
On Optimal Cooperative Patrolling

Fabio Pasqualetti, Antonio Franchi, and Francesco Bullo

Abstract— This work considers the problem of designing
optimal multi-agent trajectories to patrol an environment. As
performance criterion for optimal patrolling we consider the
worst-case time gap between any two visits of the same region.
We represent the area to be patrolled with a graph, and we
characterize the computational complexity of the trajectory
design (patrolling) problem with respect to the environment
topology and to the number of robots employed in the patrolling
task. Even though the patrolling problem is generally NP-hard,
we identify particular cases that are solvable efficiently, and we
describe optimal patrolling trajectories. Finally, we present a
heuristic with performance guarantees, and an 8-approximation
algorithm to solve the NP-hard patrolling problem.

I. INTRODUCTION

The recent development in the autonomy and the capa-
bilities of mobile robots has greatly increased the number
of application suitable for a team of autonomous agents.
Particular interest has been received by the tasks requiring
continual execution, such as the detection of forest fires
and the patrol (surveillance) of an environment [1], [2].
The surveillance of an area of interest requires the robots
to continuously and repeatedly travel the environment, and
the challenging problem consists in scheduling the robots
trajectories so as to optimize certain performance criteria.
The reader familiar with network location, multiple traveling
salesman, or graph exploration problems may observe a close
connection with the patrolling problem we address, e.g., see
[3], [4]. It is worth noting, however, that these classical
optimization problems do not capture the repetitive, and
hence dynamic, aspect of the patrolling problem, nor the
synchronization issues that arise when a timing among the
visits of certain zones is required.

A precise formulation of the patrolling problem requires
the characterization of the environment to be patrolled, of the
robots capabilities, and of the performance criteria. In this
work, we represent the environment as a graph, in which the
vertices correspond to physical, and strategically important,
locations, and in which the edges denote the possibility of
moving between two connected locations. We assume that
the robots are able to independently build such graph by
exploring the environment. For what concern the robots, we
assume them to be identical and capable of sensing and
communicating within a certain spatial range, and of moving

This material is based upon work supported in part by NSF grant IIS-
0904501 and ARO MURI grant W911NF-05-1-0219.

Fabio Pasqualetti and Francesco Bullo are with the Center for Control,
Dynamical Systems and Computation, University of California at Santa
Barbara, {fabiopas,bullo}@engineering.ucsb.edu

Antonio Franchi is with the Department of Human Perception, Cog-
nition and Action, Max Plank Institute for Biological Cybernetics,
antonio.franchi@tuebingen.mpg.de

according to a first order integrator dynamic. Additionally,
we assume that, when a robot is placed at each of the
graph vertices, the union of the sensors footprint provide
complete sensor coverage of the environment. Regarding
the performance criterion, we consider the longest time gap
(refresh time) between any two visits of the same location1

in the environment.
The problem of designing team trajectory to satisfy certain

temporal constraints has recently gained attention, e.g., see
[5]. The situation in which the motion of the robots needs to
guarantee a uniform frequency coverage of the environment
has been considered, among others, in [6]. However, because
we are interested in the worst case scenario, the trajectories
proposed in these works are not optimal in our sense. In
[7], an empirical evaluation of existing patrolling heuristics
is performed. In [8], two classes of strategies, based respec-
tively on space decomposition and traveling salesperson tour
computation, are presented and qualitatively compared. In [2]
and [9], an efficient and distributed solution to the perimeter
patrolling problem is proposed.

In this work, we will study the computational complexity
of the minimum refresh time patrolling problem. The com-
putational complexity theory, a comprehensive discussion of
which is in [10], is a branch of the theory of computation
in computer science and mathematics that focuses on clas-
sifying problems according to their inherent difficulty. Of
particular interest is the NP-hard class of problems, which
contains all the problems that are, informally, as hard as the
hardest problems in the class NP, for which no polynomial
time algorithm is known to compute an optimal solution.

