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Abstract—In this paper we show how the decentralized The link between the network topology of a multi-agent
estimation of the spectrum of a network can be used to infer system and its properties of controllability and obseritgbi
its controllability and observability properties. The proposed  pave peen deeply studied over the past few years (see
appror_:tch is e_lpplled to networked multl-aggnt systems whose for example [7], [8], [9], [10]). In [10] a graph theoretic
local interaction rule is based on Laplacian feedback. We e ’ ’ ! i/ -
provide a decentralized necessary and sufficient condition Sufficientand necessary condition for controllability heen
for observability and controllability based on the estimated developed. It turned out that controllability and, by dtyali
eigenvalues. Furthermore we show an example of application gbservability depend on the existence of external equtabl
of the proposed method and show that the estimated spectrum 4 titions on the graph representing the network. The mpvel
can also be envisioned as a tool for decentralized formation . oo .
identification. in our contribution is that our condition iscally checkable

online.
I, INTRODUCTION Another application of the information about the spectrum
of a network is the identification of its topology. In general

Multi-agent systems composed by networks of unmanna#le spectrum is not necessarily a unique identifier for a
mobile vehicles are envisioned to perform the most variougiven topology. Moreover, in multi-agent systems we may be
tasks in the near future. The design of control algorithminterested in the subproblem of estimating when a particula
for such systems poses several challenges to achieve 1obuspology known a priori has been achieved. The target topol-
ness and scalability. So far such properties are expecteddgy in which the agents are supposed to be in their nominal
be achieved by decentralized control algorithms that maksgate of operations can be built so that it is identifiable by
locally use of available information [1], [2], [3], [4]. its spectrum. A strong application of this information is

A significant example of a multi-agent system is oneghe enabling of a simple Luenberger observer to estimate
involving agents with simple integrator dynamics undecorrectly the relative position of each agent in the network
Laplacian feedback [2]. While the model of the agentswith respect to the leader in absence of communication, GPS
dynamics is clearly oversimplified, the network model hasr common reference frames. In this paper we show how line
just the right complexity to capture several relevant feegu and lattice formations composed by a convoy.afgents can
of a networked system linked to the topology of the netbe identified by their corresponding spectrum.
work. Furthermore such model is widely accepted to be a We point out that the theory presented in this paper can be
good starting point in modeling leader-follower networks oeasily extended to heterogeneous networks where a differen
mobile vehicles [5] with the aim of allowing a single pilot to weight is associated to each link.
control a multitude of mobile vehicles with limited availab

information. This paper is structured as follows:

fTﬁcently’ anl algorflti;;n fLor Ithe_ decenttr_allzed e_sttlrr:jattmn « In Sectior1l we provide some background on the work
of the eigenvalues ot the Lapiacian matrix associated to a ;. [6] regarding the decentralized estimation of the

network was .proposed in [6]. Such algorithm consists in the eigenvalues of a network topology.
agents applying a local state update rule that allows ta infe In SectiorTll we present the main result of this paper,

the ellgtla;values Ef th.e nﬁtwor]!( througn t.he apphcapon of & je. a decentralized method to check for observability
simple Discrete Fourier Transform to their state trajector and controllability.

In this paper we build on the idea to use the information |, sectior Ty we propose as research direction the use
abogt the spect_rum of the network to [r}fer in adecgqtrallzed of the spectrum of a graph as a tool for formation
fashion properties such as controllability, observapiéind, identification.

more in general, its topology. « In Section[¥ we present an application of the results

. . , presented in this paper.
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the information flow among the agents, and in defining the The system we now consider is the controlled agreement

properties of the system. dynamics, in which agents evolve through the Laplacian-
Let the undirected grapl¥ be given by the paifV,£), based dynamics
whereV = {1,...,n} is a set ofn vertices, ancf is a set G Lom— Lo
of edges. Two nodeg and k are neighbors if(j, k) € &, { P f FE 3)
and the set of the neighbors of the noglds defined as 17 T
Yy = *ﬁfﬂ? — Ell‘l

N; ={k:(j,k) € £}. The degree of a nodg A; is given

by the number of its neighbors, we dendtg,,, = max; A;.  wherez is the state vectors of the followers, an() denotes

