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Abstract— In this paper we show how the decentralized
estimation of the spectrum of a network can be used to infer
its controllability and observability properties. The proposed
approach is applied to networked multi-agent systems whose
local interaction rule is based on Laplacian feedback. We
provide a decentralized necessary and sufficient condition
for observability and controllability based on the estimated
eigenvalues. Furthermore we show an example of application
of the proposed method and show that the estimated spectrum
can also be envisioned as a tool for decentralized formation
identification.

I. I NTRODUCTION

Multi-agent systems composed by networks of unmanned
mobile vehicles are envisioned to perform the most various
tasks in the near future. The design of control algorithms
for such systems poses several challenges to achieve robust-
ness and scalability. So far such properties are expected to
be achieved by decentralized control algorithms that make
locally use of available information [1], [2], [3], [4].

A significant example of a multi-agent system is one
involving agents with simple integrator dynamics under
Laplacian feedback [2]. While the model of the agents’
dynamics is clearly oversimplified, the network model has
just the right complexity to capture several relevant features
of a networked system linked to the topology of the net-
work. Furthermore such model is widely accepted to be a
good starting point in modeling leader-follower networks of
mobile vehicles [5] with the aim of allowing a single pilot to
control a multitude of mobile vehicles with limited available
information.

Recently, an algorithm for the decentralized estimation
of the eigenvalues of the Laplacian matrix associated to a
network was proposed in [6]. Such algorithm consists in the
agents applying a local state update rule that allows to infer
the eigenvalues of the network through the application of a
simple Discrete Fourier Transform to their state trajectory.

In this paper we build on the idea to use the information
about the spectrum of the network to infer in a decentralized
fashion properties such as controllability, observability and,
more in general, its topology.
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The link between the network topology of a multi-agent
system and its properties of controllability and observability
have been deeply studied over the past few years (see
for example [7], [8], [9], [10]). In [10] a graph theoretic
sufficient and necessary condition for controllability hasbeen
developed. It turned out that controllability and, by duality,
observability depend on the existence of external equitable
partitions on the graph representing the network. The novelty
in our contribution is that our condition islocally checkable
online.

Another application of the information about the spectrum
of a network is the identification of its topology. In general,
the spectrum is not necessarily a unique identifier for a
given topology. Moreover, in multi-agent systems we may be
interested in the subproblem of estimating when a particular
topology known a priori has been achieved. The target topol-
ogy in which the agents are supposed to be in their nominal
state of operations can be built so that it is identifiable by
its spectrum. A strong application of this information is
the enabling of a simple Luenberger observer to estimate
correctly the relative position of each agent in the network
with respect to the leader in absence of communication, GPS
or common reference frames. In this paper we show how line
and lattice formations composed by a convoy ofn agents can
be identified by their corresponding spectrum.

We point out that the theory presented in this paper can be
easily extended to heterogeneous networks where a different
weight is associated to each link.

This paper is structured as follows:

• In Section II we provide some background on the work
in [6] regarding the decentralized estimation of the
eigenvalues of a network topology.

• In Section III we present the main result of this paper,
i.e. a decentralized method to check for observability
and controllability.

• In Section IV we propose as research direction the use
of the spectrum of a graph as a tool for formation
identification.

• In Section V we present an application of the results
presented in this paper.

II. BACKGROUND

In multi-agents systems, it is common to let the nodes
of a graph represent the agents, and to let the arcs in the
graph represent the inter-agent communication links. In fact,
this interaction graph plays a central role in representing



the information flow among the agents, and in defining the
properties of the system.

Let the undirected graphG be given by the pair(V, E),
whereV = {1, . . . , n} is a set ofn vertices, andE is a set
of edges. Two nodesj and k are neighbors if(j, k) ∈ E ,
and the set of the neighbors of the nodej is defined as
Nj = {k : (j, k) ∈ E}. The degree of a nodei, ∆i is given
by the number of its neighbors, we denote∆max = maxi ∆i.
A graphG is connected if there is a path between any pair
of distinct nodes, where a pathi0i1 . . . iS is a finite sequence
of nodes such thatik−1 ∈ Nk with k = 1, 3 . . . S.