The main contributions of this work are as follows. We
give a procedure to build a graph (roadmap) to represent
the topological structure of the area to be patrolled, and we
study the computational complexity of designing minimum
refresh time team trajectories as a function of the shape of
the environment, and of the number of robots employed in
the patrolling task. We identify the following three cases:
(i) chain environment, (ii) tree environment, and (iii) cyclic
environment. For the case of a chain environment, we char-
acterize a family of minimum refresh time team trajectories.
We show that such trajectories can be computed with an
algorithm which is polynomial in the number of vertices of
the graph representing the environment. We also develop an
algorithm to compute a partition (of given cardinality) of a
chain graph, so as to minimize the maximum length of the
clusters in the partition. For the case of a tree environment,

1Differently from the existing approaches, we leave the possibility of
specifying a discrete set locations to be visited over time.

we prove that, if the number of robots is allowed to be
a function of the cardinality of the graph representing the
environment, then the problem of finding minimum refresh
time team trajectories belongs to the class of NP-hard
problems. However, a polynomial algorithm exists if the
number of robots if fixed a priory and constant. For the latter
case, we characterize a family of minimum refresh time team
trajectories. Finally, we show that the general case of cyclic
environment is computationally hard to solve. We propose
two approximation algorithms, and we characterize their
performance. The first approximate solution is extremely
easy to compute, but its performance depend upon the ratio
of the longest to the shortest edge in the graph representing
the environment. The second approximation algorithm is
based on a path-covering procedure, which is polynomial
in the size of the graph, and which allows us to compute a
team trajectory whose refresh time is, independently of the
environment topology, within a factor 8 of the refresh time of
an optimal team trajectory. To the best of our knowledge, this
algorithm is the first constant factor approximation algorithm
for the NP-hard minimum refresh time patrolling problem.

The rest of the paper is organized as follows. In Section II
we define the notation and the problem under consideration.
In Sections III, IV, and V we study the patrolling problem for
the case of chain, tree, and cyclic environment, respectively.
Finally, Section VI contains our conclusion.

II. DEFINITIONS AND PRELIMINARY CONCEPTS

We are given a team of m identical robots capable of
sensing and moving in a connected environment.2

Regarding sensing, we assume that the environment can
be completely covered by simultaneously placing a robot at
each of a set of n viewpoints in the configuration space.3

In other words, if and only if m = n robots were placed
at the n viewpoints, then the union of the sensors footprint
of each robot would provide complete sensor coverage of
the environment. However, we assume n > m so that at
least one robot needs to visit more viewpoints for the entire
environment to be monitored over time.

Regarding motion, we assume that the robots are holo-
nomic, i.e., modeled as first order integrators, and move at
most at unitary speed. Additionally, we associate a robotic
roadmap G with the environment [12]. Precisely, the n
viewpoints form the vertex set of G, and the unordered pair
(i, j) belongs to the edge set of G if a robot can travel from i
to j. We constrain the motion of the robots on the roadmap,
and we assume that the paths corresponding to the edges of
G verify the triangle inequality. Finally, we let the length
of a shortest path from i to j equal the weight of the edge
(i, j). An example is in Fig. 1.

Let G = (V,E) denote a robotic roadmap, where V and E
denote the vertex set and the edge set, respectively. A team

2Even though our results hold for any m ∈ N, we focus on the case
m ≥ 2, and we remark that, if m = 1, then the methods developed for the
shortest tour computation can be used to design patrolling trajectories.

3The set of viewpoints can be computed, for instance, by solving an art
gallery problem for the given environment [11].

d1

d2

d3 d4

d5 d6

d7

d8
d9

d10

d11

d12

d13

Fig. 1. A polygonal environment and an associated roadmap. The 12
vertices coincide with a set of viewpoints from which the robots provide
sensor coverage of the entire environment. Each edge corresponds to the
shortest path between its endpoints. The 3 robots, which are holonomic and
disk-shaped (grey-filled circles), are constrained to move on the roadmap.
Because of the dimension of the robots, some paths are not straight lines.

trajectory X is an array of m continuous and piecewise-
differentiable trajectories x1, . . . , xm defined by the motion
of the robots on the roadmap G. We say that a viewpoint v ∈
V is visited at time t by the robot i if xi(t) = v. We define
the refresh time of a team trajectory X , in short RT(X), as
the longest time interval between any two consecutive visits
of any viewpoint, i.e.,

RT(X) = max
v∈V

max
(t1,t2)∈Ω(v,X)

t2 − t1

where Ω(v,X) = {(t1, t2) |xi(t) 6= v, ∀i = 1, . . . ,m, ∀t ∈
(t1, t2)}.

Problem 1 (Team refresh time): Given a roadmap and a
team of robots, find a minimum refresh time team trajectory.

We now present our first result on the computational com-
plexity of designing minimm refresh time team trajectories.

