show that A ∩∂Q = /0 if and only if infa∈A d(a,∂Q) > 0.
Suppose that A ∩∂Q = /0. If infa∈A d(a,∂Q) = 0, then choose a sequence {ak} ⊂A such
that limk→∞ ak ↘ 0. Since A is compact there is an accumulation point a ∈ A for {ak}.
Then it is immediate to see that d(a,∂Q) must be zero. So a should belong to ∂Q because
∂Q is a closed set. This is impossible because we supposed that A ∩ ∂Q = /0. So it must
be infa∈A d(a,∂Q) > 0. Conversely if infa∈A d(a,∂Q) > 0, then A ∩∂Q = /0.

So, assume now that c = infa∈A d(a,∂Q) > 0. Choose k such that every set V i
IGk

has a
diameter δi < c. Then VIGk \AI = VIGk ∩Q because no VIGk can intersect ∂Q. ♦

Theorem 3. Suppose that A ∩∂Q = /0. Then the following conditions are equivalent:

(1) The system (1) is LI;
(2) IGk does not contain an infinite proper path, where k is such that VIGk \AI =

VIGk ∩Q;
(3) The system (1) is ULI;

Proof:

“1.⇔ 2.”
Suppose that IGk contains an infinite proper path {Vi}i∈N. By Proposition 3 there
exists an orbit {Xi}i∈N, where Xi ∈ Vi. Note that Xi 6∈ AI because no edges start
from AI . The orbit is included in Q because Xi ∈VIGk \AI = VIGk ∩Q. Moreover
X1 = FU (X0) with U 6∈ ∆, because the path is proper. This contradicts left invert-
ibility.
Viceversa, suppose that the system (1) is not left invertible. Then there exists an
orbit {Xi}i∈N ⊂ Q, such that Xi = FU (Xi−1) and U 6∈ ∆ for an infinite number of
i ∈ N. This orbit, induces, in the same way as in the proof of Proposition 3, an
infinite proper path in IGk.
“2.⇔ 3.”
Suppose that IGk contains an infinite proper path of arbitrary length {Vi}∞

i=0. By
Proposition 3 there exists an orbit {Xi}i∈N, where Xi ∈Vi. The orbit is included in
Q because Xi ∈ VIGk \AI = VIGk ∩Q. Moreover X1 = FU (X0), with U 6∈ ∆. This
contradicts uniform left invertibility. The inverse implication is true by Proposition
4. ♦

Remark 5. The condition A ∩∂Q = /0 is not very relevant from a practical point of view,
especially when the partition P can be designed. In this case indeed the boundary of Q
can be positioned in the complement of the attractor A . ♦

Remark 6. In the hypothesis of Proposition 5 the construction of internal and external
invertibility graph allows to solve the left invertibility problem of joint contractive systems
with computational methods, and the effective procedure to do this will be a part of future
work (see section 7). ♦

Remark 7. As already observed in Remark 2, left invertibility does not depend on the
probabilities pi’s. ♦

3.1. IFS techniques for joint expansive systems. Suppose that the system (1) is joint
expansive. Then fu(·) admits an inverse for every u ∈ U . It is so defined the following
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system on R2d :

Z(k +1) = GU(k)(Z(k)) =

[
f−1
u(k)(z1(k))

f−1
u′(k)(z2(k))

]
(9)

where Z(k) =
[

z1(k)
z2(k)

]
∈ R2d ; U(k) = (u(k),u′(k)) ∈U ×U ;

Since system (9) is joint contractive, for every C ⊂U ×U there exists an attractor SC ⊂
R2d . The set SC is formed of all initial conditions giving rise to bounded orbits of system
(7) with inputs in C:

Proposition 6. Let SC ⊂ R2d be the attractor obtained from the joint contractive system
(9). If {Xk} is an infinite bounded orbit of the system (7) with inputs in C, then ∀k ∈ N
Xk ∈SC.

