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Abstract— In this paper we show that for an observer moving
in the plane with no other information than the measurement
of relative bearing to three known landmarks, it is possible to
completely reconstruct its position and velocity. In particular
this applies to the case where no model of the vehicle, nor odom-
etry or acceleration measurements are available. Furthermore,
in the same hypotheses, the position of any further landmark
can be reconstructed from its bearing only. These results are
more general than what is currently known on nonlinear
observability of the SLAM problem, which relies on known
observer velocities. Our results are also more general than
the 2D version of known structure–from–motion observability
results, which assume unknown but constant velocities. The
proposed method is used to build a nonlinear observer directly
applicable to a range of problems from computer vision to
autonomous visual navigation.

I. INTRODUCTION

For over twenty years, research in Simultaneous Local-

ization and Mapping (SLAM) has been progressing. It was

first introduced by R Smith and P Cheeseman in [1] and

has been an active research field ever since. However, it was

only recently that the observability analysis of the bearing

only problem has been completely presented and discussed in

literature ([2], [3], [4], and [5]). More specifically, a rigorous

disturbance observability analysis, a problem also known

as Unknown Input Observability (UIO) (or as Disturbance

Observability (DO)), is still lacking in the current literature.

The classic observability problem, called Unknown State

Observability (USO), regards the possibility of retrieving

information on the state of a system given that input and

output functions are completely known [6]. When applied

to the SLAM problem, it identifies the conditions of prob-

lem solvability using a unified framework with the control

problem [2].

Different characterizations of the observability problem

represent a field of active research, e.g. bearing only observ-

ability analysis in the context of on-orbit space applications

can be seen in [7]. A preliminary analysis that consider the

motion of targets can be seen in [8], and the investigation

of the multi–robot localization problem can be seen in [9].

Other recent studies focus on robust (or adaptive) control

topics, like in [10], where the observability rank condition is

applied in order to investigate on-line parameter identifica-

tion problems concerning self calibration of the odometry.

Depending on the application, being able to reconstruct

unknown input disturbances can be as important as the online
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parameter identification problem. In fact, UIO is one of the

main topics in control theory and was introduced by Basile

and Marro in [11] and Guidorzi and Marro in [12]. While

it is usually assumed the inputs are completely known, in

practice, under many situations, some of the input variables

may not be completely available and, for this reason, it

is appropriate to distinguish inputs between control inputs

and disturbances. UIO is known to be a difficult task and

is commonly associated with the problems of robust model

based fault detection, a problem that was introduced in [13]

and further extended to the detection of both sensor and

actuator faults in [14]. Disturbance rejection can play a

crucial role concerning performance and convergence of

systems under feedback control, what is usually the case of

autonomous vehicles.

Here we investigate the solvability of the planar bearing

SLAM problem whenever input disturbances or unknown

inputs are present. This article contribution is to show that

if 3 landmark positions are known, not only the SLAM

problem is solvable (as already discussed in literature, e.g.

in [2]), but it is also possible to completely reconstruct

any kind of input disturbance, even those that do not act

directly on system inputs (e.g. vehicle drift). Our results are

more general than the 2D version of known structure–from–

motion observability results reported in [15] where inputs

are assumed constant. Here, the only assumption made is

that input disturbances are analytic, an assumption that is

coherent with possible applications. In particular, we apply

the observability rank condition ([6]) to investigate state

observability and left–invertibility concurrently considering

a polynomial expansion of input disturbances, and then, we

apply logical induction to extend results for any analytic

disturbance. Moreover, we investigate configuration singu-

larities that may render the problem non observable.

Using an unified framework with the control problem, re-

sults presented permit the construction of nonlinear observers

with direct application in many problems from computer

vision to autonomous navigation, such as feature tracking,

visual odometry, input reconstruction, fault tolerant visual

servoing, active perception, optimal control, model indepen-

dent control and others.

