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Chapter 13

On some structural properties of general
manipulation systems

This chapter analyses the geomelric and structural charaeteristics invelved in the control
of rather yeneral manipuelotion syslems, vonsisting of sultiple cooperating linkages, interac-
ting with o reference member of the mechanism (the “object”} by means of conlacls on any
available part of their links. Object grasp and munipulation by the human hand s taken as
paredigmatic example for this class of manipulators, while classical mechanisms (including
closed kinematic chaing) can be shoum to fit easily in this framework. We present an anuly-
tical formulation of the kinematics and dynamics of such systeins. Moreover, we report on
somne recent results on the enalysis and control of these mechanisms, based on a gevmelric
analysis of o local approgimation of system dynemics. Notwithstanding the local nature of the
latter study, it provides @ very insighiful view of the problem, elong with confrol teckriyues
that aehicve inleresting performance.

13.1 Introduction

In the past three decades, research on the geometric approach to dynamic systems theo-
rv and control has achieved important results, which made that approach a powerful and
thorough tool in the analysis and synthesis of linear systems {1], [17]. Among the successes
of the geometric approach, it must be counted the contribution to the development of a
nontinear systems theory, steruming from and generalizing on deeply geometric ideas [6].

On the other hand, in the same years, mechanical systems used in industry and developed
in research labs also evolved quite quickly. Robotics is one notable case of such evolution.
In response to the stepping—up of requireinents on the control of mechanical systems engen-
dered by the tightening of performance specifications, the increase in number of degrees—of-
freedom, and the introduction of interacting robotic Himbs (as, e.g., in pairs of cooperating
arms, muitifingered hands, and legged vehicles), rather sophisticated analysis and control
technigues have been developed by the robotics community.

!Contributed by: Antonle Bicchi and Domenico Prattichizzo, Centro “Enrico Plaggio” & Dipartiniento
di Sistemi Elettrici e Automizione, Universitd di Pisa via Diotisalvi n.2, Pisa §6126, italy.
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General systems of interacting multiple robot limbs could be used to medel arbitrary
mechanisms. Typical robotics concepts and tools, such as, e.g., maunipulability analysis, can
then be applied to such system (see [4]). A unified control theory of mechanical systems is
conceivable, drawing upon recent results in robotics to extend them to rather general classes
of mechanisms. To do this, however, it is necessary that some assumptions on the description
of cooperating robot limbs limiting their generality are lifted, and that the corresponding
theory is fully understood.

Among the generalizations of robotic models that have to be considered to achieve that
goal, are the following:

1. each interacting limb can interact with the object with any of its links;

2. the interaction with the abject can be specified by several different models, ranging
from rigid attachment to rolling and/or sliding contacts between the bodies, etc.;

3. some of the limb joints may not be actuated.

These generalizations entail non-trivial modificaticns in the theoretical approach. Tools
from geometric control theory are particularly useful in understanding these more general
systems. In this chapter, we report on some recent advances towards the goal of a general,
unified treatment of manipulation systems.

13.2 Kinematics

The model of the mechanisms we consider is comprised of an arbitrary number of actualed
linkages {i.e., simple chains of links, connected through rotoidal or prismatic joints) and of
an object which is in contact, at one or more points, with some of the links. We define the
vector ¢ as a vector of generalized coordinates, completely describing the configuration of
the limbs; and the vector u as a generalized coordinate vector for the object.

Contacts represent a particular kind of kincmatic constraint on the allowable coufigura-
tions of the system. Contact constrainls are typically unilateral, possibly non-holonoimic
constraints on the generalized coordinates syslem, written in general in the form

Clg.q,u,1) > 0. (13.1)

