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Abstract: The control of robotic manipulation is investigated. Manipulation system
analysis and control are approached in a geperal framework. The geometric aspect
of manipulation system dynamics is strongly emphasized by using the well developed
techniques of geometric multivariable control theory. The focus is on the control of
the crucial outputs in robotic manipulation, namely the reachable internal forces and
the rigid-body object motions. A state-feedback control procedure is outlined for
decoupling these outputs and finally special attention is devoted to the synthesis of

the state observer.
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L INTRODUCTION

The class of robotic systems this paper is focused
on are referred to as general manipulation sys-
tems. These are mechanical structures more com-
plex than conventional serial-linkage arms. The
coordinated use of multiple fingers in a robot hand
or. similarly. of multiple arms in cooperating tasks;
the use of mner finks of a robot arm (or finger)
to hold an object. and the exploitation of parallel
mechanical structures, are all examples of non—
conventional usage of mechanisms for manipula-
tion. Robotic hands can be considered as paradigms
of general manipulation systems.

The presence of unitateral contact phenomena be-
tween different parts of the mechanical structure
is a special feature of manipulation systems. Me-
chanical contacts between the robotic parts and
the environment can be viewed as unactuated (pas-
sive) joints and, for this reason, they make manip-
ulation system control quite involved.

The analysis of dynamics and the control of ma-

nipulation systems becomes more complex when
it is not possible to control contact force in all
directions. This usually happens when the num-
ber q of DoF’s of the robotic device is smaller
than t, the dimension of the contact force space.
In (Prattichizzo and Bicchi, 1996), such a case is
defined as “defective grasp”.

The importance of defective grasps has been un-
derlined, for the first time in “whole—hand” ma-
nipulation (Salisbury, 1987}, where all links of the
hand may be exploited to manipulate objects (see
Fig. 1}.

In industrial applications, kinematic defectivity is
a common factor of almost all grippers used to
grasp industrial parts. Consider, for instance, the
simple mechanism in Fig. 2 of Section 6. It will be
shown that it exhibits a defective grasp.

The main goal of dexterous manipulation tasks
consists of controlling the motion of the manipu-
lated object along with the grasping forces exerted
on the object. In the robotics literature, the gen-
eral problem of force/motion control is known as



“hybrid control”. For a broad overview on this top-
ics, the reader is referred to (Murray et of., 1994),
{Siciliano, 1996) and the references therein.

In force/motion conirol, a very interesting aspect
is the decoupling control. Roughily speaking, the
multi-input, multi-output manipulation system is
cleconpled if each output vector, namely the grasp-
ing force and the object position vectors, can be
independently controlled by corresponding set of
generalized input forces. Such a structure is desir-
able in a considerable number of advanced apphi-
cations, including micromanipulation of tissues in
surgerv and in laparoscopy or assembly and ma-
nipulation of non-rigid (rubber or plastic) parts
in industry.

In all the examples ahove, it could be very dan-
gerous to increase the squeezing force while giving
rise to undesired, even if transient, object motions.
Such a problem is common to all those hybrid con-
trollers which do not vank noninteraction as a spe-
cific goal.

in this paper the noninteraction of contact forces
and object motions is presented as a structural

property of general manipulation systems. We prove

that it is possible to decouple the object position
and the squeezing force control for a wide class
of manipulation systems by using a state—space
feedback controller.

Moreover, the problem of synthesizing the state
observer in the presence of unaccessible disturbing
forces and torques acting on the objects is inves-
tigated.

The framework used in this paper is the geometric
approach to the structural gvnthesis of multivari-
able svstems. For a broad overview the reader is
referred to (Basile and Marvo, 1992), (Wonham,
1979) and references therein.

2. PRELIMINARIES

The manipulation system dynamics is linearized
at an equilibrivun configuration. The use of lin-
earized model dynamics in the analysis of general
manipulation systems is believed to be a signifi-
cant advancement with respect to the literature,
which is almost solely based on quasi—static mod-
els, especially for defective systews, and in fact
provides richer results and better insights.

For a detailed discussion of dynamics and the deriva-

tion of the linearized model the reader is referred
to previous works by the authors, (Bicchi and Prat-
tichizzo. 1995) and (Prattichizeo and Bicchi, 1996).

Notation and some results on the linearized dy-
namics of general manipulation systems, are sum-
marized in this section.

Let q € IR? be the vector of joint positions, 7 &
IR? the vector of joint forces and/or torques, u €
R? the vector locally describing the position and
the orientation of a frame attached to the object
and finally w € IR? the vector of external distur-
bances acting on the object. Let further introduce
the vector t € IR' whose components include con-
tact forces and torques.