A graphG is connected if there is a path between any pairthe exogenous control signal dictated by the leaders.

of distinct nodes, where a pathi, . ..ig is a finite sequence In the proposed approach all the agents (both followers

of nodes such thal,_; € N;, with k. =1,3...5. and the leader) execute the algorithm for estimating the
In this paper we let the state of each nodg,be a scalar. eigenvalues of£. We now recall that the leader-followers

(This does not affect the generality of the derived resultsnetwork evolves according to

The standard, consensus algorithm consists in each agent

performing the following state update law { & =—Lx—Lpx @

w(t) = > (w;(t) = wi(1)), (1) &1 = ult)

JEN; The leader has full access to the state of its neighbors and

or equivalently i(t) = —Lax(t), where z(t) is the vector @s suchitis able to estimate
with th'e states of all nodes at tir;’ﬁe and L is the graph y = _[';le — L (5)
Laplacian.£ can be obtained a7 , whereZ € R™"*?, (p
being the number of edges), is thacidence matrix of the It follows that if the leader applies the following feedback
graph, defined as control law,

1 if nodek is the head of the edge u(t) = —,C}le — Lz + u(t) (6)

[Z]x =< —1 if nodek is the tail of the edgé ) _ .
0  otherwise, including the state of the leader with the others, the

networked system can be described by
given an arbitrary orientation of the edges.

Under some connectivity conditions, the consensus algo- { z } -7 { z } + Bu
rithm (@) is guaranteed to converge, ilen; ;o z;(t) = g, Zl Zl @)
i€{1,...,n}, whereg is a constant depending of, and y==C z
on the initial conditionszy = z(0). (See for example [11], ol
[12], [13].) whereC' = BT =[0,...,0,1].
As in [14], [15], [16], we imagine that a subset of the
agents have superior sensing, computation, or communica-
tion abilities. We thus partition the node Sétinto a leader A. Decentralized Laplacian Eigenvalues Estimation
set L of cardinality n;, and a follower sef” of cardinality In this section we review an algorithm recently proposed
ny,sothatLNF =0 andLUF =V. in [6] for the decentralized estimation of the Laplacian

Leaders differ in their state update law in that they caeigenvalues of a network.
arbitrarily update their positions, while the followersexte The algorithm consists on having the network of agents
the agreement proceduid (1), and are therefore controjled §imulate numerically the following dynamical system:
the leaders.

Under the assumption (without loss of generality) that the 215(t) = X jeni ) (22i(t) — 22;(t))
first ny agents are followers, and the lagt=n — n; are Z2i(t) = = X jeni(r) (21i(t) — 215(1)) -
leaders, the introduction of leaders in the network induces . . . .

The above local interaction rule is meant to be simulated

partition of the incidence matrig’ as through the use of local communications between the agents,
I_ Iy and thus no sensing of relative positions is involved in this
. |’ step.
where Z; € R"*?, T, ¢ R"*?, and the subscriptg and The behavior of the network state when each agent

[ denote respectively the affiliation with the leaders anﬁﬁlrfc\:\ms ttirr]ne Ei./b(:Vﬁ] upd?tlrr:gmrule cl:iin t;e d(?[s;::bed by the
followers set. As a result, the graph Laplacidrbecomes oflowing time varying autonomous finear syste

o= [ @ IR ©

with L =T;Tf e R*>", L, =TT e R"*™  and [ Ouxn L(D)
Efl = IfIZT € Rrxm A(t) o —E(t) O xn (10)

8

where



andO0,,«,, is the nulln x n matrix. We now state the procedure implemented by each agent
This is a linear switching system, where the linear dyto estimate the eigenvalues of the network topology.
namics switch to a different one when an edge is added or

removed from the network. Algorithm 1: Eigenvalue Estimation Algorithm

The resulting state trajectory is composed by a linear Data: Each agent stores in its memory two variables
combination of sinusoids with frequencies correspondmng t 21, 25 to numerically simulate the proposed
the Laplacian eigenvalues of the network. The following int7eraction rule[[). A sampling time is chosen
theorem characterizes the spectrum of the agents’ trajesto by the numerical method chosen to simulate the
which can be computed locally and independently by each interaction rule.
single agent by applying th®iscrete Fourier Transform Result A(£) = {A1, Ao A}
(DFT) to a sufficiently long time window as showed in [6]. PoErr