Theorem 2.1 (Computational complexity of Problem 1):
The Team refresh time problem is NP-hard.

Proof: Let m = 1, and note that a minimum refresh
time trajectory consists of moving the robot at maximum
speed along a shortest tour visiting the viewpoints. It follows
that Problem 1 contains the minimum traveling salesman
problem, which is known to be NP-hard [10]. By restriction
[10], Problem 1 is also NP-hard.

As a consequence of Theorem 2.1, without any assumption
on the input of Problem 1, the minimum refresh time
optimization problem is computationally hard. In the next
section, we identify two classes of input for which there ex-
ists an efficient solution to Problem 1, and later we describe
two approximation algorithms to deal with the general case.

III. MINIMUM REFRESH TIME TEAM TRAJECTORY ON A
CHAIN ROADMAP

We characterize in this section an optimal refresh time
team trajectory when the roadmap associated with the envi-
ronment has a chain structure.

A. Open loop team trajectory characterization

Let Ni denote the neighbor set of the vertex i, and
let |Ni| denote the degree of i. A chain roadmap is an
undirected, connected, and acyclic graph, in which every
vertex has degree two, except for two vertices which have
degree one. Without losing generality, we assume that the
n vertices are ordered in a way that |N1| = |Nn| = 1, and
Ni = {i− 1, i+ 1} for each i ∈ {2, . . . , n− 1}. We define a
relative order of the robots according to their position on the
roadmap. A team trajectory is order invariant if the order of
the robots does not change with time, i.e., if xi(t) ≤ xi+1(t)
for each i ∈ {1, . . . ,m − 1} and for every instant t, where
xi denotes the distance on the roadmap from the first vertex
of the chain to the position of the i-th robot.

Proposition 3.1 (Order invariant team trajectory): Let X
be a team trajectory. There exists an order invariant team
trajectory X̄ such that RT(X) = RT(X̄).

Proof: Let X be a team trajectory, and consider the
permutation matrix P (t), that keeps track of the order of the
robots at time t. Notice that the (i, j)-th entry of P (t) is 1
if, at time t, the i-th robot occupies the j-th position in the
chain, and it is 0 otherwise. Since X is continuous, when
the function P (t) is discontinuous, the positions of the robots
directly involved in the permutation overlap. Therefore, the
order invariant team trajectory X̄ = P−1(t)X(t) is a feasible
team trajectory such that RT(X̄) = RT(X).

For a team trajectory X , let Vi be the set of viewpoints
visited over time by the agent i, and let {V1, . . . , Vm} be
the image of X . Let li = minv∈Vi

v and ri = maxv∈Vi
v,

and let di = ri − li. Finally, let RT∗ = minX RT(X). A
team trajectory is non-overlapping if Vi ∩ Vj = ∅ for all
i, j ∈ {1, . . . ,m} with i 6= j.

Proposition 3.2 (Non-overlapping team trajectory):
Given a chain roadmap, there exists an order invariant and
non-overlapping team trajectory with refresh time RT∗.

Proof: Let X∗ be a minimum refresh time team trajec-
tory, and let X be the order invariant team trajectory obtained
from X∗ as in Proposition 3.1. Clearly RT(X) = RT∗. Let
{V1, . . . , Vm} be the image of X , and note that V = ∪mi=1Vi.
Consider the partition of V defined as

V̄1 = V1,

V̄i = Vi \ ∪i−1
i=1Vi, i = 2, . . . ,m.

Let l̄i = minv∈V̄i
v, r̄i = maxv∈V̄i

v, and d̄i = r̄i − l̄i. Note
that, by construction, the viewpoint li is visited by the robot
i and, possibly, by the robots j > i. Also, because X is order
invariant, we have xi(t) ≤ xj(t). It follows that RT(X) ≥
2 maxi d̄i. Consider now the team trajectory X̄ with image
{V̄1, . . . , V̄m}, and assume that the robots sweep periodically
at maximum speed their segment. Since RT(X̄) = 2 maxi d̄i,
the trajectory X̄ is an order invariant and non-overlapping
team trajectory with minimum refresh time.