Proof: Call {Uk}k∈N ⊂ C the input sequence of system (7) that gives rise to the orbit
{Xk}. Then, for every i ∈ N there exists a point s(i) ∈ SC (i.e. any point in SC with address
(U0, . . . ,Ui−1)) such that the orbit {X ′k(i)}∞

0 of the system (7) with input sequence {Uk}∞
0

belongs to SC for k = 0, . . . , i. Let us consider, for every j ≤ i, d(X j,X ′j(i)).
Since the system (7) is joint expansive there exists a p ∈ N and a c > 1 such that for

every j ≤ k ≤ i, and for every p≤ k ≤ i

d(Xk,X ′k(i))≥ cb(k− j)/pcd(X j,X ′j(i)).

The latter equation implies that, if there exists ε > 0 such that d(X j,X ′j(i)) > ε for infinitely
many i ∈ N, then {Xk}∞

k=0 would be unbounded. In fact ‖{X ′k(i)}i
k=0‖ ≤ maxs∈SC

‖s‖ for
every k, i ∈ N with k ≤ i. Therefore

d(X j,SC) = 0,

and, since SC is compact we deduce that X j ∈SC. ♦

Theorem 4. Suppose that the system (1) is joint expansive. If the system is LI then SU 6⊂ Q
for every U ∈U ×U , with U 6∈ ∆.
Moreover, if we restrict our attention to bounded orbits of system (1), and SU 6⊂ Q for
every U ∈U ×U , with U 6∈ ∆, then the system is µ−AE LI, and Theorems 2, 3 apply.

Proof: The necessary condition of the first part of the Theorem is obvious, and follows
from the same reasoning as in the proof of Theorem 2. The second part follows from
Proposition 6. ♦

4. A TEST FOR LEFT INVERTIBILITY IN JOINT CONTRACTIVE SYSTEMS

The application of Theorem 3, though computationally possible, can be very hard, es-
pecially in presence of complicated attractors or attractors near to the boundary of the set
Q. So we suggest a low-complexity procedure to test left invertibility, based on the imple-
mentation of Random Iteration Algorithm [1, 10].

Let us briefly illustrate how the Random Iteration Algorithm proceeds. An initial
point x0 ∈ X is chosen. One of the transformations is selected “at random” from the set
{F1, . . . ,Fn}, but the probability that each Fi is selected is pi for i = 1, . . . ,n. The selected
transformation is applied to produce a new point x1 ∈ X. Again a transformation is se-
lected using associated probabilities, in the same manner, independently from the previous
choice, and applied to x1 to produce a new point x2, and so on. The implementation of
Random Iteration Algorithm with any initial condition let the orbit tend to the attractor of
the system [1, 10].

Definition 19. Let (X,d) be a compact metric space, and let M(X) denote the space of
normalized Borel measures on X. The Hutchinson metric dH on M(X) is defined by

dH(ν ,λ ) = sup
{∫

X
f dν−

∫
X

f dλ :

9
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f : X→ R continous, | f (x)− f (y)| ≤ d(x,y)
}

for every ν ,λ ∈M(X). ♦

Theorem 5. [17] Let (X,d) be a compact metric space, and let M(X) denote the space of
normalized Borel measures on X. Then (M(X),dH) is a compact metric space. ♦

Definition 20. Let (X,d) be a compact metric space, and let M(X) denote the space of
normalized Borel measures on X. Let {X,F1, . . . ,Fn, p1, . . . , pn} be an IFS. The Markov
operator associated with the IFS is the function M : M(X)→M(X) defined by

M(ν) =
n

∑
i=1

piν ◦F−1
i

for every ν ∈M(X). ♦

Theorem 6. [1] Let (X,d) be a compact metric space and let {X,F1, . . . ,Fn, p1, . . . , pn}
be an IFS with probabilities with contractivity factor s. Let M : M(X)→M(X) be the
associated Markov operator. Then M is a contraction mapping, with contractivity factor s,
with respect to the Hutchinson metric on M(X). That is, for every ν ,λ ∈M(X)

dH(M(ν),M(λ ))≤ sdH(ν ,λ ).