The inequality relationship reflects the fact that contact can be lost if the-contacting bodies
are brought away from each other, This involves an abrupt change of the structure of the
mode! under consideration. To avoid analytical difficulties, it is usually assumed that the
manipulation is studied during time intervals when constraints hold with the equal sign.
The constraint relaticnship (13.1) is not'in general integrable, i.e., it cannot be expressed in
terms of q and u only: integrable constraints are called holonomic. Holonomic constraints
between generalised coordinates reduce. the number of independent coordinates necessuary to
describe the system configuration (degrees of freedom}, and ¢an conceivably be removed from
the description of the system by proper coordinate substitution. Nonholonontic constraints,
on the contrary, do not reduce the number of degrees-of-freedom of the system, but rather
reduce the number of independent coordinate velocities, A typical example of nonliolonarhic
¢constrained motion is the rolling of two bodies on top of each other. Nonholonomy introduces
many peculiar difficulties in the analysis and control of mechanieal manipulation systeins,

ot s 3 N . —————e . N WP
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some of which have been addressed in {11, 2]. No results concerning nonholonomic systems
will be discussed in this chapter. '

Several types of contact models can be used to describe the interaction between the 11‘nks
-and the object. When a rigid-body model of the mechanism is considered,_ the constraints
consist in imposing that some components of the relative generalised velocity between two
reference frames associated with the contact point on each surface, are zera:

¢ H; (P&~ &) =0 (13.2)

where H; is a constant selection matrix. Being the two frames fixed on the object and.t.he
phalanx, respectively, their velocities can be expressed as a linear function of the velocities

of the object and of the joints as

°¢ = G (u) w; (13.3)
T = Julqi) 4. {13.4)

Similar relationships hold for éach contact point, and a single equation can be l?ui}t to
represent all constraints by properly juxtaposing vectors and block matrices to obtain

i HGTu - Hig=0. (13.5)

! Let s = 2, d = 3 for 2D mechanisms and s = 3, d = 6 for 3D ones. Denoting by p the
{ ohject center of mass, it holds

i

: e I, s 1, Ocyins . GE]R'JX'"‘
| & = [spasp L speroph L] Gem

Dyy oo Dag|Loy - Twa]

T | o e e b T e mMR
Dy, oo Dyr|Lyy o0 Ly,
where
¢ —Ciy Ciz

1 Sle)=| ciy 0 —cpl|, for 3=3

—Ciz Cigx 0
8(gy) = [—C-',y Cs,z}, for s=12;
blocks D;; and Ly; are defined as

{00 0] if the i-th contact force does
not affect the j-th joint;
D; 77 for prismatic j-th joint;
z;T S(fey — 0j) for rotational i-th joint;
[0 0 0] if the i-th contact force does
i not affect the j-th joint;
Ly = [0 0] for prismatic j-th joint;

+ T
7
where o; and z; are the center and z-axis unit vector of the Denavit-Hartenberg frames
agsociated with the j-th joint while 2 = #; if s =3 and 2} =1ifs= 2.

Z for rotational j-th joins;
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In what follows the most commeon contact types are described with a unified notation, by
means of an overall contact selection matrix H which is defined as

H = diag(F'5,, ..., F 5, MS5,...,MS5).

The force selector (#5;) and the moment selector (MS;) blocks are built according to
different contact models {15, 8] as

Contact Type Force Selector F'S; | Moment Selector M S;

Point Contact w/o Friction 27 void
Point Contact w/h Friction .
(Hard-Finger) L void
Line Contact w/o Friction z7 {S(z)x)"
3D Line Contact w/h Friction zl [(S(z.-q}ﬁx,-)T]
%
3D Planar Contact w/o Friction zF [X;]
Vi
Planar Contact w/l Friction
{Complete-Constraint) L Lo
3D Soft Finger I z

i

wherle 2, i the unit surface normal at the i—th contact point, x; is a unit vectors defining
the line of contact and {x;,¥;) are two unit vectors defining the plane of contact. Notice that
conventional kinematic joints between a link and the object can also be modelled, In fact
as for differential kinematie coustraints, the following are equivalent: ’

Joint Type | Force Selector FS; | Moment Selector M S;
Rotoidal T, void
3D Prismatic {;;] Iy
21D Prismatic x7 1
3D Spherical I, void

where x; and y; denote two unit vectors normal to the joirt axis z;.
In the robotic literature matrix

G = QHT
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is usually termed as the “grasp matrix", or “grip transform”, while
J=H7

is referred to as the “hand Jacobian”.

