ACTIVE SUSPENSIONS DECOUPLING BY ALGEBRAIC FEEDBACK
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Active suspensions of advanced vehicles allows the active rejection of external disturbances exerted directly on the sprung mass of
the vehicie and due fo the road surface irregularity. We focus on the road irregularity disturbances with the purpose of isolating
the chassis from vibrations transmitted through suspensions. The paper is aimed at the synthesis of a decoupling control law of the

regulated outputs, i.e., rolt, pitch and chassis height, from the external disturbances. The framework thronghout is the geometric

approach o the control of dynamic systems. It will be shown that a controlled and conditioned invariant subspace exists and this
allows the perfect disturbance localization by feeding back the suspensions heights.

1 Introduction

Active suspensions are employed in advanced vekicles in
order to enhance hoth ride comfort and safety. The ac-
tuation of suspensions along with proper sensor systerns
allows the vehicles controller to actively reject external
disturbances. In most of the conventional cars, rejection
of disturbances is obtained by passive devices providing
2 damping force constraint at all frequencies and gen-
eraily unable to attenuate both low and high frequency
vibrations. On the contrary, active suspensions are able
to change the damping force according to the sensed vi-
brations and can improve the dynamic performance of
the whole system. The control of active suspensions has
been widely investigated in the literature. Hrovat® stud-
ied the problem of optimal design of active suspensions
by casting it into an equivalent linear—quadratic {(LQG)~
optimization problem. The problem of estimating sus-
pension parameters was investigated in® and® where an
adaptive observer and an extended Kalman filter were
implemented in order to identify parameters.

Two different types of disturbances can influence ve-
hicle dynamics. One acts directly on the sprung mass of
the vehicle and can be generated by lateral accelerations,

the other type of disturbances is due to road irregularity

and is transmitted through the suspensions.

In this paper we focus on the last type of distur-
bances and our purpose is to isolate the chassis from vi-
brations transmitted through suspensions. ‘The paper is
aimed at the synthesis of a decoupling control law making
the regulated outputs, i.e. roll, pitch and chassis height,
insensitive to the external disturbances.

The framework throughout is the geometric ap-
proach to the control of dynamic systems®, 4, 1. It will
be shown that the regulated variables can be decoupled
from external disturbances. The perfect localization of
uhaccesible disturbances will be presented as a structural
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property for vehicles with active suspensions.

A particular attention is devoted to the controller de-
sign, it wilt be proved that a controlied and conditioned
invariant subspace exists which allows the perfect distur-
hance localization by mesns of an algebraic feedback of
the sensors measurements represented by the suspensions
heights and velocities.

2 Dynamic model of the vehicle

The mechanical structures of the vehicle in two and three
dimensions are reported in fig. 1 2} and in fig. 1 a) and
b), respectively. The 31 {2D)) vehicle consists of a rigid
chassis and two (one) rigid axes. The sprung mass is
linked with these axes by means of four {two) passive sus-
pensions and actuators. An independent contrel action
is exerted at each corner of the vehicle. The controlled
vertical force ug, j = 1,...,4 (7 = 1,2) is generated at
the expense of addifional energy source such as compres-
sors or pumps. As the aim of the paper is to analyze the
structural properties of vehicle mechanisms, the actuator
dynamics is not taken into account.

Assume that the vehicle is in an equilibrium configu-
ration (see fig. 1 for illustration) and that the roll center
and the gravity cenber coincides. According to fig. 1-a,
let us introduce some notation for the 2D model of the
vehicle:

0,: variation of the roli angle around the equilibrium;

I,: oment of inertia of the chassis about the roll axis;
My: sprung mass;

- variation of the height of the My center of gravity {CGY;
1, Ia1: variation angle and inertia of the axis;

21, Ma1: CG height variation and mass of the axis;

k, B: spring and damping coeffcients of suspensions;

ke, Bi: visco—elastic parameters of tires;

a: half distance between front (or rear) suspensions;
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Figure 1: 2D (part a) and 3D (parts a and b) mechanical models
of a vehicle with active suspensichs.

The 3D model of the vehicle is enriched with the follow-
ing veriables (see fig. 1-b}:

§az, Taz: variation angle and inertia of the rear axis;
23, Maz: height and mass of the rear axis.