Given a chain graph on the viewpoints V , we let Πm =
{π1, . . . , πm} denote an m-partition of V , such that πi∩πj =
∅ whenever i 6= j, and V =

⋃m
i=1 πi. Additionally, we

define the dimension of the partition Πm, in short dim(Πm),

Trajectory 1: Minimum refresh time trajectory on a
chain roadmap (i-th robot)

Input : li, ri, di = ri − li;
xi(t) := li for t := 0, 2di, 4di, . . . ;
xi(t) := ri for t := di, 3di, 5di, . . . ;

as the longest distance between any two viewpoints in the
same cluster, i.e., as maxi∈{1,...,m} vmax−vmin, where vmax =
maxv∈πi

v and vmin = minv∈πi
v. Following Proposition 3.2,

there exists a minimum refresh time team trajectory whose
image coincide with an m-partition of V . Let dim(Πm)
denote the dimension of the m-partition Πm. We show that
the minimum refresh time equals twice the dimension of an
optimal m-partition.

Theorem 3.3: (Minimum refresh time on a chain
roadmap): Let G be a chain roadmap, and let m be the
number of robots. Then RT∗ = 2 minΠm dim(Πm).

Proof: As a consequence of Propositions 3.1 and
3.2, there exists a minimum refresh time team trajectory
whose image {V1, . . . , Vm} coincides with an m-partition
Πm. Since each robot is assigned to a different cluster,
we have RT∗ ≥ 2dim(Πm). Let X be a trajectory where
each robot sweeps at maximum speed its cluster. Clearly,
RT(X) = RT∗ = 2dim(Πm).

As a consequence of Proposition 3.2 and Theorem 3.3,
there exists a minimum refresh time team trajectory in which
the set {V1, . . . , Vm} coincides with an optimal m-partition
of the chain roadmap. To conclude this section, a minimum
refresh time team trajectory is in Trajectory 1, where each
robot sweeps at maximum speed a part of the chain graph.

B. Optimal m-partition centralized computation

In the remaining part of the section we describe an
algorithm to compute an optimal m-partition.4 Given a set
of viewpoints V , we call left-induced partition of length l
the partition Πl = {π1, . . . , πk} defined recursively as

πi = {v ∈ V : ai ≤ v ≤ ai + l}, (1)

where (cf. Fig. 2(a))

a1 = v1,

ai = min{v ∈ V : v > ai−1 + l}, i = 1, . . . , k.

Note that, by definition, k is such that {v ∈ V : v >
ak + l} = ∅, and dim(Πl) ≤ l. Observe that the function
|Πl| is monotone, non-increasing, and right-continuous (cf.
Fig. 2(b)). Let {l1, . . . , ln−1} be the discontinuity points of
the function |Πl|, then, for k ∈ {1, . . . , n− 1},

|Πl| ≤ k, if l ≥ lk, and |Πl| > k, if l < lk. (2)

Note that two or more discontinuity points of |Πl| may
coincide, so that the function |Πl| may not assume all the
values of the set {1, . . . , n}, as in Fig. 2(b) for |Πl| = 9.

4By removing the longest edges in the chain the average length of the
clusters is minimized. Note that, in general, such partition does not minimize
the dimension of the m-partition, and hence it is not optimal in our sense.

l1

v6 v7 v9v8 v10v2 v3v1 v4 v5

v6 v7 v9v8 v10v2 v3v1 v4 v5

l2

v4 v5 v6 v7v2 v3v1 v9v8 v10

(a)

1
2
3
4
5
6
7
8
9
10
11

l1l2l3l4l5l6l7l10
l8 = l9

|Πl|

l

(b)

Fig. 2. In Fig. 2(a) the left-induced partition of length l1 and l2, with l2 <
l1, for the chain roadmap with vertices {v1, . . . , v10}. The cardinalities are
|Πl1 | = 4 and |Πl2 | = 5, respectively. In Fig. 2(b) the cardinality |Πl| is
plotted as a function of the length l. Notice that, because v2−v1 = v10−v9,
the function |Πl| does not assume the value 9.

Algorithm 2: Optimal left-induced m-partition

Input : {v1, . . . , vn}, 0 < m < n, ε > 0;
Set : a := 0, δ > 0, b := vn+δ

m , l := (a+b)
2 ;

while (b− a) > 2ε do
Πl := left-induced({v1, . . . , vn}, l);
if |Πl| > m then

a := l, l := a+b
2 ;

else
Π∗ := Πl, b := l, l := a+b

2 ;

return Π∗

Theorem 3.4 (Optimal m-partition): Let G be a chain
roadmap G. Let Πm be an m-partition of G, and let Πl

