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The problem of dexterous manipulation of objects, i.e.
of arbitrary relocetion and reorientation of rigid bod-
ies by action of some mechanism, is considered. We
build upon previous results on the possibility of tmiple-
menting dexterous “robot hands” with few actuators,
which can be afforded through the eiploitation of novn-
holonomic rollz'ng' of regular surfaces. In this paper we
focus on the manipulation of polyhedral objects, and
prove a necessary and sufficient controllability—like re-
sult, which discloses some of the interesting aspects and
perspectives of this problem.

1 Introduction -

The design of mechanisms for orienting and locating
parts is of paramount impeortance in flexible automa-
tion and robotics. In some cases, the problem is that
of reorienting a large number of parts coming in ran-
dom positions and orientations, to a given posture
within assembly tolerances. For such problems, indus-
try most often uses ad hoe fixtures, such as vibrating
part—feeders, fenced conveyor belts, etc.. The design
and tuning of these devices is often time—consuming,
and is only rewarding on large—size batch production.
In other cases, where the typology of parts is more
variate, more flexible manipulation means are prefer-
able. In highly-flexible automation and robotics, the
design of manipulation devices has been attacked by
several different approaches, such as by developing dex-
terous multifingered hands ({7], [12]); using “pushing”
or “tilting” actions ([10], [9]); “regrasping” ({15], [6]);
and “finger gaiting” ([11}, {4]).

Among these manipulation strategies, those using

discontinuous contacts between the manipulator and
the part are sometimes regarded as not reliable enough
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Figure 1: A parallel-jaw gripper can manipulaie polyhedral
parts

in real-world, unsteady environments. On the other
hand, multifingered robot hands are often too costly,
heavy, and complex, to be viable in many applications.

The idea of exploiting the nonholonomic nature of
the constraint of rolling surfaces, so as to design a
dexterous hand with few actuators, was presented in
[3]. In that paper, building upon previous results of
Li and Canny [8], it was conjectured that the position
and orientation of an object with regular surface could
be arbitrarily changed by rolling onto another regular
surface by acting only on its relative angular veloci-
ties. The simple experiment of rolling a sphere on a
plane surface, bringing it back to its initial position
but with different orientation, is an intuitive explana-
tion of this phenomenon. Based on the above control-
lability conjecture, a dexterous hand consisting of two
parallel plates, with only three translational degrees of
freedom, was devised and experimentally demonstrated
(see fig. 1). Bicchi, Prattichizzo, and Sastry [2] con-
firmed later on the conjecture for all strictly convex
objects with a regular surface of revolution, and dis-
cussed the differential-geometric aspects of planning
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and controlling the object motions.

The advantage of manipulation by rolling is that
it accomplishes dexterity with very simple hardware,
while it guarantees that the object is never “left alone”
during manipulation. The intrinsic nonholonomic na-
ture of rolling offers many difficulties to the planifica-
tion and control of such devices, of which only few have
been addressed so far.

Among the various open problems, the one we start
considering in this paper is that of removing the lim-
itation that manipulated objects should have regular
{C®, analytic) surface. The main motivation of such
an assumption is that for regular surfaces the power-
ful tools of differential geometry and nonlinear contrel
theory are readily available. On the other hand, the as-
sumption is rarely verified with industrial parts, which
often have edges and vertices. Again, the simple exper-
iment of rolling a die onto a plane without slipping, and
bringing it back after any sufficiently rich path, shows
that its orientation has changed in general, and hints to
the fact that manipulation of parts with non-smooth
{e.g., polyhedral) surface can be advantageously per-
formed by rolling.