II. PROBLEM DEFINITION

Consider a vehicle moving on a plane where some arbi-

trary fixed right-handed reference frame < W > with origin

in W O and axes W X , W Z is defined. The configuration of

any generic vehicle is described by ξr = [xr,zr,θr]
T

, where

Pr = (xr,zr) is the position in < W > of a reference point in

the vehicle and θr is the robot heading with respect to the
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Let the Lie derivative of order k of a scalar function λ (x)
along the vector-field f (x) be denoted by L f

(k)λ (x). Consid-

ering the generic dynamics ξ̇ = f (ξ ,d,u), the observability

space associated with ξ is given by

Θ =
{

hi,L f hi,L f
(2)hi, . . .

}

, i = 1 : q,

where q is the number of system outputs. The corresponding

observability codistribution is dO = span(OΣ), where OΣ is

called observability matrix and is defined as

OΣ =
{

∂ξ hi,∂ξ L f hi,∂ξ L f
(2)hi, . . .

}

, i = 1 : q.

In [6] it is demonstrated that a nonlinear system is lo-

cally weakly observable if the observability rank condition

rank(OΣ) = dim(ξ ) is verified. Here, we will consider the

observability definitions as presented in [6].

III. DISTURBANCE OBSERVABILITY ANALYSIS

USING THE RANK CONDITION

In this section we show how the observability rank con-

dition can be used to study state observability and left

invertibility concurrently. In order to apply the rank condition

UIO problems (see section II-B), assumptions regarding

input disturbance dynamics must be made. Hence, here we

consider input disturbances that can be expressed by an

analytical function, i.e., it can be expressed by an infinitely

differentiable function such that if it is equal to its Taylor

expansion in some neighbourhood of every point.

Let’s define the polynomial disturbance Kd(t) as the partial

Taylor expansion of d(t) around d0 as Kd(t) = ∑
K
i=0 d0

(i) t i

i!

and d(K+1) = 0. The augmented system KΣ that is composed

of original state ξΣ and polynomial disturbance Kd(t) is

described by the augmented state

Kξ =














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ξ2

ξ3
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
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








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d
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






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



, Kξ ∈ R
n+(K+1)η ,

with corresponding system dynamics

K ξ̇ =















ξ̇Σ

ξ3

ξ4

...

0















.

The observability analysis of Kξ can be accomplished by

applying the rank condition to its corresponding observability

matrix KOΣ. However, the following question arises: if ξΣ

and d observable under the assumption of a constant d(K),

does it implies that ξΣ and d are observable for any analytic

d(t)?
To investigate the extension of an observability analysis

carried out for KΣ, it is possible to apply the mathematical

induction method starting from the basis case 0ξ and study-

ing the inductive step from kξ to k+1ξ . The procedure can

be summarized as follows:

• 0ξ is observable: investigate the observability problem

for 0ξ ;

• kξ observable→ k+1ξ observable: investigate if kξ being

observable implies in the observability of k+1ξ .

If the above conditions are demonstrated, one may con-

clude that ξ = (ξΣ,d(t)) is observable for any analytic d(t).
It is important to note that the logical induction presents suf-

ficient conditions for system observability, but not necessary

ones.

IV. DISTURBANCE OBSERVABILITY OF PLANAR

BEARING ONLY PROBLEMS

In this section we apply the procedure proposed in sec-

tion III to the disturbance observability analysis of bearing

only localization and mapping problems.

In order to simplify the following demonstrations we

define the subspace Oλ ,x =
{

∂xL f
(λ )hi

}

, i = 1 : q, the dis-

placements ∆xi = xr − xi and ∆zi = zr − zi, and the cartesian

distance ρi =
√

(∆xi)2 +(∆zi)2.

A. Observability analysis

Considering a vehicle for which inputs are completely

unknown, inputs are treated as a disturbance itself. We

can represent any possible disturbance by considering the

following dynamics:

ξ̇r = fr (ξr,dr) =
[

g f gh gω

]

dr, (4)

that corresponds to a disturbance input matrix B(ξr) chosen

to describe omnidirectional kinematics and a disturbance

vector dr =
[

d f ,dh,dω

]T
that comprehends all the possible

planar generalized velocities.

