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ABSTRACT

In this paper we consider the problem of planning motions of a team of vehicles that move in
a planar environment. Bach vehicle is modelled as a kinematic system with velocity constraints
and curvature bounds. Vebicles can not get closer to each other than a predefined safely distance.
When manipulating a common object cooperatively, further constraints apply. For such systems,
we consider the problem of planning optimal paths in the absence of obstacles.
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i INTRODUCTION

In this paper we consider the problem of planning motions of a system of multiple vehicles moving
in a plane. Motion of each vehicle are subject to some constraints: the velocity of the center of the
vehicie is parallel to an axis fixed on the vehicle; the velocity is always nonegative along such axis;
the steering radius is bounded. Also, a minimum distance between vehicles must be enforced along
trajectories. When manipulating a common object cooperatively, further constraints apply. We will
consider the case that cooperating vehicles share a common load {as e.g. a platform with a heavy
manipulator on top), each vehicle being connected to the load through hinge joints. A bilateral
constraint of constant distance hetween the vehicles is actually imposed in this case.

The task of each vehicle is to reach a given goal configuration from a given start configuration.
Optimal solutions in the sense of minimizing total path length and total time will be considered.

The literature on optimal path planning for vehicles of this type is rather rich. The seminal work
of Dubins [6] and the extension to vehicles that can back-up due to Reeds and Shepp. [8], solved
the single vehicle case by exploiting rather specialized tools. Later on, Sussmann and Tang [9], and
Boissonnat et al. [3], reinterpreted these results as an application of Pontryagin’s minimum principle
([7])- Using these tools, Bui et al. [5] performed a complete optimal path synthesis for Dubins robots.
The minimum principle frameworl is also fundamental in the developments presented here.

Consider NV vehicles in the plane, whose individual configuration is described by & = {z;,y:.0:} €
RxRxS!, with (z;, ;) coordinates in a fixed reference frame (o, #,y} in the plane and #; the heading
angle of the vehicle with respeet to the z axis. Bach vehicle is assigned two via—point configurations,
&i.s and & ,, respectively. The initial via—point time is assipned and denoted by T7. Assume vehicles

are ordered such that Tf < 7§ < --- < T§. We denote by T} the time at which the i—th vehicle
reaches its goal, and let T; =4 TS — T#. Motions of the i~th vehicle before Tf and after T} are not

of 1nterest.
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The i—th vehicle motion is subject to the constraint that its fransverse velocity is zero, &; sinf; —
jicosfy = 0, i = 1,...,N. Equivalently, this motion is described by the control system & =
Fil€rouy,wy). explicitly

:f?,' Uu; COS 9,‘
b= | u;sinf; f, {1
g; o

where u; and w; are the linear and angular velocity of the i-th vehicle, respectively. All vehicles are
also supposed to be subject to the additional constraints that i) the linear velocity is unidirectional
and bounded: 0 < u; < Uj; i) the path curvature is bounded: || < Qy, where ; = %—’ and B; > 0
denotes the minimmum turning radius of the i—th vehicle; iii) the distance between two vehicles must
remain larger than, or equal to, a given separation limit: Vi (t) = (z;(8) —2:(8))* + (5 (6) — v (£)? —
di; > 0, at 2ll times ¢ (dif = 0,i=1,...,N).

The length of the path joining the viapoints for the i~th vehicle is
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We will consider problems in which the goal is to minimize the total path length (with cost J =
S~ ;). and problems involving minimization of the total execution time (J =3 1%).

If separation constraints are disregarded, the minimum total length problem is clearly equivalent
to N independent minimum length problems under the above constraints, i.e. to N classical Dubins’
problems, for which solutions are well known in the literature ([6; 9, 3]). It should be noted that
computation of the Dubins solution for any two given configurations is very efficient. 1If the cost
6 be minimized is the time employed to reach the goal T, the same paths result to be optimal
provided they are followed by the vehicles at maximum speed u; = U; (forward velocity would not
be specified in the path length minimization problem, and actually is set to an arbitrary constant
in Dubins’ solution).

Consider the more general problem for multiple vehicles

min YN i

& = filb,uiwy) i=1,. N

O<u; <U; i=1,....N

il < b i=1,.. N

Vi) 20, ¥ 4,5 =1,...,N

Ei(Tis) = &5 fi(ng) =&y, 1= 1, N

where .J; = I; for shortest total path problems, and J; = T; for minimum total time problems.