Assume that contact forces arise from a lumped-
parameter model of visco—elastic phenomena at
the contacts, summarized by the stiffness matrix
K and the damping matrix B. The Jacobian J
and the grasp matrix Gz are defined as usual as
the linear maps relating the velocities of the con-
tact points on the links and on the object, to the
joint and object velocities, respectively. '

Besides advanced robotic tasks discussed in the
introduction, where visco—elastic contact model is
mandatory, it might be worthwhile to mention
another reason, discussed in {Prattichizzo, 1995),
for taking into account the visco—elastic contact
model. It was shown that if the grasp is hyper-
static, i.e. ker {(JT) Nker (G) # 0, the rigid-body
contact model leaves the nonlinear dynamics un-

determined and, consequently, the visco—elastic model

of contact interaction becomes mandatory.

Consider a reference equilibrium configuration
(q,u,q,0,7,t} = (Qo,p,0,0,7,,t,), such that
T, = JTtO_ and w, = —Gt,. In the neighbour-
hood of such an equilibrium, linearized dynamics
of the manipulation system can be written as

i=Ax+B.7 +B,w', {1

where gtate, input and disturbance vectors are de-
fined as the departures from the reference equilib-
ritn configuration:

X = [(q - QO)T {u— uo)T qT ﬁT]T :

=7 -3 t,, w =w +Gt, and

. : [ o] 0
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where M, and M, the inertia matrices of the ma-
nipulator and the object, respectively. To simplify
notation we will henceforth omit the prime in 7/
and w’.

Neglecting rolling phenomena at the contacts, as-
suming a locally isotropic modet of visco—elastic
phenomena and assuming that local variations of
the jacobian and grasp matrices are small, sim-
ple expressions are obtained for Ly = ~M P,
and Ly = —M~!P;, where M = diag{M;,, M),
P, =8"KS, P, =8"BS, and S =[] — G7}.



3. CONTROLLED OUTPUTS

In this paper, it hag been assumed that contact
points do not change. The manipulation is stud-
ied m those interval of time when contact points
hold whitout rolling and/or sliding. Thus, manip-
ulation control goal involves mainly the control of
grasp and the tracking of desired object trajectory.

Asg regards the first control requirement let us in-
troduce the internal forces. Usually, forces belong-
ing to the null space of grasp matrix G are referred
to as “internal forces” which are contact forces
with zerc resultant on the object. Such forces en-
able the robotic device to gragp the object and
play a fundamental role in controlling the manip-
ulation task. A suitable control of internal forces
allows the manipulation system to counteract the
possible grasp failure caused by disturbance ac-
tions on the object. Tn (Prattichizzo and Bicchi,
1996} manipulation systems with ker (G) # {0}
were defined as graspable systems.

As regards object trajectories, rigid-body kine-
matics play a particular function in manipulation
control. Rigid-body kinematics have been studied
in a quasi-static setting in (Bicchi et al., 1995)
and in terms of unobservable subspaces in (Bicchi
and Prattichizzo. 1995). In both cases rigid kine-
matics were described by the base matrix I' whose
columns form a basis for
ker [J — GT] = range(T) where

=L 0], and JT. =G Ty (2)
Observe that, for the sake of brevity, it is assumed
here that the system is not redundani: ker (J) = {0}
and that it is not indeterminate: ker (GT) = {0},
see (Bicchi et al., 1995) for further details.

The column space of I' consists of coordinated
rigid—hody motions of the mechanisim, for the ma-
nipulator (I',.) and the object (T',.) components.
They do not involve visco—elastic deformations at
contacts and can be regarded as low-energy mo-

tions. In this sense, they represent the easiest way
to move the object.

In the following, a special subspace of internal
forces and the rigid—body object motions are char-
acterized as output matrices of the linearized dy-
namics. see Section 2. These outputs, namely t/
and ' (henceforth t and u), represent variations
of contact force and object position vectors from
the relative equitibrium values.

Before intreducing the controlled outputs, let us
recall the concept of contact—kinematics defectiv-
ity, or briefly defectivity. According to (Prattichizzo
and Bicchi. 1996) and (Prattichizzo et al., 1996a),
a given grasp is called contact-kinematics defec-
tive if ker (JT) # {0}. As pointed out, the grasp
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Fig. 1. Defective grasp: ker (J7) # {0}. Contact
force £, and object position w, are not con-
trollable by joint torques.

defectivity deeply affects contact force and object
motion controllability which, in general, is lost.
Fig. 1 pictorially describes some uncontrollable di-
rections of contact forces f, and object motions u,
for a simple 3—Dob"s defective device.

Recall that whenever the number of joints is lower
than the mumber of elements of the contact force,
as in the gimple grippers of Fig. 1 and 2, it ensues
that ker (JT) # {0} and the grasp is defective.