The augmented system composed of vehicle state and

input disturbances is

ξ =
[

ξr
T ,dT

r

]

T . (5)

and system output is described by measurements of 3 mark-

ers (see equation 3) as

y = [y1 y2 y3]
T . (6)

Proposition 1: Consider the problem described by equa-

tions (4), (5) and (6). Apart from singularities, both vehicle

state and analytic input disturbances are locally weakly

observable if 3 landmark positions are known.

Proof: The problem is first studied assuming constant

inputs, and then, results are extended assuming analytic

inputs. The constant input augmented state that comprehends

both vehicle configuration and unknown inputs is defined as
0ξ =

(

ξr,d f ,dh,dω

)

with corresponding system dynamics

ξ̇ = f (ξr,dr) =
[

fr
T 0 0 0

]

T .

If 3 landmark bearings are being measured (q=3), the

following subspace 0OΣ is sufficient for studying system

observability:

0OΣ =

[

O0,ξr
0

∗ O1,dr

]

, (7)

where O0,ξr
is composed of the following derivatives:

∂ξr
hi =

[

−∆zi/ρi
2 ∆xi/ρi

2 −1
]

,

2541



and O1,dr
is composed of the following derivatives:

∂dr
L f

(1)hi =
[

∆xi sin(θr)−∆zi cos(θr)
ρi

2

∆xi cos(θr)+∆zi sin(θr)
ρi

2 −1

]

.

Apart from configuration singularities, rank(O0,ξr
) = 3 and

rank(O1,ξr
) = 3, matrix rank of 0OΣ is 6 and the system is

locally weakly observable.

Now, we investigate if this result can be extended to any

analytic d f , dh and dω . As 0ξ is observable, we must verify

if kξ observable → k+1ξ observable. Therefore, let’s analyze

what happens with kOΣ when we apply the inductive step

from kξ to k+1ξ :

kOΣ =

[

∗ 0

∗ O1,dr

]

→k+1 OΣ =





∗ 0 0

∗ O1,dr
0

∗ ∗ O1,dr



 .

Notice that rank(k+1OΣ) = rank(kOΣ)+ rank(O1,dr
). If kO is

observable, then:

rank
(

k+1OΣ

)

= dim
(

kξ
)

+3 = dim
(

k+1ξ
)

,

and we can conclude that kξ observable implies in k+1ξ
being also observable. Hence, for analytic unknown inputs

ν f , νh and ω , both vehicle state and velocities are locally

weakly observable if 3 landmark positions are known.

B. Observability singularities

Proposition 1 is valid apart from vehicle and disturbance

configurations that render matrix kOΣ singular. First we will

analyse the singurities of 0OΣ only, then we will investigate

the configurations that render the complete OΣ singular for

any analytic disturbance.

Given the block triangular form of 0OΣ, its singularity

analysis can be decoupled into the investigation of subma-

trices O0,ξr
and O1,u. The set of vehicle configurations that

render these 3× 3 square matrices singular are coincident

and describes a circumference (denoted by symbol C ) that

passes through all three landmark positions. Indeed, from

a geometrical point of view, for any point Pr ∈ C , angles

between couple of chords sharing endpoint Pr are constant.

While this set of configurations present a problem for

observers which construction is based in the minimal suf-

ficient subspace 0OΣ only, it does not render the complete

observability matrix singular. Indeed, it can be verified that

the problem becomes not observable (singular) for the set of

vehicle and input disturbance configurations (ξr and dr) for

which vehicle trajectory is described by C . More precisely,

the problem is singular when Pr ∈ C , instantaneous motion

is tangent to C and the following relation is true:

∥

∥d f +dh

∥

∥

ω
=

∥

∥

∥
d f

(1) +dh
(1)
∥

∥

∥

ω(1)
= . . . = r (8)

where r is the radius of C .