Estimation steps:

Theorem 1: 1) Each agent = 1,...,n numerically simulates
Let us consider a system described by €d. (9) relative to i = Zje/vf (z; — ;) with random initial conditions.
a network whose grapli is connected. The module of the 2) At any instant of time, agenitcomputes the Discrete
Fourier transform of the-th state components;;(t) and Time Fourier Transform of;(¢) for the time window
z9i(t), i ={1,...,n}, can be written as [t,t — to).
mo 3) Agenti computes the location of the peaks (spectral
| Flz1: ()]l = 1 Z1i(f)] = a1,:0(0) + Z % O(f £ A;/2m), lines) in the computed DFT.
j=2 4) The location of the peaks corresponds to thel n

eigenvalues corresponding to the observable modes

b; S(f £+ N, /2m), and are given as output.

2

Fleas0)]| = |Zai(F)| = b1 5(0) + Y

wherea; ; andb;; are appropriate real constants. W

Remark 1 (Implementation Remarks): Algorithm [ is

It is relevant to point out that the multiplicity of the pased on the numerical simulation of systdth (9). For this
eigenvalues can not be retrieved from the spect@ini{f) reason the eigenvalues estimation procedure requires to
or Zsi(f). compute the discrete time Fourier Transform over some

Clearly the amplitude of the frequency peaks in the resulkyfficiently long time window to minimize approximation
ing spectrum are function of the network eigenvectors angkrors.
initial conditions [6]. Furthermore, in the case the networ  Fyrthermore to correctly observe the network eigenvalues
is not observable, some coefficients mlght be zero. we need to choose the number of Sampbeg)f the time

It is relevant to point out that such algorithm producesyindow and the sampling frequency. Regarding the sam-
sustained oscillations at frequencies corresponding o tk’_\J"ng frequency it has to be at least twice as the maximum
eigenvalues only if the initial conditions are not orthogbn frequency contained in the signal, which if no topology
to any eigenvector of the graph Laplacian. switching occurs during such time window corresponds

Let C' be anym x n matrix. The following result is stated exactly to A,e.. Since it holdSApas < Apmas < n — 1

for a general case and holds for agy however in our it js sufficient to imposev, > 24,4, OF w, > 2(n — 1).
application we consider the output matfX as al x n

matrix where all elements are zeros but for ik element Ws > 2 maz
that is equal tol wherei is the ID of the agent observing Amaz < Boae <n—1
the network. LetO(A, C) andO(L, C) be the observability n

matrices of systeni{9) and systei (7) .
The following result, which has been proved in [6], states
that the observability properties of systef (9) are strictl 11l. D ECENTRALIZED CHECK FOROBSERVABILITY AND
related to the observability properties of the multi-agent CONTROLLABILITY
network under Laplacian feedback described by sysfém (7). | this section we present a method for the decentralized

_ online verification of observability and controllabilityr ia
Theorem 2: multi-agent system. In the following it is assumed that the

Let A be the matrix describing the group dynamics as igents execute Algorithil 1 and thus each agent estimates
(10). LetC be anym x n matrix. The following properties e gigenvalues (without multiplicity) observable frons it

hold: X position by taking only its own state trajectory as output.
o rankO(A, C')) = 2rank O(L, C)). The basic idea is to exploit the properties of algoritfiin ¢(9) t
+ (A,C) is observable if and only ifZ, C') is observable. |ocally estimate the spectrum of the network and then link
Proof: See [6] this information to check for observability and controllaip.