In this paper we let the state of each node,xi, be a scalar.
(This does not affect the generality of the derived results.)
The standard, consensus algorithm consists in each agent
performing the following state update law

ẋi(t) =
∑

j∈Ni

(xj(t)− xi(t)), (1)

or equivalently ẋ(t) = −Lx(t), where x(t) is the vector
with the states of all nodes at timet, andL is the graph
Laplacian.L can be obtained asIIT , whereI ∈ R

n×p, (p
being the number of edges), is theincidence matrix of the
graph, defined as

[I]kl =







1 if node k is the head of the edgel
−1 if node k is the tail of the edgel
0 otherwise,

given an arbitrary orientation of the edges.
Under some connectivity conditions, the consensus algo-

rithm (1) is guaranteed to converge, i.e.limt→+∞ xi(t) = g,
i ∈ {1, . . . , n}, whereg is a constant depending onL, and
on the initial conditionsx0 = x(0). (See for example [11],
[12], [13].)

As in [14], [15], [16], we imagine that a subset of the
agents have superior sensing, computation, or communica-
tion abilities. We thus partition the node setV into a leader
setL of cardinalitynl, and a follower setF of cardinality
nf , so thatL ∩ F = ∅ andL ∪ F = V .

Leaders differ in their state update law in that they can
arbitrarily update their positions, while the followers execute
the agreement procedure (1), and are therefore controlled by
the leaders.

Under the assumption (without loss of generality) that the
first nf agents are followers, and the lastnl = n − nf are
leaders, the introduction of leaders in the network inducesa
partition of the incidence matrixI as

I =

[

If
Il

]

,

where If ∈ R
nf×p, Il ∈ R

nl×p, and the subscriptsf and
l denote respectively the affiliation with the leaders and
followers set. As a result, the graph LaplacianL becomes

L =

[

Lf Lfl

LT
fl Ll

]

, (2)

with Lf = IfI
T
f ∈ R

nf×nf , Ll = IlI
T
l ∈ R

nl×nl and
Lfl = IfI

T
l ∈ R

nf×nl .

The system we now consider is the controlled agreement
dynamics, in which agents evolve through the Laplacian-
based dynamics







ẋ = −Lfx− Lflxl

ẋl = u
y = −LT

flx− Llxl

(3)

wherex is the state vectors of the followers, andu(t) denotes
the exogenous control signal dictated by the leaders.

In the proposed approach all the agents (both followers
and the leader) execute the algorithm for estimating the
eigenvalues ofL. We now recall that the leader-followers
network evolves according to

{

ẋ = −Lfx− Lflxl

ẋl = u(t)
(4)

The leader has full access to the state of its neighbors and
as such it is able to estimate

y = −LT
flx− Llxl (5)

It follows that if the leader applies the following feedback
control law,

u(t) = −LT
flx− Llxl + û(t) (6)

including the state of the leader with the others, the
networked system can be described by















[

ẋ
ẋl

]

= −L

[

x
xl

]

+Bu

y = C

[

x
xl

] (7)

whereC = BT = [0, . . . , 0, 1].

A. Decentralized Laplacian Eigenvalues Estimation

In this section we review an algorithm recently proposed
in [6] for the decentralized estimation of the Laplacian
eigenvalues of a network.

The algorithm consists on having the network of agents
simulate numerically the following dynamical system:

{

ż1i(t) =
∑

j∈Ni(t)
(z2i(t)− z2j(t)) ,

ż2i(t) = −
∑

j∈Ni(t)
(z1i(t)− z1j(t)) .

(8)

The above local interaction rule is meant to be simulated
through the use of local communications between the agents,
and thus no sensing of relative positions is involved in this
step.

The behavior of the network state when each agent
performs the above updating rule can be described by the
following time varying autonomous linear system

[

ż1(t)
ż2(t)

]

= A(t)

[

z1(t)
z2(t)

]

(9)

where

A(t) =

[

0n×n L(t)
−L(t) 0n×n

]

(10)



and0n×n is the nulln× n matrix.
This is a linear switching system, where the linear dy-

namics switch to a different one when an edge is added or
removed from the network.

The resulting state trajectory is composed by a linear
combination of sinusoids with frequencies corresponding to
the Laplacian eigenvalues of the network. The following
theorem characterizes the spectrum of the agents’ trajectories
which can be computed locally and independently by each
single agent by applying theDiscrete Fourier Transform
(DFT) to a sufficiently long time window as showed in [6].