Some aspects of graspless manipulation of polyhe-
dral objects by rolling have been considered already in
the robotics literature (see e.g. [13], [1], [5}). However,
a complete study on the analysis, planning, and con-
trol of rolling manipulation for polyhedral parts is far
from being available, and indeed it comprehends many
aspects, some of which appear to be non-trivial. In
particular, the lack of a differentiable structure on the
configuration space of a rolling polyhedron deprives us
of most techniques used with regular surfaces. More-
over, peculiar phenomena may happen with polyhedra,
which have no direct counterpart with regular objects.
In this paper, we start such study by analysing the
structure of the set of configurations reachable from a
given one, and show that it may reveal extremely differ-
ent structure depending on the polyhedron considered
(see fig. 2 and 3).

Y.Chitour, A.Marigo, D.Prattichizzo, A.Bicchi

Figure 2: A polyhedron whose reachable set is everywhere
dense

Figure 3: A polyhedron whose reachable set is nowhere

dense

2 Problem formulation

Consider the simple device depicted in fig. 1, consist-
ing of two plates, one of which is fixed, while the other
can translate remaining parallel to the first. A part
of known shape is put between the plates and succes-
sively moved by a combination of vertical and horizon-
ta) forces at the contacts that cause it to move. The
goal is to bring the part from a given initial configura-
tion (a point in SF(3)) to another desired one. A few
considerations are in order:

e as the part is constrained to keep in touch with
the two plates, to specily arbitrary desired con-
figurations would require being able to move the
lower plate vertically. With no loss of generality
we only consider different configurations modulo a
rigid translation of the whole mechanism;

o the surface of the part is considered to be piecewise
flat, closed, and comprised of a finite mumber of
faces, edges, and vertices;

e parts need not be convex. However, as the plates
are assumed to be large w.r.t. the diameter of
parts, we will only be concerned with the convex
hull of the parts themselves. Tn what follows, we
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use the term “part” to refer to a piecewise flat
convex surface, i.e., to a convex polyhedron;

e in general, three motions of a polyhedron on a
plane are possible: by sliding on a face, tumbling
about an edge, or pivoting about a vertex. Slip-
page is not considered desirable in this context,
as it does not guarantee reliable enough results
in manipulation. We assume therefore that high—
friction, compliant materials are employed to cover
the plates, and that the vertical degree—of—freedom
of the upper plate is suitably used, s0 as to prevent
slippage. By a similar concern, pivoting about a
vertex is also banned. In fact, real-world parts
never have perfectly sharp vertices, and the actual
effects of pivoting about a vertex will strongly de-
pend on the details of how “the corner is rounded”
(recall that all the curvature of a polyhedron is
concentrated at its vertices). On the other hand,
tumbling about an edge is insensitive to the de-
tails of how the “edge” really looks like, since no
curvature is concentrated on the edge of a polyhe-
dron.

The only motions of the parts we will be concerned

with are therefore comprised of a sequence of rotations
about one of the edges of the face being in contact with
the plate, by the amount that exactly brings another
face in contact. This action on the parts will be referred
to as an elementary tumble, or ET for short.

3 Definitions and properties

Let P be a convex polyhedron rolling on a plane P by
ET’s. We associate to P the following sets:

By the assumnption of convexity, parts are topological
spheres, hence for their Fuler characteristic it holds
x=m—-k+I=2

The configuration space M of the systern under in-
vestigation is the restriction of the space of rigid body
configurations SE(3) to those that have one face in
contact with the plane P. One possible parameteriza-
tion of this space is as follows.

Let Ozy be a fixed reference frame on the plane P.
For each face F;, 1 < <[, let ¢; and u; be two arbitary
distinct points fixed on F;, for instance the center of
gravity of F; and one of its vertices. Let (1:, y:) be the
coordinates of ¢;, and #; be the oriented angle between
Oz and C,:t;,,;. A configuration of Pou Pis uniquely
determined by the quadruple (z;,y:,8:,1), where i &
{1,...,1} is the index of the face in contact with P.
The configuration set of our problem consists therefore
of { copies of SE(2), or explicitly

M=R:x§ xF. {1

For 1 <1 £ I, each copy of SE(2) corresponds to the
set of all the possible configurations for the face 4, M;,
ie.