Figure 2 illustrates system configurations that render the

problem non observable. In this figure we consider 0OΣ till

∂xL f
(2)hi and dr respects condition (8). C is represented by

the thick like and thin lines describe some solutions of Mi =
0, where Mi denote the ith 3×3 minor of 0OΣ. It can be seen

that solutions intersect at two points Z(θr) and Z′(θr) ∈ C ,

Fig. 2. Observability singularities

that are symmetric w.r.t. the center of C . Z(θr) and Z′(θr)
are the points of C for which instantaneous motion direction

(that is a function of d f , dh and θr) is tangent to the circle.

Arrows indicate the instantaneous motion direction.

Note that when vehicle and landmark position are coinci-

dent, as the output representation is undefined, the observ-

ability problem is also undefined.

C. Extension of results

1) Any type of vehicle with partially known inputs:

Proposition 1 can be extended for problems of partially

known inputs on the state form

ξ̇r = fr (ξr,dr)+G(ξr)ur, (9)

where vehicle kinematics is described by G(ξr) and known

inputs by ur. As a matter of fact, given a generic observability

matrix O∗
Σ that describes the original problem (equation (4)),

the correspondent OΣ that describes the partially known input

problem (equation (9)) is composed of O∗
Σ and new lines

described by covectors L
(k)
g∗ hi, g∗ ∈ G. Hence, rank(OΣ) ≥

rank(O∗
Σ) and we can conclude that if O∗

Σ is full rank, then

OΣ is also full rank and hence observable, independently of

vehicle kinematics G and known inputs ur considered.

2) Mapping targets: Proposition 1 can be extended for

problems involving any number of targets. Problems that

are observable when 3 marker positions are known are also

observable even when targets (unknown landmarks) are being

mapped. The extension of results can be done in a similar

manner to the observability analysis proposed in [2]. Given

a generic observability matrix O∗
Σ that describes a problem

with M markers and no targets, the correspondent OΣ that

consider the same problem with M markers and N targets
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can be written as

OΣ =

[

O0,ξr
O0,ξt

O0,dr

...
...

...

]

,

where any Oi,ξt
has the following form:

Oi,ξt
=

























0 0 0
...

...
...

0 0 0

− − −
Oi,ξt,1

0 0

...
. . .

...

0 . . . Oi,ξt,N































M markers







N targets

,

where Oi,ξr
and Oi,dr

are similar to O∗
i,ξr

and O∗
i,dr

, with the

only difference that there are new lines corresponding to the

targets. Given that

O0,ξth
=
[

−∆zh

ρh
2

∆xh

ρh
2

]

has rank 2 (apart from when output is undefined, i.e.,

Pr → Pt,h), we can conclude that rank(OΣ)≥ rank(O∗
Σ)+2qt .

Hence, if O∗
Σ is full rank (observable), then OΣ is also full

rank, and, observable. This result does not depend on the

number of targets considered.

V. SIMULATION RESULTS

Here we first describe the nonlinear observer used during

simulations and then provide results that validate the distur-

bance observability analysis for the different cases presented.

A. Observer Design

In this section we discuss the construction of the nonlinear

observer (or filter) used during simulations to estimate the

augmented state ξ . The problem is introduced and briefly

discussed, for further demonstrations and a recent review of

nonlinear observers, please refer to [17].

Considering the estimated state ξ̄ , the observer is de-

scribed by the auxiliary system
{

˙̄ξ = f
(

ξ̄
)

+∑i gi

(

ξ̄
)

ui + v

ȳ = h
(

ξ̄
)

.

We will also use the notation ∗̃ to represent the symbolic

operation ∗− ∗̄, e.g. g̃(.) = g(ξ )− g(ξ̄ ). Consider the ob-

server error e = ξ − ξ̄ . Error dynamics are given by

ė = f̃ (.)+∑
i

g̃(.)ui − v,

where v is the observer compensator term. Let’s choose v as

v = −KJ
(

ξ̄
)+

(Y −H(ξ̄ )),

where,

Y =







y

ẏ
...






, H(ξ̄ ) =







h
(

ξ̄
)

ḣ
(

ξ̄
)

...