An important question in the differenttal kinematics analysis is: which object motions are
possible starting from a given configuration, and to which joint motions do they correspond?
This question can be easily answered if the mechanism under consideration is not “defective”,
i.e., if it has at least as any d.o.f. as necessary to achieve arbilrary configurations in its task
space. In fact, in this case the matrix J is full rank, and we can write (13.5) as

q=3"GTo+ (I-T'3)y, (13.6)

where J* is the Moore-Penrose pseudo-inverse of J, and y is a free vector that paramete-
rizes the homogenecus (redundant) part of the solution. A manipulation system, however,
generally contains defective kinematics members such as the inner links, and therefore J is
not full rank. ‘The relationship between 1 2nd ¢ for general manipulation systems (including
whole:arm) has been considered by Bicchi et al,, [4], where it was shown that there exist
three vectors vy, va, and vy (whose dimensions vary with the problem at hand) such that
every pussible pair (,q) of object and joint velocities that comply with the kinematic and
contact constraints of the hand system can be written as

0 = Ui + Vel (137)
q = Fan2 + quV:i- (138)

The columns of Ty, and those of Iy, form a basis of the subspaces of coordinate object
and joint velocities, respectively. Any object motion described by the coordinate vector 1
in the image of T',, must correspond to a joint motion with the same coordinates in the
basis T'e. The images of Ty, and I'; represent the subspaces of redundant joint velocities and
under-actuated object velocities, respectively. In the following the column space of matrix
T is referred to as the subspace of “rigid-body coordinated object motions”.

13.3 Dynamics

The manipulation system consists of a constrained mechanical system, whose dynamical
description can be devived using Lagrange's equations together with constraint equations.
Consider first the dynamiics of the hand and of the object separately:

d oLy ALp\" ) N

(E«,E} - ;ﬁ) = Mu(a)d + Ca{a.q}q + Valq) = 7 (13.9)
daL, oL\" ) N

(a‘;?a‘a - a—u) = M,(u)d + Ca{w, i)t + Vo(u) = w, (13.10)

where L and L, are the manipulator and object Lagrangians, respectively, the M;{-) are

inertia matrices, the C(.,") terms include velocity-dependent forces, and the V() terms
represent gravity and friction: forces. These two equations are then attached by means of the
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velocity constraint (13.5), Murray and Sastry [1990] discussed this dynamic problem in the
hypothesis that the Jacobian J is full row rank, which fact allows to explicit the connected
dynamics in terms of the independest variables u by using (13.6).

In general manipulation systems however, the hand Jacobian may not be full-rank. By
introducing the undetermined #-dimensional vector of Lagrange mullipliers t, the virtual
work of the connected system can be written as

d 8Ly + L) 8(Ly+L,) &
i A S “’T)] [Jﬂ -0

whence, differentiating (13.5) to eliminate virtual displacements, one gets

q T—Qs
Mynjti|=]{w-0Q,|, {13.11)
t Q.
where
M, 0 J7
Mgn=| 0 M, -G |, (13.12)
l -G" o

and Q. = 5lg - 8570y
With respect to the structure of the Jacobian and grasp matrices, some relevant characte-

ristics of the manipulation system are summarized in the following definition. Here ker (Q))
denotes the kernel {or right nullspace) of matrix Q:

Definition 13.1 A mauipulation system is said “defective” if ker (IT) # 0; “(motion) in-
determinate” if ker (G7) # 0; “redundant” if ker (3) # 0; “graspable” if ker (G) # 0 and
“hyperstatic” if ker (J7) 1 ker {G) # 0.

Remark 13.1 The term “defective” is employed because the row rank of the Jacobian is
not full when at least one of the links touching the object possesses less degrees—of—freedom
than those necessary to move its contact point in all directions inhibited by the relative
contact constraint. Bquivalently; In terms of forces, defectivity implies that there exists at
least cne direction of the contact force t that does not affect the manipulator joint torques.
Defectivity occurs whenever the number £ of components of contact forces is larger than the
number ¢ of joints, or when the manipulator is in a singular configuration.

The term “motion indeterminate®, or “indeterminate” for short, refers to the fact that the
object is not completely restzained by contacts, and hence its motion can not be determined

quasi-statically (indeterminacy of motion is of course solved when dynamics are taken into
account).