In particular, there is a unique measure υ such that Mυ = υ . ♦

Definition 21. The fixed point υ of the Markov operator M is called the invariant measure
of the IFS. ♦

Theorem 7. [12]
Let {X,F1, . . . ,Fn, p1, . . . , pn} be an IFS, and indicate with {xk}∞

k=0 a generic orbit of the
IFS. Let B be a Borel subset of X with boundary of zero Lebesgue measure. Let N (B,k)
be the number of points in {x0, . . . ,xk}∩B. Let υ the invariant measure of the IFS. Then,
for all initial conditions x0 and µ-almost every σ ∈ Σ

υ(B) = lim
k→∞

{N (B,k)
k +1

}
. ♦ (10)

Proposition 7. In the hypotheses and notations of Theorem 7, suppose that i ∈ N and let
N (B, i,k) be the number of points in {xi,x2i, . . . ,xki}∩B. Then, for all initial conditions
x0, for all i ∈ N, and µ-almost every σ ∈ Σ

υ(B) = lim
k→∞

{N (B, i,k)
k +1

}
. (11)

Proof: We will show that, if we consider the IFS{
X;{Fj1 ◦ . . .◦Fji};{p j1 · . . . · p ji}

}
(12)

where j1, . . . , ji ∈ {1, . . . ,n}, then υ is the fixed point of the Markov operator. So by
Theorem 7 the equation (11) holds. Indeed

∑
j1,..., ji∈{1,...,n}

p j1 · . . . · p jiυ(Fj1 ◦ . . .◦Fji)
−1 =

= ∑
j1,..., ji∈{1,...,n}

p j1 · . . . · p jiυF−1
ji ◦ . . .◦F−1

j1 =

= ∑
j1

p j1 · . . . ·∑
ji

p jiυF−1
ji︸ ︷︷ ︸

=υ

◦ . . .◦F−1
j1 = υ

because of the invariant property of υ . ♦

Theorem 7 and Proposition 7 give more information about the dynamics inside the at-
tractor. They also suggest the use of Random Iteration Algorithm to have an approximation

10
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of the attractor of the system (7), and an estimate of the number of steps necessary to the
uniform left invertibility (k in the definition of uniform left invertibility). The main steps
of a possible strategy to use Random Iteration Algorithm to detect uniform left invertibility
are the following:
• If any XU , U 6∈ ∆ is included in Q the system is not LI by Theorem 2. Otherwise

the system is µ-AE LI (Theorem 2). Set the waiting time l to be the number of instants
necessary to take the state near enough to the attractor. For any fixed compact set K, we
can find such an l ∈ N depending only on K, because of the contraction hypothesis.
• After l instants we can start to “identify” the real orbit with a fictitious one inside

the attractor. This is possible because the distance between the state of the real orbit and
fictitious one tends to zero, since the maps are contractions.
• Estimate ν(A ∩Q): applying the Random Iteration Algorithm the limit is obtained

with probability one with respect to the measure µ , by Theorem 7 and Proposition 7. We
expect the state to exit Q every d1/ν(A ∩Q)e in average and with probability one.

Remark 8. Consider, for k ∈ N, the vertex AE(k) of the external invertibility graph. Then

µ[AE(k)] = ∑
Aσ1...σk⊂AE (k)

Pσ1 · . . . ·Pσk .

If RIA runs for s steps, we obtain s−k+1 strings of length k. So, computing (see Theorem
7)

N (AE(k),s)
s+1

,

we achieve an estimate of µ[AE(k)], that theoretically does not depend on the cardinality
of the input set (we can choose for instance s = 10000).

This, together with the fact that AE(k) approximates A \Q with a geometrical rate with
respect to k, allows us to obtain an estimate of the average of the time within which the
state exits Q. ♦

5. AN ALGORITHM TO DETECT INPUTS IN JOINT CONTRACTIVE SYSTEMS

Let a joint contractive system of type (1) be given. We want to develop an algorithm
that recover the input sequences from the output ones. This algorithm relies on two ba-
sic assumptions: the joint contractivity hypothesis on the system, and the possibility of
determining a priori the uniform left invertibility.