,

J
(

ξ̄
)+

is the pseudoinverse of J(ξ ) = ∂ξ H(ξ ) evaluated at

ξ̄ , and K is a positive definite constant gain matrix. Vectors

Y and H are built using the minimum number of derivatives

required for the system to be observable when singularities

are not considered. If the system is locally weakly observable

and we consider the observer as a local problem, it is possible

to rewrite v as

v = K(e+ ε(ξ , ξ̄ )),

where ε(ξ , ξ̄ ) (or simply ε) is the error between the pseu-

doinverse approximation of e and the real error e.

Choosing as Lyapunov candidate V = 1
2

eT e, we have

V̇ = eT

(

f̃ (.)+∑
i

g̃(.)ui −K(e+ ε)

)

(10)

If ‖
(

1− ε
e

)

‖, f̃ (.) and g̃(.) are bounded, K can be chosen

based on (10) in order to guarantee stability. One may

note that if at any given moment, the term ‖
(

1− ε
e

)

‖
extrapolates the worst case admissible, convergence would

not be guaranteed anymore. However, the choice of an worst

ε , that is related to a maximum ‖e(0)‖ admissible, guarantees

convergence for ξ̄ (0) in a local neighbourhood of the real

state ξ (0).
Remark 1: In presence of unknown input disturbances,

we would expect nonlinear observers that do not take in

consideration the disturbance to converge to wrong solutions,

or not to converge at all. While this is the case for constant

gain observers, this may not be true if one uses adaptive

gain techniques (such as the well known Kalman gain, for

example). It can be seen that for K →∞ such observer degen-

erates into a filtered approximate inverse solution of y → ξ
without considering system dynamics. Consequently, the use

of adaptive gain techniques would mask the disturbance

effect in the observer estimated state evolution. The use of

adaptive gains may guarantee convergence in cases where

constant gains wouldn’t, even if at the expense of renouncing

the knowledge of system dynamics. Hence, while nothing

excludes the possibility of using adaptive gain techniques

during practical applications, here we chose to use constant

gains in order make the differences between the different

problems presented evident from the results of the presented

simulations.

B. Simulations

During simulations an unicycle-like vehicle performs an

arbitrary trajectory and receives external disturbance charac-

terized by a constant input acting along its nonholonomic

direction. In order to localize the robot while reconstructing

input disturbances we present a comparison of different

cases that illustrate different observability problems that were

presented or discussed here:

• Case 1 - USO using unicycle kinematics: in this case

results regard the observer reconstruction of vehicle

state ξr considering unicycle-like vehicle kinematics.

System input u is completely known and disturbance

reconstruction is not an output of the observer. Results

can be seen in figures 3-b, 4-b, 5-b and 6-b;

• Case 2 - UIO considering unicycle kinematics for

disturbance: in this case results regard the observer

reconstruction of vehicle state and vehicle input, i.e.
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ξ = {ξr,dr}. System input is completely unknown and is

considered a disturbance itself. However, here we con-

sider that B(ξr) describe the kinematics of an unicycle–

like vehicle. Results can be seen in figures 3-c, 4-c, 5-c

and 6-c;

• Case 3 - UIO with partially known inputs (using

unicycle kinematics) and omnidirectional kinematics

for disturbance: in this case results regard the observer

reconstruction of state and disturbance with partially

known inputs. Here consider the generic disturbance

input matrix B(ξ ) = I and d ∈ R
3, permitting us to

reconstruct disturbances in all directions of the input

space. Partially known input ur = (ν f ,ω)T and velocity

vectors in G corresponding to the unicycle-like vehicle

kinematics. Results can be seen in figures 3-d, 4-d, 5-d

and 6-d;

For completeness, we also report the use of the trian-

gulation method for direct computation of the state–output

inverse y → ξr using 3 measurements. In this case only

vehicle localization is performed as direct disturbance recon-

struction is not a direct output of the method. An approximate

reconstruction of inputs can be roughly obtained considering

the derivative of the vehicle configuration.

All observers are realized as described in section V-A

and simulations are performed using the following system

parameters:

• Observers initial estimated state is ξ̄r(0) =
(0m,0m,0rad)T .