The term “redundant” is standard in rohotics. Note that here, redundancy of ane of the
linkages is enough to have redundancy of the whole system, and that redundancy and defec-
tivity may oceur in the same mechanism.

The term “graspable” refers to the fact that self-balanced “squeezing” eontact forces are
possible in this case, so that a multi~finger frictional grasp is possibte.
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Finally, we use “hyperstatic” for systeéms where the distribution of contact forces can not
be determined by knowledge of joint torques and external forces alone. Such slyster‘ns have
also been termed “indeterminate” with reference to force, but we prefer to avoid this usage
here because of possible confusion with motion indeterminacy. L

Figure 13.1 pictorially illusirates such definitions. The class of “general manipulation

Indeterminate | Redundant
Graspable Non-Graspable | Graspable
Defective Defective Defective

Figure 13,1 Illustration of mechanism characteristics,

systems” this chapter is concerned with is comprised of mechanisma with any number of imbs
(open kinematic chaing), of joints {prisnuatic, rotoidal, spherical, ete.) and of contalcts ’Ehard
and soft finger, complete-constraint, etc.) between a reference member t‘talled “object’ an_d
links in apy position in the limb.chains. This includes in particular-defective and hyperstatic
systems, whose treatment is seldom considered in the literature.

By observing that

ker My, = {{(&1,8)7] § =0, 4 =0, t € kerJ7 N ker G},

it ensues that, for all hyperstatic grasps, the matrix Mg, of the rigid-body dyna.mEcs in
(13.11} is not invertible and the law of motion of the manipulation system results indeter-
minate. . N

Figure 13.3 pictorially describes the notions of defectivity, graspability and hyperstaticity
for two simple manipulalor systems.

Due to the generality of systems under considersation, rigid-body models are n9t satisfac-
tory. In fact, many interesting manipulation systems are indeed hyperstatic, as in the case
of whole-arm robots. Moreover rigid-body dynamics do not allaw proper modelization, and
hence control, of contact forces {closed—loop contro} of forces would in fgct ent.a?l algebr‘aic
loops). Becanse contact force control is a central point in grasping, this is ceiftaln‘ly an im-
portant drawback of the rigid body dynamics approach. Finally, systems with significant
inherent compliance are sometimes encountered, especially in applications where stable and
accurate force control is of concern.
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Defectivity: te € ker J7
Graspabilily:  t; € ket G
Hyperstaticity:  kerJ7 N kerG =0

Hyperstaticity: t, € kerJ7 1 ker G 5 0

Figure 13.2 Examples of defective, graspuble and hyperstatic grasps,

To address such mare general cases, it is necessaly to introduce further structure in the
mechanical model, namely, elastic enerzy terms

1 o
i = 567 ("e ekt (e te),
and dissipation terms
1, . As ; b
B = Efy{aci:hchnci:hci)Bifi(Oci;hci,ochhci)n

where K;, B; are symmetric, positive definite matrices incorporating (hand/object) material
“stiffness” and “damping” characteristies, and &() 15 a suitable displacement function?
applied to the position of the reference frames on the object and finger surfaces at the i-th
contact point.
Having included the elastic energy and dissipation terms in the model of the whole system,
the standard derivation of the now decoupled dynamics can now be applied and gives
) 3 e 9 ohe]” aé e 9t grelT .
R+ Qp + {aa.: 7 + B B £ 596 54 + s aq] B =7, {13.13)
) 8¢ o°c . 0 ohc]” 0 oo of ore]” .
Mo+ Qo+ | o= 2222 e e R Bl =
Q [aac au " Foon] Nt |Fian T e aa} Bi=w,  (13.14)
where K and B are the aggregated stiffness and damping matrices for the manipulation
system.l Compt.ltation of these matrices based on knowledge of visco-elastic patameters of
coutacting bodies s possible along the lines of [5]. Although in practice such knowledge

"Thg proper chelee of this displacement function is actuaily an hard problem in the analysis of contact
mechanles, see, e.q., [7]. A detailed discussion of this point may he found in 116].
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might be difficult to obtain, procedures similar to those currently used to identify inertial
parameters of robot arms can be conceivably used to estimate visco-elastic paramoters,
Notice that the lumnped-paranicter model for visco-elastic interactions strongly simplifies
the {possibly on-line) identification procedure.