be the left-induced partition of length l of G. Then

min
Πm

dim(Πm) = min{l : |Πl| ≤ m}.
Proof: Let Πm be an m-partition, and let Πl =

{πl1, . . . , πlk} be the left induced partition of length l of a
chain roadmap G. Let l∗ = minΠm

dim(Πm). We want to
show that l∗ is one of the discontinuity points of the function
|Πl|, i.e., that l∗ verifies the conditions (2). By contradiction,
if l < l∗ and |Πl| ≤ m, then an m-partition with dimension
smaller than the optimal would exists. Therefore, if l < l∗,
then |Πl| > m. Suppose now that l ≥ l∗, and let Π∗m =
{π∗1 , . . . , π∗m} be an m-partition with minimum dimension.
Notice that |πl1| ≥ |π∗1 |, because the cluster πl1 contains all
the viewpoints within distance l from v1, and hence also
within distance l∗. It follows that maxπl1 ≥ maxπ∗1 , and

also that minπl2 ≥ minπ∗2 . By repeating the same procedure
to the remaining clusters, we obtain that maxπlm ≥ maxπ∗m,
so that, if |Π∗| = m and l ≥ l∗, then |Πl| ≤ m.

Following Theorem 3.4, an optimal left-induced partition
of cardinality at most m is also an optimal m-partition. A
procedure to compute an optimal left-induced partition is in
Algorithm 2, where the function left-induced({v1, . . . , vn},l)
returns the left-induced partition defined in (1).5 We next
characterize its convergence properties.

Lemma 3.5 (Convergence of Algorithm 2): Let G be a
chain roadmap, and let Πm be an m-partition of G. Let
l∗ = minΠm dim(Πm). Then,

(i) Algorithm 2 returns a left-induced partition of dimen-
sion at most l∗ + ε, and cardinality at most m, and

(ii) the time complexity of Algorithm 2 is O(n log(ε)).
Proof: Algorithm 2 search for the minimum length l∗

that generates a left-induced partition of cardinality at most
m. Because of Theorem 3.4, the length l∗ coincides with one
of the discontinuity points of the function |Πl|, and it holds
l∗ ∈ (0, vn/m + δ), where δ > 0. Indeed, l∗ > 0 because
m < n, and l∗ < vn/m + δ, because (vn/m + δ)m > vn.
Recall from (2) that |Πl| > m for every l < l∗, and that
the function |Πl| is monotone. Note that the interval [a, b],
as updated in Algorithm 2, contains the value l∗ at every
iteration. The length of the interval [a, b] is divided by 2 at
each iteration, so that, after log2((vn/m+δ)/ε), the value l∗

is computed with precision ε. Since the computation of |Πl|
can be performed in O(n) operations, the time complexity
of Algorithm 2 is O(n log(ε)).

For ease of notation, in the following sections, we use
the set {V1, . . . , Vm} to denote both the image of a team
trajectory and an m-partition of the chain graph.

IV. MINIMUM REFRESH TIME TEAM TRAJECTORY ON AN
ACYCLIC ROADMAP

The problem of designing team trajectories for a tree
roadmap is now considered. Let T = (V,E) denote an
undirected, connected, and acyclic roadmap (tree). Recall
that a vertex path is a sequence of vertices such that any
pair of consecutive vertices in the sequence are adjacent.
A tour is a vertex path in which the start and end vertices
coincide, and in which every vertex of T appears at least
once in the sequence. A depth-first tour of T is a tour that
visits the vertices V in a depth-first order [13]. Let DFT(T)
denote the length of a depth first tour of T . Notice that the
length of a depth-first tour of a connected tree equals twice
the sum of the length of the edges of the tree, and that any
depth-first tour is a shortest tour visiting all the vertices. We
now show that, for the case of tree roadmap, the set of cyclic
and partition strategies described in [8] does not contain, in
general, a minimum refresh time trajectory. Recall that in
a cyclic based strategy the robots travel at maximum speed
and equally spaced along a minimum length tour visiting all
the viewpoints. Consider the tree roadmap of Fig. 3(a), and

5A distributed implementation of Algorithm 2 requires the computation
of the left-induced partition in a distributed way. Such computation can be
performed by simple programming operations and it is not described here.

v1 v21 v3ε

(a)

1

1

v1

v3

v2

v4

1

(b)

Fig. 3. Two examples of tree roadmap. For these topologies, if two robots
are assigned to the patrolling task, both the cyclic based strategy and the
partition based strategy do not provide minimum refresh time.