M; =R?x S* x {i}. (2)

The space M is endowed with the product metric as-
sociated to the metrics of the euclidean space R?,
of the quotient space S' = IR/2xZ and of the dis-
crete space f’, respectively. The latter is taken to be
p(F;, F3) = 1 ~ §;;, where §;; is the Kronecker symbol.
Although very intuitive, this parameterization: does not
turn out to be the most convenient for our develop-
ments. We therefore introduce a slightly more techni-
cal deseription of M as the set of equivalence classes
on aset M’ by the relation ~, where

- the set M is defined as the subset of R2x V x S1 x
of points (z,y,v,#,1) where i is the index of the
face F; in contact with P, v is any of the vertices
of F; (shortly F; 3 v), (x,y) are the coordinates of
v and & is the oriented angle between zz' and ¢fv;

- two elements of M’ are equivalent under the relation
~ifi=1" and &' — 8 is equal to the oriented angle
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between cjv and ¢;v’, for any fixed point ¢; on face
P :

Note that corresponding to each configuration of the
polyhedron, we have an equivalence class with ng; ele-
ments, where ng, is the number of vertices of the face
F;.

The actions we take on the configurations of the
polyhedron are finite sequences of ET’s, that will be re-
ferred to as “trips”. The length of a trip is the number
of ET’s it is comprised of. The problem this paper is
concerned with is to understand the structure induced
on the configuration space by trips of arbitrary length.
We therefore define reachability of a configuration as

Definition 1 The configuration q; is reachable from
qo if there exists a trip steering P from qo to gz. In
this case, we wrife o — qf-

For every g € M , let fs’,q be the reachable set from g,
i.e. the set of configurations that can be reached from
g in a finite, but arbitrarily large number of ET’s.

As mentioned in the introduction, the structure of
the reachable set can be very diverse for different poly-
bedra. Note first that flq is countable by its definition
and therefore the inclusion

R,cM
is strict. Introducing the cancnical projections
Hl : H - ]R.z,
M, : M-S,
we have that II; (Eq) is trivially infinite and un-
bounded in JR2. Various possibilities can occur:
Ii; (Rq) {resp. Iy (1:?:9-) ) can be discrete in R? (resp.

finite in $1) or can be dense in R? (resp. idem in §*).
One can even distinguish differently dense structures
for R,, among which are the following:

e} Density in M:
Ve > 0,Vgr € M ,
(DM) § 3¢’ €y such that

q’ € BE‘(Q}'),
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Fie

Figure 4: The defect angle ot vertez V is defined as By =
21 — (i + oz + us) ‘

b) Density in R? x S! for a given face i:

Ve > 0,Vqs € M,
3¢’ € Ry such that

DM
(o), ¢ € B.(gs)-

1

Here, B, (') indicates a ball centered in its argument of
radius £ in the suitable metric. Note that

(pM) = (DM)..
As usual, if the above properties hold for any initial
configuration ¢, the properties will be said to hold glob-
ally.

In this paper, we explicitly consider two extreme
cases of such behaviours represented in fig. 2 and 3,
where we have respectively that

1. the reachable set is dense in M (see section 4};

2. I (ﬁq) is a lattice of R? and ITp (Eq) is finite (see
section 5).

The notion of “defect angle”-3, at a vertex will turn
out to be crucial in the rest of this study.

Definition 2 For each vertex v € 17', let 1, be its ve-
lence, i.e. the number of faces of P which are adjacent
. 'F;:I.,‘ Let oy,

to v, and name such faces as Fy, ..
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1< 7 <4y, be the angle at v corresponding to face F,.
The defect angle ot v is then defined as

[
ﬁv :‘“271’—20.’,;5. (3)
3=1

The defect angle at a vertex (see fig. 4) is also known
in the literature as the curvature concentrated at the
vertex. Note that 0 < £, < 27 since P is a convex
polyhedron with null curvature on its faces. We also
have the classical Euler relation given by

Proposition 1 (Euler relation) Let P be a convez
polyhedron and V' the set of its vertices. Then,

> By = 4. (4)

UE;

We state now two remarks that can also be seen as
basic properties of the motion of a polyhedron on a
plane. There is no proof because these remarks are el-
ementary.