Although, in the presence of defectivity, contact
forces t and object motions u loose the output
controllahility, it was shown in (Prattichizzo and
Bicchi, 1996) that the output controllability prop-
erty holds for their projection on the subspace of
reachable internal forces t; and of rigid-body object
motions u.. Moreover, if the output vector is cho-
sen by grouping such projections y = (t] uf)T ,
not only ¥ is consistent, i.e. output controllable,
but it also exhausts the control capability by mak-
ing square the input—output representation of dy-
namics.

The reachable internal contact forces t; are defined
as the projection of the force vector t onto the null
space of G:

t-i = Em’X where

Eq:=(Q7Q)'QT Q0 Q0 (3)
Q = (I - KGT(GKCGH) 1)K,

and the rigid—body object motions u, are defined
ag the projection of the object displacement u onto
the column space of T',.:

where

(4
By = (rfcruc)wlr;{c 010 0] - )

u, = E,.x;

Notice that to simplify notation, matrices (Q? Q)1
and (I‘ZCI‘H,;)_l, will be omitted.

4. NONINTERACTING CONTROL

The following theorem, proven in (Prattichizzo et
al., 1996a), states that the force/motion decou-



pling problem is a structural property of general
manipulation systems.

Theorem 1. {Noninteraction) Consider the lin-
earized manipulation system of Section 2. If
ker (GT) = {0}, there exists a stabilizing state-
feedback conirol law, 7 = Fx + 7 and an input
partition 7% = Uy + Uyeuye which decouples
reachable internal forces t; and rigid-hody object
motions ..

Remark 1. Theorem 1 shows that a control law
and a joint torques partition exists such that, for
zero inttial conditions, each input only affects the
relative output.

The geometric concept from which the previous
result. develops is the S—constroined controllabil-
ity. It consists of those state space vectors reach-
able through trajectories entirely lying in the con-
straining subspace S.

In other words, for the aforementioned outputs t;
and 1, there exists a decoupling and stabilizing
state feedback matrix ¥, along with two input par-
tition matyices Uy and U, such that, for the dy-
namic triples

(Et'is A + BT'F1 BTUH) ;

(Euc» A+B.F BTU‘UC) '

it holds:

Rii = min (A +B,F, B, Uy} C ker(E,.);

E, Ry = range(By); ©)
Ry = min T(A +B.F, B, U,.) C ker (FEy);
Euc:Rur.; = range (Euc)‘

Here, min (A, range(B)) = Y77 A range (B)
is the minimum A-invariant subspace containing

range {B) and maxZ (A, ker (C)) = (Vi_y Atker (C)

in ker (C) with respect to the triple (A, B, C).

Moreover. partition matrices Uy, and Uy; satisfy
the following relationships

range (B, U,.) = range (B,;) MRy )
range (B Uy) = range(B,;) MRy

and the stabilizing matrix F is such that

(A+B,FYR,. C Rye (8)
(A+B,FIRy C Ry

The decoupling controller is that sketched in Fig. 3.

5. STATE OBSERVER SYNTHESIS

While the measurement of joint pesitions can be
easily obtained, in robotics manipulation the ob-
ject posture is measurable only by using expen-
sive sensor systems such as vision-based sensors,
cf. (Hager and Hutchinson, 1987}, or global po-
sitioning systems (GPS). Hence from a practical
point of view, the state is not available and a state
observer must be designed to implement the de-
coupling control lasw.

Assume that the sensed output y, of the robotic
maniptlator consists of the joint positious and
confact force vectors,

ys_[q]-—Cx with

9

C— I 0 6 0 )
T {KJ -KGT BJ -BGT |

In (Prattichizzo, 1995), it was shown that the lin-
earized dynamics of general manipulation systems
is detectable from y, thus the identity observer
can be considered for the asymptotic estimation
of the system state.

1t should be remarked that in order to realize the
identity observer, not only the system detectabil-
ity but also input accessibility is required. Un-
fortunately, the external object disturbance w of
equation (1} is not accessible.

In this section the asymptotic estimation of state
%, in the presence of the unaccessible disturbance
w is investigated.

It can be easily proven that, in the presence of un-
accessible disturbances, the differential equation
of the error e between the identity state observer
output and the actual state is obtained as

e(t) = (A + LC)e(t) + Byw(t).

The estimation of the state does not cotverge asymp-
totically to zero, even if A 4+ LC is a stable ma-
trix, but converges asymptotically to the subspace
min Z (A+LC,B,,), the reachable subspace of the
error dynamics.

According to (Basile and Marro, 1992}, in order to

raaximize the dimension ! of { min I (A + LC,B,))",

it is convenient to choose L guch that min T (A4
LC,.B,,) has the smallest dimension.

The following proposition, proven in (Prattichizzo
et al., 19968), solves the optimization problem above
for the linearized dynamics of general manipula-
tion systems.