The following assumptions are introduced:
Al £(P¢,%c) = H{*c —° ¢). This amounts to assuming a linear elastic model for the hodies.
A2 Contact points do not change by rolling. From the identity

oo 8 (3"(: 6"c,)_6?c

EE T

a4 " B T
one gets Z¢ = GT{u). Similarly, %’3 = J(q). Further, %’:—:—’ = £= = 0. Non-rolling

5
contacts can be reasonably assumed when the relative curvature of the contacting bodies
is high.

In this setting, the Lagrange multipliers t can be interpreted as representing the vector of
constraint forces deriving from virtual “springs” and “dampers” with endpoints sttachsd at
the contact points °¢;’s and *c¢;'s, as

t = KH(*c -?¢) + BH{"¢ -* &). (13.15)

Accordingly, (13.13) and (13.14) can be rewritten as
f§=M;' (-Qu - 3"t +7); (13.16)
=M (-Q,+ Gt +w). (13.17)

13.3.1 Linearization

For the analysis of most of the structural properties of general manipulation systems, the
model (13.16)-(13.17) is stifl intractable. Henceforth, then, we will deal with the linearized
dynamic model

*= Ax+B.7 +B,w, (13.18)
where the state vector x € R¥% inputs ' € R?, and disturbances w' € R are defined
as the departures from a reference equilibrivm configuration x., = [af, uZ, 0 0" at which
contact forces are t(Xey) = toq, a8

I . T v 0} T
x = [‘SqT du” qT uT] = [(q - ch]T (ll - ueq)T qT uT] )
o= 7= T, (13.19)
w = w+ Gt

The dynamics matrix A, joint torque input matrix B, and external wrench disturbance
matrix By, have the form

0 0
0 I 0 o]
A= l:‘“Lic _Lb] i Br= M;l i By = o y (13.20)
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where
—~t f_ Blvy—ITH, T ) ~19T T
L= | M (- fntlal _ JTKY M,,GJ KG ;
M;'GKJ M;! (HagSled . GKGT)

L = _ | "Mz'3"BI M;TBGT
°~ 7| M;'GBJ -M;'GBG" |

and vy, and v, denote the gravitational parts of Qy and Q,, respectively. All the matrices
of the linearized dynamic model are implicitly assunied to be evaluated at the equilibrium
configuration. Notice that, in case some of the joints are not actuated (as it may happen in
considering closed kinematic chaing), the corresponding columns of Biau need to be deleted.

In the general case, block Ly still has a rather involved expression in terms of the system’s
kinematic parameters aad mnaterial properties, and depends on the inteusity.of forces at equi-
librium. To the purpose of obtaining clearly inteltigibile results relating structural properties
of manipulation systems to their more intrinsic parameters, henceforth the linearized model
is considered under further assumptions as follows:

A3 Terms due to gravity variation 4% and %% are negligible.
A4 Stiffness and damping matrices are proportional B o< K. Note that this is a customary
assumption in mechanical vibration analysis (see, e.g., [9]).

03Tty
dq

A5 J{q) and G{n} are slowly varying functions of their arguments, so that terms
”(;——;—‘1 are negligible, Note that assuming small contact forces at the equilibrium las the
same effect on the linearizing approximation.

Under these assumptions, we have

L, = M™'Py; L, =M"'P,, (13.21)

where

M, 0|, T T, _|ar T
M = [ 0 Ma]’ Py = {_G K[3-GT]; P=| o |B[J-GT]. (1329)

As the goal of dextrous manipulation is to control the position of the manipulated object
through the contact forces exerted by the fingers, it is natural to take the object and limbs
position and the contaet forces as outputs of our system. For the linearized model under
constderation, from (13.19) and (13.15), it can be written

fu=Cux, with Cy=[010 0); (13.23)
§q=Cgx, with G,=[100 o]; (13.24)
ft=Cix, with C,=[KI -KG' BJ -BGT|. (13.25)