0 Such link is made possible by the fact that the modes



of system [[(P) are observable if and only if the modes oFurthermore since systeri {11) is symmetric @hd= B7,

system|[(¥) are observable. by duality the system is also controllable.
- Necessity:
We now provide some basic helpful facts of linear system Assume agent estimatesn distinct eigenvalues, assume
theory. system([(D) is initialized with an initial condition not odgo-

nal to any of its eigenvector. If systefn{11) is not obsemabl
Lemma 3: System[(%) is controllable if and only if sys- then the observability matrixC, £) must be rank deficient
tem [7) is controllable. and so has to be the observability matrix for systéin (9). It
Proof: follows that if system[{PR) is not observable, then by defomiti
the number of observable modes must be less tharhich
System [(#) differs from systeni](7) in that the leadefs a contradiction. Furthermore observability of systéf (7

applies the following feedback control law is a necessary condition for the observability of systen),(11
- R the same goes for controllability. [ ]
u(t) = —Lyx — Lz +a(t), The above theorem allows the agents to estimate in a

decentralized fashion some relevant properties of thear&tw

|i_f the number of agents is known. Note that the necessary
condition holds only if systeni]9) is initialized with a prep
initial condition so that all the system modes are excited.
Now suppose that the total number of agents is not known
and that the actual network is eventually not controllalde n
observable. We are interested in finding the dimension of

whered(t) is an input with the same dimensions@g). If
the system is controllable with such feedback it is contro
lable also withu(t) = 4(t) since the input enters only in
the row corresponding t@;. Necessity comes from the fact
that if system[{I7) is not controllable fror(¢) then it is not
controllable from any input entering in the row af and

thus also the controllable/observable subspace from any given agent
a(t) =a(t) + £Jfla; + Lz = u(t), The following theorem characterizes the dimension of the

. controllable/observable subspace as function of the numbe
proving the statement. B of observable eigenvalues of systEm 9 which is simulated for

_ ) _ the execution of Algorithni]1.
Lemma 4: If the Laplacian matrixC of graph G has  Theorem 6: Assume each agent estimates the eigenvalues
eigenvalues with multiplicity greater than one, then sysg¢ system [[®), by applying th®FT to its state trajectory.

tem [J) is not observable/controllable. Assume agent estimates a number of distinct eigenvalues
Proof: my.
The dimension of the controllability/observability sub-
See [17] chapte$.5. B space from agentis equal tom,.

Now we state one of the main results of the paper. Inthe  prgof:

following theorem a sufficient and necessary condition for assume agent observesn; eigenvalues executing Algo-
observability and controllability verification is givenu&h  rithm[1. Thanks to theorefdl 2 we have that
condition involves only the local information available to

agents if the total number of agents is known. rank O(A é)) = 2rankO(L, C)).

Theorem 5: Let the network of agents be represented Since the eigenvalues of systesare purely imaginary,
by a connected grapfi. Assume each agent estimates th@airwise conjugate and equal to the eigenvaluesCoin
eigenvalues of systeni](9), by applying tB&T algorithm modulus, we have
to its state trajectory. Let ageritknow the total number .
of agentsn connected to the network. Then the network rankO(£, €)) = mi.
described by =

{ T = —£fx+£flu

y= LT (11) Remark 2: Theorem[® holds if systeni](9) is initialized
=7,

with a proper initial condition so that each system mode is
is observable and controllable from agenif and only if excited. In the case such condition cannot be guaranteel, th

agenti observes: distinct eigenvalues. the dimension of the controllability/observability subsp
Proof: from agent: is clearly greater than or equal to;. |
- Sufficiency:

Assume agent observesn modes of system[]9) and
they are distinct, then by taking as output the matrix=
[0,...,1,0,...] with 1 in the i-th element, we have that
observability matrix C, £) is full rank due to theorei 2. Due  The idea of estimating topological features of a graph
to lemmal3B if system{7) is controllable so is systéml (11)rom its spectrum has been around for quite some time

IV. SPECTRUM BASEDFORMATION IDENTIFICATION



in algebraic graph theory. Unfortunately it has been shown Starting from the initial point and structure of Fig{ire 3(a)
that the spectrum of a graph is not a unique identifier fothe communication links among nodes are changing (Figure
its topology. As an example, if two graphs are identicdL(b)) to the final structure of Figufe Tjc).
except for a relabeling of their nodes then necessarily the Figure [2 shows the evolution of the eigenvalues of
two spectra are identical. On the other hand there exisfge Laplacian matrix associated with networks of Figure
several graphs which are Co-spectral with many others fu@ ,m,mg)_ For every it reports the Discrete Fourier
[19], [20]. In this section we focus on the practical uses oOfransform (DFT) to a sufficiently long time window (of
this notion for the identification of regular structuresisas  sjze 7)) of the trajectory of the state of the systefd (9)
formations of multi-agent systems. in the interval [t — T,,,t] which is composed by a linear