The shortest total path problem has a straightforward solution, consisting of the N independent
Dubins’ solutions, associated with any velocity profile that guarantees satisfaction of the separation
constraints. For instance, execution of the Dubins’ path could be sequentially scheduled so that

vehicle 4 starts its motion after vehicle 4 — 1 has reached its goal. The existence of such a solution
" in all cases clearly relies o1 the possibility for vehicles of staying still; Le.up=0. .

In many practical applications, however, such solution is not applicable. This is the case when
the completion time for the multiple task is at a premium, as e.g. in an industrial production
environment. Also, for some types of vehicles, zeroing the forward speed is not an option, as for
instance in air traffic control problems. We will henceforth consider the minimum total time problem.

(3)

2 THE OPTIMAL CONTROL PROBLEM

' P g
Notice that the cost for the total time problem, J = Zf_‘;l T: = Zf':l f;q‘ dt, is not in the
standard Bolza form. In order to use powerful results from optimal control theory, we rewrite the
problem as follows. Let h{t) denote the Heavyside function, i.e.

0 t<t
h(t):{ 1 t>0°



and define the window function w;(¢) = h(t — TF) — h(t — Tf). Then the minimum total time cost

is written as .
J = / > wi{tydt (4)
L

Using the notation colie; (v7) = [o] ... ,z;%]T; define the aggregated state £ = colie; (&), con-
trols i = colY ) (u;) and w = eoli¥, {wy), and define the ammissible control sets 7 and 1 accordingly.
Also define the separation vector .

I — [1'1-3..--,1'1‘.\;,1'-33,’-',I-",\r_l_ﬁr], and the vector field f{£,u,w) = coi}ll (f;w;). Finally in-
troduce matrices I'; = colj;\r:] (o; 111 l]T), with oy = 1if i = j, else 055 = 0, and functions
vil€(t). &) = T (€(¢) — 8 Our optimal control problem is then formulated as

Problem 1. Minimize J subject to € = f(6,u,w), v €U, w €,V >0, and to the two sets of
N interior—point constraints

7i(&(1),€8) =0, t=T17
Yi{&(t), €9) = 0, =T} {unspecified)

Problem 1 can be studied by adjoining the cost function with the constraints multiplied by
unspecified Lagrange covectors. Necessary conditions for an extremal solution of problem 1 are
obtained as:

AT = NI +Tixf (5)
MTEY = M) +T A (6)
H(T{™) = H(T) (7)
: oH
T _ 92 g
%—deu = 0, Véu admiss. ' (9)
dH .
5—;6(;} = ( Véw admiss. {10)

with \. 7 and v costates of suitable dimension to be determined based on boundary conditions and
HamiltonJacobi equations. The discussion of necessary conditions should at this point distingnish
hetween constrained and unconstrained arcs. Along unconstrained arcs, each vehicle is subject to
the same boundary conditions and dynamics of a Dubins’ vehicle, hence its optimal paths will belong

to Dubins® sufficient family
{Ga.cbce ) CuSde} (11}

where the subscripts, indicating the length of each piece, are subject to restrictions (see e.g. [3]).
. Hence we have

Proposition 1 A selution to the minimum total lime problem for N wvehicles thet confeins no
constrained arcs exzists if and only if for each vehicle o Dubin’s trajectory ezists such that no collision
oceur,

2.1 (Constrained arcs with 2 vehicles

To study constrained arcs, we will make the simplifying assumptions that forward velocities of
all vehicles are constant and u; = 1. Some further mantpulation of the cost function is instrumental
to deal with constrained arcs, i.e. arcs in which at least two vehicles are exactly at the critical
separation (i, = 0, ¢ # 7). To fix some ideas, let us consider a constrained arc involving only
vehicles 1 and 2. Along & constrained arc, the derivatives of the constraint must vanish:

Viz (2o —21)? + (y2 — 1) — &
T — . = =
N= { 12 ] [ (20 — x1)(cos by — cos8y) + (g2 — Y1) (sinta — 5in#a) v (12)



Figure 1: Left: Possible constrained arcs for two vehicles. Right: A numerically computed solution
to a two—vehicles minimum total time problem. Vehicles are represented as aircraft.

with d = d)2, and
(€, 1) = (g — #1)7 + (w3 — 21) (@ — 81) + (o —90)" + (2 — ) —§1) = 0- (13)
Let ¢ be the direction of the segment joining the two vehicles, so that

2o — F1 = dCOS @,
2 — Yy = dsing, (14)

From: the second equation in {12), one gets
(2 — 21) (@2 — $1) + (g2 — )2 —$1) =0, (15)

and, using (14),
cos(¢p — 1) — cos(¢p — f2) = 0. (16)