I: half distance between of the two axes;

By, Ip: pitch angie and inertia;

dj: independent, unaccessible, external disturbances
exerted on the axes at the j—th wheel.

The 3D model has 7 degrees—of freedom and takes
into account the roll {6}, the pitch (6,) angles of the
chassis, the rotations of wheel axes (fa1,02) and the
vertical displacements of the sprung mass {z) and of the
two axes (Za1, Za2)- Lateral and longitudinal dynamics
of the sprung Imass are not considered in this 3D model.
Note that the reduced 2D model of the vehicle has only
4 dof's (8y, 2, Ba1, z1).

Equality of visco—elastic parameters of the passive
suspensions has been assumed, hence the dynamics of
pitch, roll and vertical motions are decoupled. Such an
assurzption can be easily satisfied by means of a proper
compensating control for the vertical forces ui’s.

Upder the assumption that 8, b5, 2, Oa1, B2, z1 and
24 are small, linear approximation of system dynamics
can be considered.

2.1 State space model

A state space representation of the system dynamics is
derived for the 2D and the 2D model of vehicle dynamics.
Sign conventions for forces, motion and other parameters
of vehicle dynamics are defined in fig. .

2D dynamic model

We are interested in regulating the chassis posture
apainst disturbances dy and da transmitted through the
suspensions and generated by road irregularities. Such
a type of regulation will be referred to as ride heights
requlotion*® and consists in controlling the roll and the
height of the sprung mass CG. For the 2D case, the 2-
dimensional regulated output, the &-dimensional state,
the 2—dimensional input and disturbance vectors are de-
fined respectively as

e= (8 2" {1)
x=(xF )T (2)
Xy = [ ér éal)T;
Xe={z212 7','1)T;
u= (g uz)’s (3)
d=(d da)” ()

The roll dynamics has been grouped in the vector Xr,
while the vector x, contains the vertical dynamics.

The state space model of linearized dynamics around
the equilibrium configuration is obtained as

%= Ax +Bu+Dd; .
e:Ex_‘ (}

where the state matrix is

_ | A1 Oa
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the input matrix is

with
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BlL:{If I':]; BzL:[Tﬂ _A—Ai}’
T Tax Ma Ma

the disturbance mairix is

with

U 0 0
Du;:{_—_z_z,}; D2L=[_1m 1},
I la1 Moy Mar

and finally the output matrix of vector (1) is

0
1 0(2x3)} .

1
E= [OlO(ZXS)

3D dynemic model

For the complete 3D model, the controiled output vector
is defined as
e = (e, B, 2)7- (M

The 14—dimensional state vector, the 4-Jimensional in-
put and disturbance vectors are

e I ®)
Xr — (91' a1 a2 Br Bar 902)T;
xw=(lpzmnnbpza ays

{9
{10}

and state space linearized dynamics around the equilib-
rium configuration is given by

w = (ur up U3 ug)
d = (d da da da)”

(11)

x=Ax+Bu+Dd
e = Ex,

where the state matrix is

_ { Ay D(st)}
O@axs) D22 |’

- : o L]
All = {Mlk Ml,ﬁj ) A-?Z = {MZk MBﬁJ 3

[ —aki® 2kl? 2512
I I I
My = opt?  —2AkerE)? 0 .
I, [ ’
L m]’ 0 —2(ke +k}?
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[ —a812 2617 2812
I FE F
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L 26t 0 e )
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the input matrix is
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B
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and finally the output matrix is
r 0 1
= o (1x2} g . 193
lo(z , (3x5)| I, (SXG)J (12}

3 TLocalization of disturbances

According to the state space deseription of vehicle dy-
namics, the ride heights regulation can be rigorously
stated as a problem of unaccessible disturbance localiza-
tion. It consists of synthesizing a state feedback u = Fx,
such that, starting at zero state, the regulated output



e(t) is identically zero for all the admissible disturbances
d(t). We attack the problem by using classical tools of
the geometric control theory. It is well known* that the
unaccessible disturbance localization problers has a solu-
tion if and only if

im (D) C V*, (13)