A vast literature that deals with achieving some desiregombination of sinusoids with frequencies corresponding t
formation, e.g. [3], [21], [22], [23], [24], in a multi-agén the Laplacian eigenvalues of the network. It is clear that,
system possibly in a decentralized fashion exists. A refevasince the window is sliding, we are able to capture the
issue in such decentralized approaches is to understand whggenvalues of the Laplacian matrix associated to the m&wo
such formation has been actually achieved so that the agemigure[I{c)vt < [0, 7] with all their modification to the final
can switch mode of operation to something else. set-up. In particular, at time = 0 we can see from Figure

It is clear that if the achievement of a formation could? that the topology in Figurf I{a) is not controllable and
be linked directly to the spectrum of its topology thenobservable from the leader since it has eigenvalues located
the numerical simulation of system 9 by the network anéh \(G,) = [0,1.4,3,3,3,5.5], only 4 distinct eigenvalues
the execution of Algorithnfi]l could provide an instance ofvith 6 agents. At timet = 150 the topology in Figurgé 1(b)
solution to such problem. is completely controllable and observable from the leader

A relevant class of graph topologies that serve our causince we observé eigenvalues o agents. Since the desired
are those structured graphs whose eigenvalues are knof@nmation is a line and its eigenvalues are known, we can

analytically as function of the number of nodes. infer that at timet = 150 the agents are not in a line-
The first of such graphs is the line graph, or p&hof graph since its spectrumigG.) = [0,0.7,2.1,3.4,4.5,5.1].
n agents whose eigenvalues are At last, at timet = 250 Figure[2 shows that the network

. in Figure[I(c) is still controllable and observable and the
ANP,) = 4sin(ﬂ)2, Vi=0,...,n—1. (12) observed spectrum matches the one of a line gre(hy) =
2n [0,0.2,1,2,3,3.7] according to[(IP).

This fact is relevant to practical applications in that the |t is clear that this context emphasize the importance of
line graph is both controllable and observable for leadethe proposed method: by executing the decentralized check
follower networks. Furthermore it has obvious applicasionall agents are able to investigate about the eigenvalues of
in the control of convoys of ground vehicles. the network 2 and to settle whether the network is changed

Since the cartesian product of graphs has eigenvalues eqeatl whether the actual configuration is the desired one, for
to any combination of summation of the eigenvalues ofxample observable. Only in the latter case, the leaden fro
the original graphs [25], we have that thex m grid has which the network is completely observable, is interested i
eigenvalues given by reconstruct the connection scheme through which it is able t
iy i N know all information regarding the other node in the network
MGpxm) = 4sm(%) +4 sm(%) , Vi,j=0,...,n—1.

The grid graph has significant applications in the coverage
problem for both multi-agents systems and sensor networks.

VI. CONCLUSION

V. APPLICATION TOLEADER-FOLLOWER NETWORKS . )
In this paper we proposed a decentralized method for

online checking of controllability and observability of a

In this section we apply the proposed method for decemetwork of single integrators with Laplacian feedback. The
tralized observability verification to a leader-followeetn method exploits the knowledge of the eigenvalues of the
work and present an example of spectrum-based formatidinear dynamics made available by a recently proposed
identification. algorithm in [6]. We proposed the use of the spectrum of

Let us consider a group vehicles with the task to form ¢he network of a multi-agent system to identify when a
convoy and move toward a target. Suppose that the lead#gsired formation has been achieved. Finally we presemted a
knows the number of agents of the network and the desiregbplication in which the proposed method is used to check
topology which is determined by the eigenvalues of théor controllability and observability of a convoy of vehéd
Laplacian Matrix. Furthermore, suppose that each agent a&d shown that the convoy, whose topology corresponds to
provided with a decentralized controller which is able ta line-graph, can be identified in a decentralized way from
chose its neighbors in order to reach the desired topologythe Laplacian spectrum of the network.
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