Remark 1 Let v € V and suppose that P rests
on P on a face F; with F; 3 v. By rolling clockwise
P on all the faces containing v until coming back to
F: while keeping v immobile, P is rotated of an an-
gie 27 — B, around an axis Z, orthogonal to P and
passing through v, i.e., it moves from (z,y,v,8,7) to
(z,4,v,8 + B,;4). We denote this trip by Rp, and the
analogous counterclockwise trip by R_g,. By repeat-
ing R, clockwise or counterclockwise, we can go from
(z,4,v,0,1) to {z,y,v,0 + nB,,7),n € Z.

If %’1 is irrational, then {"ﬁv}nez is densein S', that
is
Ve >0, V€S, IneZ: nfo—v| <e  (5)

We will refer to (5) as to the property of reorienting P
“arbitrarily close” (AC for short) to any direction.

Remark 2 Suppose that a configuration ¢ =
{(z1,31,9,01,1) is brought in ¢} = (z},v],v',8;,7") by a
certain trip 7. Then, applying T' to any configuration

g = (x,y,v,6,1), we end up at ¢’ = (z',y',v', 6", ),
where

@,y) = (=¥ +
exp (‘5(9 - 51)) (517; 1, y{ — 1),
8 = 61+(6-6,).

For i = 1,...,1, let T, be the set of all the trips
starting and finishing with F; in contact. For any
choice of mn — 1 out of the m vertices of ﬁ, labeled
as v, -+, U;m—1, the following property holds:

Proposition 2 For all trips T € i-, there existm — 1
integers (ni)icicm—1 such that the total variation of
ortentation along T is given by:

m—1

Al = Z 7Py, -

i=1

Proof. To each trip T € f’,-, a closed continu-
ous path yr can be associated as follows. Let T =
Fi---F;Fy --- F;. For all pairs of adjacent, faces IR
with the edge e in common, take a continuous path
Y3k starting from the center of F; and finishing at the
center of Fy, that passes through the edge e only and
through no vertex. The path ~vr is obtained by con-
catenating such -y;; for all pairs of successive faces in
T.

Tke polyhedron P is topologically equivalent to a
two-dimensional sphere S? and is associated to P, a
curvature function K defined as follows ([14]):

0 ifzeP\V,
}Bv‘- if:!:=v,:,_1£i§m.

K(x):{

Let ~1,---,¥m-1 be a homology basis of ’15\17
(= S z\f}) ({14]). Every path ~r is therefore homole-

gous to

m—1
Zn,;'ﬁ, ne€Z,1<i<m-1,

i=1

Bach 7, 1 <4 < m — 1, can be taken as a simple
continuous closed curve on P\V enclosing only v; in
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one of the two connected components it defines. It is
clear that any trip 7' associated with such a +; has the
same effects on the polyhedron as the trip Rg,,. The
variation of orientation along ~r is equal to (Gauss—
Bonnet theorem)

m—1

AB{T = Z ni-ﬁv.-- (6)

i=1
4 Density of the reachable set

The question whether a trip exists that can bring a
given polyhedron AC to any configuration in M , tan
be answered completely in terms of the curvature of
the vértices of the polyhedron:

Theorem 1 The set of reachable e configurations of a
polyhedron P is globally dense in M if and only if there
exrists a verter ¥ such that %— s irrational.

Proof.
(=) The proof of the “if* part is subdivided as follows:

% irrational O (DM)i holds
(PM) holds 8 (DM) holds .

Proof of (i): By hypothesis, there exists a trip that
brings the polyhedron AC to (z,y,#,1) for some i and
for any (z,y,8) € R? x S'. We want to show that a
trip exists that approaches AC (z,y,8, ), for all j’s.