where V* = maxV(A,im (B}, ker (E)) is the maxi-
mal {A, B)-controlled invariant contained In ker {(E) and
im (D) is the column space of the disturbance mabrix.
Moreover, for the localization problem to be technically
sound, it is to require that the state feedback, other than
localizing disturbances in the nullspace of the output ma-
trix, stabilizes the whole system at its equilibrium point.
The following proposition shows that the unaccessi-
ble disturbance localization with stability for the regu-
lated output e of the 3D (2D) dynamic system is a struc-
tural property of vehicle with active suspensions.
Proposition 1 (Disturbance localization.) For the
3D [2D] dyndmic system in eq.11 [eq. 5] of o vehicle
with active suspensions, there always exists @ stabiliz-
ing state feedback gain ¥ which localizes disturbances d
in the nullspace of the regulated output e = (6, 0p,2)
o = (6,7
Sketch of the proof for 3D case. (For the complete
proof the reader is referred to”.) The proof starts with
the definition of the column space of matrix J, included

in ker (E),
(3,0
- .

where

O(1x2) Do)

I = Lz 2=
g
Oax2) (}:2)

In7 it is proven that im (J) is an {A, B)-controlled in-
variant, thus

im (J) € max V' (A, im (B), ker (E)).
Since im{D) € im(J), it follows that the necessary
and sufficient condition for disturbance localization (13}
holds. As regards the stability requirement of the con-
trolled couple {A. + BF, B), in” it is proven that the

resolvent im (J) is internally and externally stabilizable.
O

Note that for the 2D case the resolvent controlled invari-
ant is given by the column space of

I, 0
Jﬁ[Ule’

4 Algebraic output feedback
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In most real applications, the state is not completely ac-
cessible for measurements and the performance of an ob-
server based controller might be unsatisfactory. From an
engineering point of view if is interesting to study the io-
calization of disturbance through an aigebraic feedback
of the sensed outputs.

Assuming that the suspension heights and their time
derivatives are accessible for measurements, the output
vector T

y=[yi 1] (16)
is defined, for the 3D model, shrough

(z — 81— 0,8} — (21 — Ba1l}
el — ) — (a1t Baal)
Y= | (2 — 8,0+ 8,a) — (22 — Oaal)
(z+ 8-+ Ba) — (22 + Oaal)

Note that for the 2D madel of the vehicle, it reduces to

— (z - 91*;) - (31 - 3.111)
YW= 40— (4 8al) ]

The property of localizing disturbances by means of an
algebraic output feedback is formalized in the foliowing.
Proposition 2 Consider the 3D [2D] vehicle dynamics
in eg.11 [eq 5] with measurement eguation y = Cx.
There ahoays exists a feedback gain K fromy tou which
localizes disturbances d in the nullspace of the regulaled
output e = (O, fp, Z) [& = (B, 2)}

Sketch of the proof for the 3D case. It is sufficient
to show that the resolvent im{J), (14}, is an (A, C) con-
ditioned invariang, whete

N [ Cr Opxs | Cr 04 ]
O(ax3) Cy |04 Cy,

and
110 —al-110
I I 0 —al-120
Co=|_9 1" “*“la10 -1
10 -l @16 -1

Simply verify that im(J) M ker(C) = 0, in fact being

os=[ % on o o
with
1 0 -10
Cp = Bl ?/ i Cu= _01 _(_]1 )
0 - 0 -1
it ensues that rank(CJ) = rank(J) =8. c



i 0.8m a 2m
My 1500kg T, | 360kgm*
Iy 2800kgm?® | Ma 40kg
Maa 40kg T.1 | 10.8Kgm?
T2 | 108Kgm® || K | 18F4N/m
B | 1E3Ns/m || Ky 1.96E5N/m
B; [1.92E3Ns/m

Table 1: Parameters of vehicle geometry and dynamics; spring and
damping coefficients of tires and suspensicns.

5 Simulations

A realistic simulation of a road vehicle with active sus-
pensions is here reported to show applications of the dis-
turbance decoupling through algebraic output feedback,
for both 2D and 3 cases. The used parameters 6 of the
vehicle geometty and dynamics are reported in Table 1.
Consider the 2D dynamics (5) with sensed outputs (16).
From Proposition 2 the ride heights regulationis obtained
by the output feedback galn

4 [9.50.5 01056 0.0056
K =10" 45 9.5 0.0056 0.1056 | °

which localizes disturbances d in the nulispace of the
regulated output e = (0, 2). Geometrically, the output
feedback gain K, makes the resolvent J (15) invariant in
(A +BKC).