Theorem 1:
Let us consider a system described by eq. (9) relative to

a network whose graphG is connected. The module of the
Fourier transform of thei-th state componentsz1i(t) and
z2i(t), i = {1, . . . , n}, can be written as

|F [z1i(t)]| = |Z1i(f)| = a1,i δ(0) +
m
∑

j=2

aj,i
2

δ(f ± λj/2π),

|F [z2i(t)]| = |Z2i(f)| = b1,i δ(0) +

m
∑

j=2

bj,i
2

δ(f ± λj/2π),

whereaj,i andbj,i are appropriate real constants. �

It is relevant to point out that the multiplicity of the
eigenvalues can not be retrieved from the spectrumZ1i(f)
or Z2i(f).

Clearly the amplitude of the frequency peaks in the result-
ing spectrum are function of the network eigenvectors and
initial conditions [6]. Furthermore, in the case the network
is not observable, some coefficients might be zero.

It is relevant to point out that such algorithm produces
sustained oscillations at frequencies corresponding to the
eigenvalues only if the initial conditions are not orthogonal
to any eigenvector of the graph Laplacian.

Let C be anym×n matrix. The following result is stated
for a general case and holds for anyC, however in our
application we consider the output matrixC as a 1 × n
matrix where all elements are zeros but for thei-th element
that is equal to1 where i is the ID of the agent observing
the network. LetO(A, Ĉ) andO(L, C) be the observability
matrices of system (9) and system (7) .

The following result, which has been proved in [6], states
that the observability properties of system (9) are strictly
related to the observability properties of the multi-agent
network under Laplacian feedback described by system (7).

Theorem 2:
Let A be the matrix describing the group dynamics as in

(10). LetC be anym× n matrix. The following properties
hold:

• rank(O(A, Ĉ)) = 2rank(O(L, C)).
• (A, Ĉ) is observable if and only if(L, C) is observable.

Proof: See [6]
�

We now state the procedure implemented by each agent
to estimate the eigenvalues of the network topology.

Algorithm 1: Eigenvalue Estimation Algorithm
Data: Each agent stores in its memory two variables

z1, z2 to numerically simulate the proposed
interaction rule (9). A sampling timeτ is chosen
by the numerical method chosen to simulate the
interaction rule.

Result: λ(L) = {λ1, λ2, . . . , λm}.

Estimation steps:

1) Each agenti = 1, . . . , n numerically simulates
ẋ =

∑

j∈Ni
(xj − xi) with random initial conditions.

2) At any instant of time, agenti computes the Discrete
Time Fourier Transform ofxi(t) for the time window
[t, t− t0].

3) Agent i computes the location of the peaks (spectral
lines) in the computed DFT.

4) The location of the peaks corresponds to them ≤ n
eigenvalues corresponding to the observable modes
and are given as output.

Remark 1 (Implementation Remarks): Algorithm 1 is
based on the numerical simulation of system (9). For this
reason the eigenvalues estimation procedure requires to
compute the discrete time Fourier Transform over some
sufficiently long time window to minimize approximation
errors.

Furthermore to correctly observe the network eigenvalues
we need to choose the number of samplesm of the time
window and the sampling frequencyωs. Regarding the sam-
pling frequency it has to be at least twice as the maximum
frequency contained in the signal, which if no topology
switching occurs during such time window corresponds
exactly to λmax. Since it holdsλmax ≤ ∆max ≤ n − 1
it is sufficient to imposeωs ≥ 2∆max or ωs ≥ 2(n− 1).

{

ωs ≥ 2λmax

λmax ≤ ∆max ≤ n− 1

�

III. D ECENTRALIZED CHECK FOROBSERVABILITY AND

CONTROLLABILITY

In this section we present a method for the decentralized
online verification of observability and controllability in a
multi-agent system. In the following it is assumed that the
agents execute Algorithm 1 and thus each agent estimates
the eigenvalues (without multiplicity) observable from its
position by taking only its own state trajectory as output.
The basic idea is to exploit the properties of algorithm (9) to
locally estimate the spectrum of the network and then link
this information to check for observability and controllability.
Such link is made possible by the fact that the modes



of system (9) are observable if and only if the modes of
system (7) are observable.

We now provide some basic helpful facts of linear system
theory.

Lemma 3: System (4) is controllable if and only if sys-
tem (7) is controllable.