Let T' be a trip that brings (z1,y1,6:,%) into
(2,142,062, 7), for any fixed j. By hypothesis, we can
go AC to (z',y', 6, 1), where

(msy). -
exp (i(f? - 02)) (T3 — x1,92 — 1),
¢ = 06— (0,-6,).

(""E’! y') =

By remark 2, there exists a concatenation of trips that
brings AC to (z,y.0, ) from (z',y',&",4).

Proof of (if): Let § = (0,0,%,0,%) be the initial con-
figuration. We want to show that if "zr—” is irrational,
then (DM) holds.
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Let Ihéﬁ,,; the subset of M defined as
Rpi={q€ Eg g =(z,y,9,8,1)}.

Let us prove that the projection of By ; on R? x §' is
everywhere dense. By remark 1, if some configuration
(z,y,7,8,1) is reachable from §, then for every ¥ € §7,
we can get AC to (z,y,7,1,1). Therefore, it is enough
to prove that II; (Rﬁ,,;) is everywhere dense. In turn,
the previous property is a consequence of the following
one:
36 >0, Yg € Ry,

B5(T1(9)) € clos (T, (Re)), (7)
where elos(.) stands for the set closure,

Ini order to prove (7), let us consider a vertex v € V,
different from % and such that 2= is irrational. The
existence of the vertex v is insured by the Euler re-
lation. From ¢, we can surely reach a point ¢ =
(%0, Y0, v, 00,1") where @ = (zg,10) # 0. The trip steer-
ing § to qo is denoted L and the reverse trip, .71,

Consider the trip Tg, g, defined as
L™ Rg LRy,.

By remark 2, a simple computatlon shows that we
reach from every point ki € R,, ; apoint ¢’ € RU i such
that II; (¢') = II; {q) + £, where

f=exp (261—,) (1 — exp (z’ﬂu))iﬁ. (8)

In equation (8) and in T}, ,, Bz and B, can be replaced
respectively by any of their multiples mg3; and ng,,
with m,n e Z.

Since *fr—” and %1 are irrational, by remark 1 and by
(8), we can therefore translate II; (g) with a vector AC
to any element of the set

{exp (19) (1-ex (w))u-;f] (6,1) € S x 8},

that is an open disc of radius 2{|w||. Therefore, (7) is
proved. .

(¢=) Assume now that there exist a vertex v and a face
F; with F; 3 v such that (DM) holds. We will show
k3

(a)={c).
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If ﬂ—;- is rational for I <4 < m, we have

Bu, = 4y
qi
Let g be the smallest common multiple of the ¢;’s. As
a consequence of equation (6), the variation of orien-

tation along -y is a entire multiple of % Thisis a

contradiction with (DM) . Therefore there must ex-
T

ists ¥ € V such that %"’ is irrational. This ends the
proof of Theorem 1.

5 Rolling a die

Upon examination, it is clear that the set of configura-
tions of a unit cube 5, that are reachable from a given
initial configuration gy € M, is a discrete set. Taking
for instance-go == (0,0,0,1), we have

ﬁczzxaxf‘,

where 0 = {k%, k=0,...,3}. Let (7,]) denote an
orthonormal frame of P that generates the square lat-
tice determined by the motion of C. If k = 7'A 7, then
(7,7, k) is an orthonormal basis of R,

Observe that, given any point ¢ € M, there are 4
ET’s, each of them corresponding to an edge of the
face in contact with P. Furthermore, the restriction of
these actions to O x F are well defined as

r1, the rotation with respect to 7 of angle 7 /2,
72, the rotation with respect to 7’ of angle 7/2,

and their inverses r;! and r3'. Since these actions

can be undertaken at every point of M, O x F can
be seen as the group (7 generated by r; and ry with
the composition as the multiplication law. One further
representation of M is thus obtained as

M=2’xG. (9)