1 The dimension of subspaces where the state can be esti-
mated with zero asymptotic error.
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Fig. 2. Planar 3-DoF’s cartesian manipulator. Tt
exhibits a defective (ker (J7) = {0}) grasp.

Propozition 1. Consider the linearized dymamics
of eq.(1}. There always exists a stabilizing matrix
I, such that

min Z(A +LC.B,) = range (By).

Moreover matiix L stabilizes A + LC and is such
that

(A + LC) range (B,,) C range(By).

The proposition can be easily proven

& by recalling that minimizing the subspace di-

mension over the stabilizing matrices L is equiv-

alent to choosing a stabilizing matrix I which
transforms the minimal conditioned invariant
in (A, ker(C)) containing B,, into an (A +
LC)-invariant and

e by observing the range(B,) is conditioned
invariant in (A. ker (C)).

§. CASE STUDY

In this section numerical resulés are reported for
the simple defective gripper described in Fig. 2.
It is a planat 3-DoF’s cartesian manipulator and
hias heen chosen in order to show the effectiveness
of previous results for industrial grippers.

T the base frame B, the contact ceniroids, cf.
(Bicchi et al., 1995}, are ¢; = (2.2), ¢2 = (2.3)
and the object center of mass is ¢ = (2. 2.5) while
the transpose of the Jacobian and the grasp ma-
trix assume the following values

0100 10 10
T =|10:10|; G=| 01 o01].
0001 050 —050

—

Stote’'s Dynomic)

Dhserver

Fig. 3. Force/motion decoupling controller.

The inertia matrices of the object and manipula-
tor along with stiffness and damping matrices at
the contacts are assumed to be normalized to the
identity matrix.

The controlled outputs are (a) the projection t;
of the contact forces on the 1-dimensional sub-
space of reachable eontact force range([010 —
1J7) and {b) the projection of the rigid-body mo-
tion on the 2-dimensional subspace of object mo-

10 dx
tions range i 0 1 | which, since u = | dy {, corre-
00 éd

sponds to translations of the object,

The decoupling controller is described in Fig. 3
and has been synthesized, according to Section 4,
eq. 5, 7 and 8. The stateteedback matrix F and
the input partition matrices Uy, and U, are ob-
tained respectively as

-7 B85 -6 -1 —41 0 —7.5 --0.02 -55 -3 -22 0
19 —120 10 -T2 5 0029 —i16 029 7.2 —-6.20] ;
—-6.1 65 =7.1 0.7 —41 0 —55 —0021 -7.5 —3.1 —22 0O

[—0.707} |:U 40.707]

[} ; 1 v} .

0.707 0 —-0.707

Stmulation results of Fig. 4 show the noninteract-
ing property stated in Theorem 1. In column a)
and b) contact forces t; and object motions pro-
jections on the x and y directions are reported
for simulations with zero disturbances. Column a)
refers to a simulation where the unitary step is as-
signed to input uy; and the zero value is assigned
to both components of input u,,. see the block di-
agram of Fig 3. Column b) refers to a simulation
where Input uy is set to zero and a unitary step
is assigned to both components of input u,,..

Results in Fig. 5 show the effects of the optimum
state observer synthesis, where optimality is meant
in the sense of Proposition 1. A disturbing force,
whose projections on x and y are unitary, acts on
the object, see Fig. 2. Controlled outputs are set to
zero. Column a) shows the output behaviour with
the feedback observer matrix L chosen according
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Fig. 4. Force/motion noninteraction. Column a}
[b)] reports simulation results obtained with
only internal force [object motions| input.
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Fig. 5. Only the disturbing action: w = [110]"
acts on the system. Column a) shows the out-
put behaviour when L is optimum. Column b)
shows the output behaviour when 1 is chosen
by using a simple pole pole placement proce-
dure.

to Proposition 1. For results of column b), matrix
L is svnthesized by a simple pole placement pro-
cedure. Observe that the disturbance attenuation
on the controlled output is more effective when
the observer matrix L is optimum in the sense of
Proposition 1.

7. CONCLUSIONS

The decoupling procedure discussed in this paper
applies to robotic manipulation systems whose dy-
namics can be modelled according to Section 2.
Tle class of manipulation system under investiga-
tion is wide encugh to inchide a considerable num-
ber of grasp configurations, such as those using
internal and/or extremal links to grasp objects,
those with contact kinematic redundancy and so
forth.

Due to the possible presence of defectivity, the
control outputs were suitably chosen as the reach-
able internal forces and the rigid-body object mo-
tions.

The main results of this paper are summarized
in Theorem 1 and Proposition 1. The first states
that the force/motion noninteraction is a struc-
tural property of general manipulation systems.
The second focuses on the estimation of the state
in the presence of unaccessible disturbing forces
acting on the object.
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