Proof:

System (4) differs from system (7) in that the leader
applies the following feedback control law

u(t) = −LT
flx− Llxl + û(t),

whereû(t) is an input with the same dimensions asu(t). If
the system is controllable with such feedback it is control-
lable also withu(t) = û(t) since the input enters only in
the row corresponding toxl. Necessity comes from the fact
that if system (7) is not controllable from̂u(t) then it is not
controllable from any input entering in the row ofxl and
thus also

ū(t) = û(t) + LT
flx+ Llxl = u(t),

proving the statement.

Lemma 4: If the Laplacian matrixL of graph G has
eigenvalues with multiplicity greater than one, then sys-
tem (7) is not observable/controllable.

Proof:

See [17] chapter9.5.

Now we state one of the main results of the paper. In the
following theorem a sufficient and necessary condition for
observability and controllability verification is given. Such
condition involves only the local information available to
agenti if the total number of agentsn is known.

Theorem 5: Let the network of agents be represented
by a connected graphG. Assume each agent estimates the
eigenvalues of system (9), by applying theDFT algorithm
to its state trajectory. Let agenti know the total number
of agentsn connected to the network. Then the network
described by

{

ẋ = −Lfx+ Lflu
y = LT

flx
(11)

is observable and controllable from agenti if and only if
agenti observesn distinct eigenvalues.

Proof:
- Sufficiency:
Assume agenti observesn modes of system (9) and

they are distinct, then by taking as output the matrixC =
[0, . . . , 1, 0, . . .] with 1 in the i-th element, we have that
observability matrix(C,L) is full rank due to theorem 2. Due
to lemma 3 if system (7) is controllable so is system (11).

Furthermore since system (11) is symmetric andC = BT ,
by duality the system is also controllable.

- Necessity:
Assume agenti estimatesn distinct eigenvalues, assume

system (9) is initialized with an initial condition not orthogo-
nal to any of its eigenvector. If system (11) is not observable,
then the observability matrix(C,L) must be rank deficient
and so has to be the observability matrix for system (9). It
follows that if system (9) is not observable, then by definition
the number of observable modes must be less thann which
is a contradiction. Furthermore observability of system (7)
is a necessary condition for the observability of system (11),
the same goes for controllability.

The above theorem allows the agents to estimate in a
decentralized fashion some relevant properties of the network
if the number of agents is known. Note that the necessary
condition holds only if system (9) is initialized with a proper
initial condition so that all the system modes are excited.
Now suppose that the total number of agents is not known
and that the actual network is eventually not controllable nor
observable. We are interested in finding the dimension of
the controllable/observable subspace from any given agent.
The following theorem characterizes the dimension of the
controllable/observable subspace as function of the number
of observable eigenvalues of system 9 which is simulated for
the execution of Algorithm 1.

Theorem 6: Assume each agent estimates the eigenvalues
of system (9), by applying theDFT to its state trajectory.
Assume agenti estimates a number of distinct eigenvalues
mi.

The dimension of the controllability/observability sub-
space from agenti is equal tomi.

Proof:
Assume agenti observesmi eigenvalues executing Algo-

rithm 1. Thanks to theorem 2 we have that

rank(O(A, Ĉ)) = 2rank(O(L, C)).

Since the eigenvalues of systemA are purely imaginary,
pairwise conjugate and equal to the eigenvalues ofL in
modulus, we have

rank(O(L, C)) = mi.

Remark 2: Theorem 6 holds if system (9) is initialized
with a proper initial condition so that each system mode is
excited. In the case such condition cannot be guaranteed, then
the dimension of the controllability/observability subspace
from agenti is clearly greater than or equal tomi. �

IV. SPECTRUM BASEDFORMATION IDENTIFICATION

The idea of estimating topological features of a graph
from its spectrum has been around for quite some time



in algebraic graph theory. Unfortunately it has been shown
that the spectrum of a graph is not a unique identifier for
its topology. As an example, if two graphs are identical
except for a relabeling of their nodes then necessarily the
two spectra are identical. On the other hand there exists
several graphs which are co-spectral with many others [18],
[19], [20]. In this section we focus on the practical uses of
this notion for the identification of regular structures such as
formations of multi-agent systems.

A vast literature that deals with achieving some desired
formation, e.g. [3], [21], [22], [23], [24], in a multi-agent
system possibly in a decentralized fashion exists. A relevant
issue in such decentralized approaches is to understand when
such formation has been actually achieved so that the agents
can switch mode of operation to something else.