The group G is the proper symmetry group of the cube
C and has a simple description using the group Ss
of permutations of 3 elements. Let ¢ € Sz be rep-
resented by the triplet (a(i),a(_ﬂ,a(ﬁ)) and ¢ € Zj

by {e1,€2,€3), with ¢ = 1 for i = 1,2,3, where Z, de-
notes the multiplicative group {~1,1}. Introduce the
semi—direct product

ocGe= (510(5),620(57, 630(7-6’)),

and let G; = S3 © Zg. Note that the elements of
G transform the orthonormal basis (7,7 E) to an-
other basis that is still orthonormal, but possibly
with a different handedness. Then, G is the sub-
group of G of the elements transforming (7,7, E) to
another basis with the same handedness, i.e. such that

-,

det (J(i),a(j‘),o'(k))_ = 1. An element of M for the
cube in the representation (9), is written as (m,n, g).

Define A; (resp. A_;) as the subset of G correspond-
ing to a product of an even (resp. odd) number of E'Ts.
Note that A; is a subgroup of G and, by constriction of
the multiplication table of G, one gets card(4;) = 12.
The subset A_; has the same cardinality of 4;, how-
ever it is not a subgroup. Starting from a given face,
there is an element in A; (resp. A_;) that brings any
face of the cube in contact with P. All elements of
Ay act on the cube so that it ends up with only two
possible orientations, differing by w. The latter sen-
tence applies to A_; as well, but the set of possible
final orientations under A; and A.; are disjoint.

Consider next the infinite group G = Z° & G (iso-
morphic to M ) with the multiplication law “-” defined
by

(m,n,g)- (m',n".¢") = (m+m',n+ 7', 9.9").
The group G is generated by the two ET ’@1 = (&,71)
and Ry = (J,72), and acts transitively on M.

Define for ¢ = (m,n,q) € M and g' € G the homo-
morphisms h; and A, as

a) hi{g)=m+n (mod 2);
b) hao(g'y=1ifg' € A1, —1ifg' € A_y.

We are now in a position to state our main results con-
cerning the problem of rolling a die on a. plane. The
first proposition makes explicit the lattice structure
and the restrictions on the reachable set of configu-
rations:
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Proposition 3 Let g ={m,n,g) € M. Then

Ry = {Q' =(m+m,n+n,g')€ M
with ¢ € A, () hats) § -

The second result deals with bounds on the number of
maneuvers necessary to reach an arbitrary configura-
tion in R,:

Proposition 4 Every ¢ = (m',n’,g") € ﬁq can be
reached from ¢ = (m,n,g) € M by a trip of length L
with

L > |m'—m|+|n' —n} (10)
L < |m'-m|l+fn —n|+6 (11)
L < sup{4,|m' —m|}+

sup{4 +{n' —n|} (12)

The proof of these propositions is based on examina-
tion of the multiplication table of the group G above
defined, and is omitted for brevity.

Remark The lower and upper bounds (10) and (12)
coincide in the region [m’ —m| >4, In' —n| > 4. An
optimal trip therefore exists for amy reachable con-
figuration in this region, and its length is exactly
|m! —m|+ |n' —nl.

6 Conclusions

In this paper we undertook the analysis of the set of
configurations that a polyhedron can be brought to
reach by rolling on a plane about its edges. The prob-
lem appears to be important to practical applications,
such as that of automatic part manipulation, as well as
theoretically stimulating. As a result of our analysis,
we pointed out that the structure of the reachable set
may show a much richer variety for different polyhe-
dra than it results for different regular surfaces, which
were analyzed previously. Results of this paper con-
cern only two extreme cases, while several intermediate
cases with different characteristics were not solved here
(for instance, a right-angled box with different sides).

Among the many open problems that are left for fu-
ture work, we point out that the criterion for density
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of the reachable set of Theorem 1 is based on the irra-
tionality of a quantity, whose actual value in physical
problems can only be determined up to an error. It
is clear therefore that it would be important to have
more robust measures of how “manipulable” a given
polyhedron is.
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