Hence, when the constraint is active, the relative orientation of the two vehicles must satisfy (16),
and we have the following cases (see fig.1, right):

a) 6‘]_ = 92; (17)
b) ¢—0 = f2—¢ (18

Tn case a) the two vehicles have the same direction, while in case b) directions are syminetric with
respect to the segment joining the vehicles. Constraint (13) can be rewriftenas 7 77

Vlg =0=2- 2(305(91 - 32) + wldsin(91 - qf;) - CAJgdSiIl(BQ - é), (19)

In order to study constrained arcs of extremal solutions, jump conditions at the entry point of a
constrained arc, occurring at time 7, are to be considered, and a further distinction among con-
strained arcs of zero and nonzero length should be done. Computations are reported in detail in 1].
For zero-length constrained arcs, jump conditions indicate precise relationships that the supporting
lines of the Dubins’ paths of the two vehicles, before and after the contact point, must satisfy (see
for instance fig.1-left).

The case of nonzero length constrained arcs is studied below. Consider an interval [Ty, T3] during
which the constraint Vi» = 0. As already pointed out, the study of constrained arcs of nonzero
length is useful to model cooperative manipulation of cbject by multiple vehicles, assuming that
each vehicle supports the common load through a hinge joint. A configuration of the two vehicles



Figure 2: Left: Extremal constrained arcs of type a consist of two coples of a Dubins’ path. Middle:
Singular extremals in a constrained arc of type b. Right: An extremal constrained arc of type b.

along such constrained arcs can be completely described by using only four parameters, for instance
the configuration (y, ¥, 81 ) of one vehicle and the value of ¢. In fact, due to the tangency conditions
on the constraint, one has (14) and either (17) or (18). Moreover, differentiating these relationships,
one finds .
dy =4y — dg'b.sm &, (20)
y2 = 41 + dpcos ¢,
and

b= ~fsin(0; — ) ~ sin(® - )] (21)

Constrained arcs of nonzero length that are part of ar optimal solution must themselves satisfy
necessary conditions, which can be deduced by rewriting the problem in terms of the reduced set of
variables, Let us consider the two types of constrained arcs separately. Notice that two extremal
constrained arcs of different type may be pieced together through a configuration with 8; = 8, = ¢,
which is both of type a and b. '

Type a). From (21), ¢(t) = ¢p = arctan %%%= hence

Ty =&
=19 (22)
W = Ws

Extremal constrained arcs of type a consist of a Dubins path for vehicle 1, and of a copy of the same
path translated in the plane by [dcos dp. dsin ¢g]? for the other vehicle (see fig.2, left).

Type b). In this case, using (19), one obtains ¢ = 1(w; + ws). From Pontryagin’s minimum
principle (see [1] for details} one gets that optiaml arcs of this type are either singular or nonsingular.
Along a singular constrained arc of type b, one vehicle will be moving on a straight line, while the
other will be trailing behind (see fig.2, middle). Nonsingular extremal constrained arcs may also
obtain when & control variable is on the border of its domain, e.g. wy = =fI;. In this case the
motion of the two vehicles. result in arcs such as those represented in fig.2, right.

2.2 Constrained arcs with N > 2 vehicles

The case of multiple vehicles at a fixed distance from each other allows for a multiplicity of cases
{see e.g. fig.3)

Consider the case that each vehicle maintains its distance constant from two neighbors. Enu-
merating the vehicles sequentially, one has

CQS(¢j{j+1) = i11) — cos(djjeny — 0;) =0,
Vi=1,.,N—-1

Ceuters of vehicles are on a regular N sided polyedron. Only two constrained arcs are possible in
this case. Either all vehicles share the same heading angle, '

ej—l—l = 8JV_’} = 1, ...,,N— -1 (23)
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Figure 3: Different possible constrained arcs for three vehicles moving at fixed distance.

or they are moving on the circle circumscribed on the N polyedron, hence
Sty — Y =% (24)

The circle has radius r = Wdﬁ/h’} If » > R, this constrained arc can only have zero length.
This cases are illustrated in fig.3 (two leftmost drawings). Another possible topology for the vehicle
team is the chain formation (see fig.3, three rightmnost cases). We have 2V~ different types of
constrained arcs in this case, for which necessary extremal conditions should be studied. Singular
extremals will include at least one of the vehicles moving on a straight line. For V vehicles in chain
formation, with all initial heading angles equal, optimal arcs will include Dubins’ solutions.
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