suppose that two robots are assigned to the patrolling task.
Clearly, the minimum refresh time is 2ε, while the refresh
time of a cyclic strategy equal 1 + ε. Consider now the tree
roadmap in Fig. 3(b), where the edges have unit length, and
assume that two robots are in charge of the patrolling task.
Observe that any partition of cardinality 2 contains a chain
of length 2, so that, since only one robot is assigned to
each cluster, the minimum refresh time that can be obtained
is 4. Suppose, instead, that the robots visit the vertices of
the roadmap as specified in Table I, where x(t) denotes the
position of a robot at time t. Since the refresh time of the
proposed trajectory is 3, we conclude that neither the cyclic
based nor the partition based strategy may lead to a minimum
refresh time team trajectory on a tree roadmap.

TABLE I

Robot x(0) x(1) x(2) x(3) x(4) x(5) x(6) x(7)
1 v1 v2 v4 v2 v3 v2 v1 · · ·
2 v2 v3 v2 v1 v2 v4 v2 · · ·

We now introduce some definitions. Let X be a team
trajectory on the tree roadmap T . We say that the edge
(vj , vk) ∈ E is used by X if there exists i ∈ {1, . . . ,m} and
t1, t2 ∈ [0,RT(X)] such that xi(t1) = vj and xi(t2) = vk,
and it is unused otherwise. Note that, because in a tree
there exists only one path connecting two vertices, the above
condition ensures that the edge (j, k) is traveled by the
robot i. Let Ē denote the set of unused edges, and let FT
be the forest obtained from T by removing the edges Ē
from E, i.e., the collection of subtrees {T1, . . . , Tk}, with
Ti = (Vi, Ei), such that V = ∪ki=1Vi and Ei ⊆ E, for each
i ∈ {1, . . . , k}. Let mi be the number of robots that visit at
least one vertex of Ti in the interval [0,RT(X)], and note that
mi > 0 because we consider finite refresh time trajectories.
Let M = {m1, . . . ,mk}. We refer to the pair (FT ,M) as
the subtree collection associated with the team trajectory X .
Notice that the same subtree collection can be associated with
different team trajectories. We say that a team trajectory is
efficient if its refresh time is the smallest among all the team
trajectories associated with the same subtree collection.

Theorem 4.1 (Efficient team trajectory): Let (FT ,M) be
the subtree collection associated with the team trajectory X
on the tree roadmap T , where FT = {T1, . . . , Tk}, and M =

{m1, . . . ,mk}. Then, X is efficient if

RT(X) = max
j∈{1,...,k}

DFT(Tj)/mj .

Proof: Let i ∈ {1, . . . , k}, and let mi be the number
of robots assigned to Ti. Notice that the robots in Ti travel,
in total, at least DFT(Ti) to visit all the vertices. Since the
speed of the robots is bounded by 1, the smallest refresh
time for the vertices of Ti is DFT(Ti)/mi.

Given a subtree collection, an efficient team trajectory, an
example of which is in Table I, can be computed with the
following procedure.

Lemma 4.2 (Efficient team trajectory computation): Let
(FT ,M) be a subtree collection of a tree roadmap, where
FT = {T1, . . . , Tk}, and M = {m1, . . . ,mk}. An efficient
team trajectory is as follows: for each i ∈ {1, . . . , k},

(i) compute a depth-first tour τi of Ti,
(ii) equally space mi robots along τi, and

(iii) move the robots clockwise at maximum speed on τi.
Proof: Let X be the team trajectory defined above,

and observe that, for each Tj ∈ FT , the leaves of Tj
appear only once in a depth first tour of Tj . It follows that
the leaves are visited every DFT(Tj) instants of time. Let
v be a vertex of Tj , and let v have degree d. Note that
v appears d times in a depth first tour of Tj . Clearly v
is visited at least every DFT(Tj)/mj , so that RT(X) =
maxj∈{1,...,k} DFT(Tj)/mj .

Let P (m) be the partition set of m, i.e., the set of all
the sequences of integers whose sum is m. The following
problem is useful to characterize the complexity of designing
minimum refresh time trajectories on a tree roadmap.