Let the contraction factor be c, suppose that the hypotheses of Theorem 3 hold, and that
the system is ULI in i steps. We assume that a bounded estimate of the state is possible.
We consider then, without loss of generality, 0 to be the first instant for which the distance
between the state in the system (7) and the attractor A is less than d(A ,∂Q)

2 . So we suppose
that x0 ∈ I, where I is a bounded set included in only one element of the partition P . The
following are the main steps of the algorithm.

(1) Choose x̂0 to be a point of I, and R to be the smallest radius of a ball B(x̂0,R) with
center in x̂0 such that I ⊂ B(x̂0,R). Moreover construct an ε−grid of I∩B(x̂0,R),
with ε < d(A ,∂Q)

2 .
(2) Compute the output symbols of the system of length i with x̂0 as initial condition

and all possible input strings of length i:

S =
{

F i
0

(
x̂0,u(1), . . . ,u(i)

)
: u(k) ∈U

}
.

Compare these output strings with the string F i
0

(
x0, ū(1), . . . , ū(i)

)
produced by

the system.
(3) • If F i

0

(
x0, ū(1), . . . , ū(i)

)
= F i

0

(
x̂0,u(1), . . . ,u(i)

)
∈ S, then, since uniform left

invertibility of the system holds, we are sure that u(1) = ū(1), i.e. u(1) is
actually the input used by the system. Go to the step 4.

11
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• If F i
0

(
x0, ū(1), . . . , ū(i)

)
6∈ S then replace x̂0 with another point in the ε−grid

of I∩B(x̂0,R), call it again x̂0 and go to the step 2.
(4) Set B( fū(1)x̂0,cR)∩P1 = I, where P1 is element of the partition P to which

x1 = fū(1)x0 belongs, and go to the step 1.
There are two important things to be observed. The first one concerns the step 3 of the

algorithm. There always exists an x̂0 in the ε−grid of I∩B(x̂0,R) such that the first point
of step 3 works: that’s because the hypothesis of Theorem 3 holds and the system is ULI
in i steps. The second remark is that for every time the algorithm apply the steps 1,2,3 a
number of time such that all composite maps are contractive, the estimate of the state is
made more precise up to a factor c < 1. As a consequence, an asymptotic estimate (with
geometric rate) of the state is possible.

6. EXAMPLES

Example 4. Consider the I/O quantized linear system (2), with

d = 5, A =


1

10 1 0 0 0
0 1

10 1 0 0
0 0 1

10 1 0
0 0 0 1

10 1
0 0 0 0 1

10

= J5(
1
10

), B =


1
1
1
1
1

= 15

C =
(

1 0 0 0 0
)

= π1(5), q(·) = b·c, U = {0,1/20,1}.
The system is joint contractive (see Example 3). We have, for example, X(0,1/20) ∈ Q, so
the system is not LI by Theorem 2.
Consider instead U = {0,1}. Then X(0,1) 6∈ Q and X(1,0) 6∈ Q. By Theorem 2 the system is
µ−AE LI. We are going to show that the system is indeed ULI.

Define

U(i, j) =
(

15ui
15u j

)
, Ii = [0, i), M =

(
J5( 1

10 ) 0
0 J5( 1

10 )

)
,

S =
(

I2× I4× I6× I8× I10

)
×
(

I2× I4× I6× I8× I10

)
.

Direct calculations show that ⋃
(i, j)∈{0,1}2

M(S)+U(i, j) ⊂ S; (13)

U(i, j) 6= U(i′, j′)⇒M(S)+U(i, j)
⋂

M(S)+U(i′, j′) = /0; (14)

(i, j) 6∈ ∆⇒M(S∩Q)+U(i, j)
⋂

Q = /0. (15)
Equation (13) implies that S contains the attractor, equation (14) implies, by Proposition
2, that the attractor is totally disconnected, and equation (15) implies by Theorem 3 that
the system is uniformly left invertible in 1 step. ♦

Let’s give now a nonlinear example with an expansive system.