In {12] the structural properties of pointwise controllability and observability from object
and joint positions and from contact forces, were analyzed for manipulation systems with
general kinematies, The results are suminarized in a standard form of the dynamics eguaticus
which is reported in the following thecrem.
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Theorem 13.1 For a general manipulotion system there alivays exists o change of coordi-
nates = T~'x, such that the linearized model (18.18) takes on the form

rAlo|olo)e]o k3 0
O|"Alo | 0|00 B 0
s, | O[O JA]D] OO i | i | e
AT = \groora[ojo |’ T Bl TTBe= )
o|o0 0| 0FA] D o D
olofofo]oidA 0 .

ct=[0]o]ele|e]s];
CI=[e]o|e]ejo]o];
Cg'i‘:[ﬂl"ﬂlogﬂlo].

The dynamies corresponding to the diagonal partitions of the state matrix are those of
“redundant”, “identically internal, “coordinate”, “active”, “indeterminate” and “defective”
subsystems.

Such form synthetically contains information relating to the structural properties of the
various subsystems. It can be seen, for instance, that the free evolution of the system from
non-zero initial conditions belonging to any one of the fundamental subspaces (redundant,
dynamically internal, core, indeterminate, and defective), remains inside the same subspace,
In other words, the fundaiental modes are dynamically decoupled and can be independently
excited,

Furthermore, as it can be easily recovered from application of the Popov-Belevick-Hautus
(P.B.IL) lemma test, the tack of one of the five properties considered (controllability from
Jolnt torques and from disturbances, observability from object displacements, from joint dis-
placements, and from contact forces) for a particular subsystem is indicated by the presence
of a zero block in the corresponding position of the input or output matrices.

13.4 Output specification and controllability

In this section the specification of the controlled outputs and their controtlability are
analysed. The pointwise—controllable output subspace for contact forces can be evaluated
[12] as

CyminZ(A,im (B;)} = minZ (A,im (KJ)},
where A = —K(IM; ™17 + GTM,™'G), and minZ (A,im(B,)) = 205 Afim(B,) is the
minimnm A-invariant subspace containiag im (B,).

A particularly important concern in robotic manipulation is to avoid slippage at the con-
tacts by controlling internal forces. These forces are self-balanced contact forces which do
not influence the object dynamics. From (13.17) it follows that the subspace of internal
forces corresponds to the nullspace of the grasp matrix G. Although the notion of inter-
nat forces is strictly related to the object grasp configuration, their controliability strongly
depends on the kinematics and on the actuation of the grasping mechanism. In fact, the
subispace of controlluble internal forces, i.e., the intersection of the set of controllable farces
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with that of internal forces,
For = CyminT{A,imB.) N ker G,

is in general only a proper subset of both subspaces.

Bicchi {3] and Prattichizzo et al. [14] proved (in a quasi-static and dynamic setting,
respectively) the geometric description of the controllable internal force subspaces to be
given as

Fre = im (I - KGT(GKGT)'G)KJ.

The following proposition (whose proof is omitted) highlights the close tie between the

hyperstaticity and the loss of internal force controllability.

Proposition 13.1 The subspace of reachable internal forces Fy, i3 cqual to the subspuce of
internal forces ker G if and only if the muanipulation sysiem is not hypersiatic, ie,
ker {(IT) 1 ker (G} = {0}.

As regards object motlons, it holds
Cumin T{A,imB,) = MG (Cymin T (A,imB,)) = M G minZ (A, im (KJ)).

Notice that arbitrary object positions can be reached if and only if the grasp map G is
onto and the force controllability map CyminZ (A,im (B;) is injective on im (GT). More
specifically, particular attantion should be paid te the subspace of coordinaled obiject motions
im (Py.) defined in (13.8). This subspace is related to the rigid-body kinematics which are of
particular interest in the control of manipulation systems. Sinece they do not involve visco—
etastic deformations of bodies, they can be regarded as low—energy motions, In a sense, they
represent the natural way to change the object posture. In [13] authors proved that the
subspace of coordinated obiect motions is controllable, i.e.,

im(Tyo) € CyminZ (A, imB,).