Problem 2 (Optimal subtree collection): Let T be a tree
roadmap and m the number of robots. Find a subtree collec-
tion (FT ,M) that minimizes maxj∈{1,...,|FT |} DFT(Tj)/mj

subject to M ∈ P (m) and |FT | = |M |.
Lemma 4.3 (Equivalent problem): For the case of a tree

roadmap, Problems 1 and 2 are equivalent.
Proof: As a consequence of Theorem 4.1, the mini-

mum refresh time on a tree roadmap T can be written as
min(FT ,M) maxj∈{1,...,k} DFT(Tj)/mj , where (F,M) is a
subtree collection of T , and |M | = |FT | = k ≤ m. It follows
that a solution to Problem 1 can be derived in polynomial
time from a solution to Problem 2 by using the procedure
described in Lemma 4.2. Suppose now we have a solution to
Problem 1, then an optimal subtree collection follows from
the identification of the unused edges. We conclude that the
two optimization problems are equivalent.

We are now able to prove the computational complexity
of the problem of designing minimum refresh time team
trajectories on a tree roadmap.

Theorem 4.4: (Computational complexity of designing
minimum refresh time trajectories on a tree): Let T be
a tree roadmap, and let m be the number of robots. The
optimization Problem 1 with input (T,m) is NP-hard.

Proof: By Theorem 4.3, Problem 1 is equivalent to
Problem 2. Let m = 2, and P (m) = {{2}, {1, 1}}. Then
Problem 2 contains the NP-hard problem presented in [14],
and it is therefore also computationally hard.

Remark 1 (Fixed number of robots): If both the tree
roadmap T and the number of robots m are arbitrary,
then, because of Theorem 4.4, the problem of designing
minimum refresh time team trajectories is computationally
hard. However, if the number of robots is not part of the input
of Problem 2, then this optimization problem is solvable
in polynomial time, and precisely with time complexity
O((m − 1)!n). We refer the interested reader to [15] for
a detailed proof. In this situation, Lemma 4.2 can be used to
efficiently compute a minimum refresh time team trajectory.

V. MINIMUM REFRESH TIME TEAM TRAJECTORY ON A
CYCLIC ROADMAP

In this section we propose an approximate solution to
Problem 1 in the case of a cyclic roadmap. Let G = (V,E),
with |V | = n, be an undirected and connected roadmap.
Note that there exists an open tour τ with 2(n − 1) edges
that visits all the vertices.6 We associate a chain roadmap Γ
with τ , such that Γ has 2n−1 vertices and 2(n−1) edges, and
such that the length of the i-th edge of Γ equals the length of
the i-th edge of τ . Our first approximation method consists
of computing Trajectory 1 for an optimal m-partition of Γ.

Theorem 5.1: Performance of the chain approximation
strategy): Let G be a connected roadmap, let n be the number
of vertices of G, and let δ be the ratio of the longest to the
shortest length of the edges of G. Let RT∗ be the minimum
refresh time on G. Let τ be an open tour with 2(n−1) edges
that visits all the n vertices, and let Γ be the chain roadmap
associated with τ . Let RT∗Γ be the minimum refresh time on
Γ. Then RT∗Γ ≤ 8δRT∗.

Proof: Let w be the shortest length of the edges of G,
and note that the length of Γ is upper bounded by 2nδw. It
follows that RT ≤ 4nδw

m . Since m < n by assumption, some
robots need to move along G for all the viewpoints to be
visited. Because each robot can visit only a vertex at a time,
at least

⌈
n
m − 1

⌉
steps are needed to visit all the vertices of

G, and therefore RT∗ ≥
⌈
n
m − 1

⌉
w ≥ 1

2
n
mw. By taking the

ratio of the two quantities we get RT∗Γ ≤ 8δRT∗.
In what follows, we describe a polynomial time constant

factor approximation algorithm for the Team refresh time
problem. Given a roadmap G = (V,E) and a positive integer
k < |V |, we define a path cover of cardinality k as the
collection of paths {p1, . . . , pk} such that V ⊆ ⋃ki=1 pi. Let
the cost of a path equal the sum of the length of its edges.
The min-max path cover problem asks for a minimum cost
path cover for the input graph, where the cost of a cover
equals the maximum cost of a path in the cover.

Theorem 5.2 (Min-max path cover [4]): There exists a 4-
approximation polynomial algorithm for the NP-hard min-
max path cover problem.

A constant factor approximation algorithm for the NP-hard
Problem 1 is described in the proof of the next theorem.

Lemma 5.3 (Constant factor approximation): There
exists an 8-approximation polynomial algorithm for the
NP-hard Problem 1.