It is clear that if the achievement of a formation could
be linked directly to the spectrum of its topology then
the numerical simulation of system 9 by the network and
the execution of Algorithm 1 could provide an instance of
solution to such problem.

A relevant class of graph topologies that serve our cause
are those structured graphs whose eigenvalues are known
analytically as function of the number of nodes.

The first of such graphs is the line graph, or pathPn of
n agents whose eigenvalues are

λ(Pn) = 4 sin(
πi

2n
)2, ∀i = 0, . . . , n− 1. (12)

This fact is relevant to practical applications in that the
line graph is both controllable and observable for leader-
follower networks. Furthermore it has obvious applications
in the control of convoys of ground vehicles.

Since the cartesian product of graphs has eigenvalues equal
to any combination of summation of the eigenvalues of
the original graphs [25], we have that then × m grid has
eigenvalues given by

λ(Gn×m) = 4 sin(
πi

2n
)2+4 sin(

πj

2n
)2, ∀i, j = 0, . . . , n−1.

The grid graph has significant applications in the coverage
problem for both multi-agents systems and sensor networks.

V. A PPLICATION TO LEADER-FOLLOWER NETWORKS

In this section we apply the proposed method for decen-
tralized observability verification to a leader-follower net-
work and present an example of spectrum-based formation
identification.

Let us consider a group vehicles with the task to form a
convoy and move toward a target. Suppose that the leader
knows the number of agents of the network and the desired
topology which is determined by the eigenvalues of the
Laplacian Matrix. Furthermore, suppose that each agent is
provided with a decentralized controller which is able to
chose its neighbors in order to reach the desired topology.

Starting from the initial point and structure of Figure 1(a),
the communication links among nodes are changing (Figure
1(b)) to the final structure of Figure 1(c).

Figure 2 shows the evolution of the eigenvalues of
the Laplacian matrix associated with networks of Figure
1(a), 1(b), 1(c). For everyt it reports the Discrete Fourier
Transform (DFT) to a sufficiently long time window (of
size Tw) of the trajectory of the state of the system (9)
in the interval [t − Tw, t] which is composed by a linear
combination of sinusoids with frequencies corresponding to
the Laplacian eigenvalues of the network. It is clear that,
since the window is sliding, we are able to capture the
eigenvalues of the Laplacian matrix associated to the network
Figure 1(c)∀t ∈ [0, Tf ] with all their modification to the final
set-up. In particular, at timet = 0 we can see from Figure
2 that the topology in Figure 1(a) is not controllable and
observable from the leader since it has eigenvalues located
in λ(G1) = [0, 1.4, 3, 3, 3, 5.5], only 4 distinct eigenvalues
with 6 agents. At timet = 150 the topology in Figure 1(b)
is completely controllable and observable from the leader
since we observe6 eigenvalues on6 agents. Since the desired
formation is a line and its eigenvalues are known, we can
infer that at timet = 150 the agents are not in a line-
graph since its spectrum isλ(G2) = [0, 0.7, 2.1, 3.4, 4.5, 5.1].
At last, at timet = 250 Figure 2 shows that the network
in Figure 1(c) is still controllable and observable and the
observed spectrum matches the one of a line graphλ(G3) =
[0, 0.2, 1, 2, 3, 3.7] according to (12).

It is clear that this context emphasize the importance of
the proposed method: by executing the decentralized check
all agents are able to investigate about the eigenvalues of
the network 2 and to settle whether the network is changed
and whether the actual configuration is the desired one, for
example observable. Only in the latter case, the leader, from
which the network is completely observable, is interested in
reconstruct the connection scheme through which it is able to
know all information regarding the other node in the network.

VI. CONCLUSION

In this paper we proposed a decentralized method for
online checking of controllability and observability of a
network of single integrators with Laplacian feedback. The
method exploits the knowledge of the eigenvalues of the
linear dynamics made available by a recently proposed
algorithm in [6]. We proposed the use of the spectrum of
the network of a multi-agent system to identify when a
desired formation has been achieved. Finally we presented an
application in which the proposed method is used to check
for controllability and observability of a convoy of vehicles
and shown that the convoy, whose topology corresponds to
a line-graph, can be identified in a decentralized way from
the Laplacian spectrum of the network.
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Fig. 1. The initial structure of the convoy (a) and its modifications (b) toward the desired topology (c).
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Fig. 2. Spectrogram of the switching topology in figure 1(a),1(b),1(c)
obtained by algorithm 9.
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