Example 5. Take X = R, U = {1,2} and

f1(x) = 2x− 1
2

f2(x) =
{

3x+ x2 f or x≥ 0
3x− x2 f or x < 0

(16)

The two maps are expansive: f1 is an affine linear map, and clearly d( f1(x1), f1(x2)) =
2d(x1,x2). To show that f2 is expansive compute its derivative: f ′(x) = 3 + 2|x| ≥ 3. It’s
easy to see that if a function has derivative greater than 1 + ε , for some ε > 0, on all R,
then it is expansive. Moreover f1 and f2 are bijective and their inverse are

f−1
1 (z) =

z+ 1
2

2
f−1
2 (z) =

{
−3+

√
9+4z

2 f or z≥ 0
3−
√

9−4z
2 f or z < 0

12
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FIGURE 1. Attractor of system (17), with all internal edges of IG2: Q is
drawn with dashed-dotted lines.

If a bounded orbit is observed in the system of type (7) relative to (16), then this orbit
is included in [0, 1

2 ]× [0, 1
2 ], since this set includes the attractor of the system of type (9)

relative to (16), because

f−1
1

(
[0,

1
2
]
)
⊂ [0,

1
2
], f−1

2

(
[0,

1
2
]
)
⊂ [0,

1
2
].

So by Theorem 4 that the system given by (16) is not LI. ♦

Finally, we give another example in dimension 1, drawing the attractor of the system
and the invertibility graph.

Example 6. Consider an I/O quantized linear system with

d = 1, a = 1/5, b = c = 1, U = {−0.3,0.9,1.9}. (17)

We consider the partition q given by:

q(x) = bxc i f x < 1;
q(x) = 1 i f x ∈ [1,1.25[∪[1.75,2[
q(x) = 2 i f x ∈ [1.25,1.75[
q(x) = 3 i f x ∈ [2,2.25[
q(x) = 4 i f x ∈ [2.25,3[
q(x) = bxc+2 i f x≥ 3

(18)

System (17) is contractive because |a|< 1. The attractor of the system, in Figure 1, has
been drawn with the Random Iteration Algorithm. Calculations show that it is included in
the square S = [−1/2,5/2]× [−1/2,5/2], and that{

1/5 ·S +(u1,u2)
} ⋂ {

1/5 ·S +(u3,u4)
}

= /0

if (u1,u2) 6= (u3,u4) ∈ U ×U . This suffices, by Proposition 2, to conclude that the at-
tractor of system (17) is totally disconnected. To our purpose we can divide the attractor
in 81 parts (of which those included in Q are indicated by a circle around them), each
one being represented by an address of two symbols in the alphabet U ×U . Then direct
calculations shows that IG2 and EG2 coincide, and that the resulting graph is that one of
figure 2, where edges induced by an input not int ∆ are drawn with dashed arrows.

Clearly there does not exist proper paths of length greater than 2 in IG2, so system (17)
is uniformly left invertible in 2 steps. ♦
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FIGURE 2. IG2 of system (17)

7. CONCLUSIONS

In this paper we introduced a technique relating the theory of IFS to the left invertibility
problem, for joint contractive dynamics. A necessary and sufficient condition for invertibil-
ity with probability one with respect to input strings is given (Theorem 2), and necessary
and sufficient conditions for invertibility and uniform invertibility are stated (Theorem 3).
In particular we showed that invertibility of joint contractive systems depends only on the
properties of a compact set (the attractor). The attractor, from which the invertibility graph
is obtained, is algorithmically approximable within a given, arbitrary small threshold, for
example by the so called deterministic algorithm described in [1]. The implementation
of an algorithm to construct the invertibility graph and check left invertibility is therefore
straightforward.

Future research will include the extension of the results to non-contractive dynamics.
For the case of non-contractive linear systems, for instance, in an on-going work a weaker
form of left invertibility is defined which can be checked by attractor-based techniques in
a similar way as described in this paper.
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