6An open tour with 2(n−1) edges that visit all the vertices is constructed
starting from a spanning tree of G.

Proof: Let {p1, . . . , pm} be a 4-approximation path
cover of the graph G. Note that the length of each path
is within 4RT∗. Indeed, in a minimum refresh time team
trajectory, every vertex is visited after at most RT∗ instants
of time. Let X the team trajectory obtained by letting each
robot sweep at maximum speed a different path. Clearly,
RT(X) ≤ 8RT∗. Notice that, because of Theorem 5.2, the
team trajectory X can be computed in polynomial time.

VI. CONCLUSION

The problem of designing the trajectory of a team of robots
to patrol an environment has been considered. With respect to
the refresh time criterion, optimal team trajectories have been
described. The computational complexity of the design prob-
lem has been characterized as a function of the environment
topology and of the cardinality of the team to be employed.
It is shown that the patrolling problem is generally NP-hard,
and a polynomial time 8-approximation algorithm has been
proposed. Particular instances have been identified for which
an exact optimal solution can be computed efficiently.

REFERENCES

[1] D. W. Casbeer, D. B. Kingston, R. W. Beard, T. W. Mclain, S.-M.
Li, and R. Mehra, “Cooperative forest fire surveillance using a team
of small unmanned air vehicles,” International Journal of Systems
Sciences, vol. 37, no. 6, pp. 351–360, 2006.

[2] Y. Elmaliach, A. Shiloni, and G. A. Kaminka, “A realistic model
of frequency-based multi-robot polyline patrolling,” in International
Conference on Autonomous Agents, Estoril, Portugal, May 2008, pp.
63–70.

[3] B. C. Tansel, R. L. Francis, and T. J. Lowe, “Location on networks:
a survey. Part I: the p-center and p-median problems,” Management
Science, vol. 29, no. 4, pp. 482–497, 1983.

[4] E. M. Arkin, R. Hassin, and A. Levin, “Approximations for mini-
mum and min-max vehicle routing problems,” Journal of Algorithms,
vol. 59, no. 1, pp. 1–18, 2006.

[5] F. Amigoni, N. Basilico, and N. Gatti, “Finding the optimal strategies
for robotic patrolling with adversaries in topologically-represented
environments,” in IEEE Int. Conf. on Robotics and Automation, Kobe,
Japan, May 2009, pp. 2005–2010.

[6] Y. Elmaliach, N. Agmon, and G. A. Kaminka, “Multi-robot area patrol
under frequency constraints,” in IEEE Int. Conf. on Robotics and
Automation, Roma, Italy, Apr. 2007, pp. 385–390.

[7] A. Machado, G. Ramalho, J. D. Zucker, and A. Drogoul, “Multi-agent
patrolling: An empirical analysis of alternative architectures,” in Multi-
Agent-Based Simulation II, ser. Lecture Notes in Computer Science.
Springer, 2003, pp. 155–170.

[8] Y. Chevaleyre, “Theoretical analysis of the multi-agent patrolling
problem,” in IEEE/WIC/ACM Int. Conf. Intelligent Agent Technology,
Beijing, China, Sep. 2004, pp. 302–308.

[9] D. B. Kingston, R. S. Holt, R. W. Beard, T. W. McLain, and D. W.
Casbeer, “Decentralized perimeter surveillance using a team of UAVs,”
in AIAA Conf. on Guidance, Navigation and Control, San Francisco,
CA, Aug. 2005.

[10] M. R. Garey and D. S. Johnson, Computers and Intractability.
Springer, 1979.

[11] A. Ganguli, J. Cortés, and F. Bullo, “Distributed deployment of
asynchronous guards in art galleries,” in American Control Conference,
Minneapolis, MN, Jun. 2006, pp. 1416–1421.

[12] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006, available at http://planning.cs.uiuc.edu.

[13] D. Peleg, Distributed Computing. A Locality-Sensitive Approach, ser.
Monographs on Discrete Mathematics and Applications. SIAM, 2000.

[14] I. Averbakh and O. Berman, “A heuristic with worst-case analysis
for minimax routing of two travelling salesmen on a tree,” Discrete
Applied Mathematics, vol. 68, no. 1-2, pp. 17–32, 1996.

[15] H. Nagamochi and K. Okada, “A faster 2-approximation algorithm for
the minmax p-traveling salesmen problem on a tree,” Discrete Applied
Mathematics, vol. 140, no. 1-3, pp. 103–114, 2004.