• During simulations we consider a triangular K. To

present a fair comparison between problems, all ob-

servers use the same gains: K1 = K2 = 1.5 and Ki =
0.5,∀i 6= 1,2.

• We consider a choice of
(

1+ ε
e

)

≃ 1 and max(‖d‖) = 1.

• Real vehicle trajectory is described by inputs

(ν ,ω)T =(0.1m/s,−0.1rad/s)T and input disturbance

B(x)d = (0m/s,−0.1m/s,0rad/s)T .

• Output yi, ∀i is affected by a measurement noise that is

described by a random Gaussian variable with standard

deviation σ = 0.005rad.

• No pre-filtering is used.

In these simulations the number of landmarks used is q =
3. For the sake of simplicity, the number of targets is N = 0.

Results are presented as follows:

• figure 3 shows time history of real and estimated vehicle

positions Pr; Real trajectory is represented with a red

line and estimated trajectory with a blue line.

• figure 4 shows time history of estimation errors for

variables xr (red), zr (green) and θr (blue).

• figure 5 shows time history of velocity reconstruction

estimation errors ˙̃xr (red), ˙̃zr (green) and ω̃ . Given that

velocity reconstruction is not a direct output of the

triangulation method, figure 5-a shows the derivative of

vehicle estimated state with the method. Similarly, for

case 1, figure 5-b represent the constant error between

known velocities and real ones.

• figure 6 shows time history of bearing tracking errors,

i.e., the difference between estimated measurement and

real ones. Figure 6-a shows the time history of mea-
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Fig. 3. Estimated trajectories: (a) triangulation; (b) case 1; (c) case 2; and
(d) case 3;
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Fig. 4. Estimation errors: (a) triangulation; (b) case 1; (c) case 2; and (d)
case 3;

surement noise.

Please note that different scales are used in each figure for

each case studied. E.g. in figure 5, the order of errors for the

triangulation case is 102 while for cases 1,2 and 3 it is 10−1.

It can be observed that triangulation results are the ones

most affected by measurement noise. This is a consequence

from the fact that no filter is applied to measurements or

results. The use of an observer constitute a filter itself, what

explains the results obtained in the cases where an observer

is applied.

In case 2, vehicle drift is not considered as a disturbance

and, as expected, errors do not converge to zero. However, it

performs much better than the USO observer (case 1), that

presents the worst convergence case. As expected, case 3

presents the best results, and is the only observer for which

errors converge to zero.

Presented simulations illustrate some advantages of using

Disturbance Observers (DO): DO can compensate model-
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Fig. 5. Velocity reconstruction errors: (a) triangulation; (b) case 1; (c) case
2; and (d) case 3;
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Fig. 6. Bearing tracking errors: (a) measurement noise; (b) case 1; (c) case
2; and (d) case 3;

ing uncertainties, as a matter of fact, observers can be

constructed without considering any specific model at all;

DO can be used to robustly track measurements (feature

tracking) without requiring any previous knowledge of in-

puts or the system; disturbance reconstruction can guarantee

convergence of constant gain observers; DO makes robust

controllers with disturbance rejection a possibility; finally,

disturbance observers can be applied even in cases where no

input knowledge is available, e.g. visual odometry. However,

disturbance observers may be used with caution, e.g. during

transitory behavior the reconstruction of disturbance intro-

duces oscillations in estimated state and equivalent observers

may take longer to converge.

VI. CONCLUSIONS AND FUTURE WORKS

Here we present a disturbance observability analysis of

the bearing only SLAM problem for the case of 3 known

landmarks (markers) and demonstrate the conditions and

singularities regarding the problem observability. Moreover,

we discuss the extension of results to the partially known

input and unknown landmarks (targets) cases . Finally, we

validate theoretical results under simulation using constant

gain non-linear observers.

Regarding future works, authors are currently investigating

the application of optimal control as a potential solution to

observability problems regarding the presented singularity

cases. The optimization of observability indexes is a field of

active research in active perception and vision. Furthermore,

authors are studying the use of disturbance rejection and

point-to-point stability of vehicles using unknown input

observers concurrently with feedback control.
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