Tt should be remarked that, for the 2D case, being the
triple (A, B, E) left-invertible with respect to the input
u and the controlled output e, necessary and sufficient
conditions of Theorem 4 in 2, for the algebraic output
decoupling feedback, are satisfied. More In detail it can
be shown that Vo, =im(J).

As regards the 3D dynamics (11) with measure-
ments y (16). The output feedback gain for localiz-
ing disturbance in the nullspace of the regulated output
e = (0r,0p,3), is given by

2.31 —0.45 —0.45 0.34 33 1079  -0.01 —no1 41 1o d
K =105 | -045 231 @5 -0.45 001 381074 w0t 7 104
045 0.54 2.4 -—0.48 —0.m 4L t~% st —a.01

0.54 —0.45 ~0.47 2.30 37 10~% ~97 10~¢ 141073 1e107%

Note that here, according to?, being the system nor left
nor right invertible, only the sufficient condition stated
in Property 1 can be checked. Also for the 3D case,
VY =im (J}.

In what follows the influence of the externsl distur-
bances, due to road surface irregularities, is simutate

with the stabilizing state feedback F = ~10°G, where

-240, 250, —88, 13, 1.7, —.77, —520, 950, 190, 18, ~32, 44, 1, —58
9%, 8§, -250, —7¥, .7%, ~1.7, 770, 1308, 10, 160, 36, 49, —56, 1

60, —250, 88, —4, —1.7, .77, —440, §80, 190, 16, —30, 43, 1; —38
G=
170, —s88, 250, 18, —.77, 1.7, 700, 1300, 18, 190, 34, 50, —56, 1

Suppose that the vehicle has a constant speed of 80km/h
and that the variation of the road surface profile occurs
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Figure 2: Disturb, roll, pitch angles and vehicle height for a ride of
10 seconds during which the disturbance 41 and d3 are exerted on
the vehicle. Both cutputs for systems with and without disturbance
decoupling are reported. Signals identically zero refer to the vehicle
with the decoupling feedback.

every 16m on the right side of the car (dy # 0;da #
0:ds = dq = 0}, Assuming that the froni and rear wheels
pass the same path, L.e., dy = d(t) and ds = d(t—T.) with
T. = 0.24s (first plot in fig. 2), 2 ride of 10 seconds has
been simulated with and without the decoupling feedback

The last three plots in fig. 2 refer to the regulated
outputs, roll, pitch angles and vehicle height. The out-
puts are those relative to both system with and without
decoupling. As it is expected, variztions of roll and pitch
angles and of the vehicle height. due to disturbance d,
disappear when the disturbance decoupling gain is fed
back. The plots in fig. 3 illustrace the behaviour of sig-
nals performed by active suspensions and commanded by
the disturbance decoupling controller.

The first three plots in fig. 4 report the behaviour of
the regulated outputs roli, pitch angles and vehicle height
for the decoupled system when an actuator with satura-
tion level at 1200 N js adopted 8. The control signai is
reported as a function of time in the last plot. From fig. 4
it results that the perfect dissurbance decoupling cannot
be achieved because of saturation of actuators. But, even
in presence of a strong saturation, a considerable reduc-
tion of the disturbance is obtaized.

-

6 Conclusions

Localization of external disturbances in road vehicles
with active suspensions was investigated. The problem
of ride heights regutation, i.e. the regulation of the roll,
pitch and vehicle height, was considered. The main resuls



of the paper states that there always exists an algebraic
feedback, from the sensed outputs y, able to decouple
external disturbances transmitted through suspensions.
The aim of this paper is to emphasize that such a de-
coupling property is a structural property of road vehi-
cles with active suspensions. Moreover it’s worthwhile to
mention that only axes disturbances d enjoy the decou-
pling property. In fact it’s an easy matier to verify that
it’s not possible to make the regulated outputs e insen-
sitive to those disturbances which are directly exerted
on the sprung mass as, for instance, the lateral accel-
erations. A case study with a realistic simulation has
been reported and some aspects of control implementa-
tion were discussed.
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Figure 3: Aciive suspensions control outputs.
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Figure 4: Roll, pitch angles and vehicle height active suspension
control behaviour for disturbance decoupling acting through actu-
ators with saturation level at 1200 N.
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