According to the previous discussion, not all object motions and contact forces result
controiiable by joint torques in manipulation systems with general kinematics. In order to
allow correct specification of a manipulation task, it is important to clearly understand which
are the motions and forces that can be exactly controlled. To do this, define three cutputs
as

ewe = Bux ¥ THC,x; (13.26)
e = Bux Y ETCx; (13.27)
e = Bpx ™ [TIM, 00 0]x, (13.28)

where T, and E are basis matrices for ker (J) and F., respectively, while im (T',.) is the
subspace of the coordinate object motions (13.8). The set of the above three output vectors,
groiped in the output vector

€uc T+C,
e=1 ey =Cx = E+Ct s (1329)
€gr e,

ks W s —
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is guaranteed to be pointwise~contrallable (see [13]), and is convenient for the specification
of the mauipulation tasks, i.e., it incorporates the typical subtasks of a manipulation task
with their priorities:

a) object trajectories which can be accommodated for by the mechanismy

b) contact forces which can be steered so as to aveid violation of contact constraints;

¢) reconfiguration of limbs in presence of redundancy.

13.5 Force/motion functional controllability

The capability of following a desired trazjectory with the manipulated object, while gua-
rantesing that contact forees are controlled so as to comply with contact constraints at every
instant, is not guaranteed by pointwise-controllability alone. In systeni theory this problem
is known as “functional (output trajectory) controllability”. Although functional controlla-
bility is generally approacked by state-space methods (Sain and Massey, 1969), for linear
systems it Is most simply studied in terms of input-output representations. A well-known
necessary and sufficient condition for the output functional controttability of linear system
is that its transfer function matrix is full row rank over the field of complex numbers {notice
that output funetional controllubility requives that at least as many inputs are avzilable as
there are outputs of concern).

In this section we show that the set of outputs defined in {13.29) is functionally contrellable.
In order to do this, the concept of “asympiotic reproducibility” (Brocket and Mesarovich,
1965} is well suited. Asymptotic reproducibility investigates cubput tracking for a particular
class of trajectories, namely those copstant in time. In other words, it investigates the
possibility of displacing the systern from its reference equilibrium configuration to a different
nearby equilibrium by means of step inputs. Note that the asymptotic reproducibility of
the outputs of an asymptotically stable system is a sufficient condition for the functicnal
reproducibility of the same outputs. The following theorem, proven in [13], shows that the
task-oriented output vector (13.29) enjoys the property of being functionally controllable:

Theorem 18.2 In the hygpothesis that ker (GT) = 0, consider the linearized dynamics des-
cribed by the triple (A,B,,C), where A, B, and C are as in Section 13.5.1 and in (13.25).
Then for any constant Wnear state feedbuck R = [Ry Ry Ry Ry) such that A —~ B, R is
asymptotically steble, the system (A — B, R, B,, C) is square and funclionally controlleble.

The controlled output vector (13.29) consisting of coordinates for the subspace of rigid—
body displacements of the manipulated object, of active internal contact forces and of red-
undant joints’ motions provides a basis of the set of all functionally controllable outputs,
that exactly corrésponds to the task specifications introduced above and exhausts the control
capabilities of the manipulation system.

The practical relevance of this proposition is that in [13] authors proved that indepen-
dent proportional-derivative control at joints, i.e., R = [Ry 0 R, 0], is suficient to stabilize
any iauipulation system whose motions are quasi-statically determinate, about a reference
equilibrinm.
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13.6 Force/motion decoupling

As a direct application of Theorem 13.2 let us consider the design of a steady-state de-
coupling prefilter for manipulation systetus with general kinematies. Being W (s) the transfer
function of the triple (A — B,R, B;, C), a steady-state input/cutput decoupling prefilter
for the input-output representation y(s) = W{s)r(s) can be simply ocbiained as

7{s) = W(0) " (s).

Through this prefilter, reference steady-state values of object positions, coutact forces
and redundant variables are independently commanded by steps in 11(s), »y(s) and w5{s),
respectively.

While the above simple apen-loop filter achieves steady-state decoupling and ‘potentially
simplifies the design of the independent control loops, & more ambiticus control goal concerns
perfect input-output deccupling. While in principle perfect decoupling could be aclieved
{given the functional eontrollability of outputs) in open loop by using the inverse of the sy-
stem's transfer function matrix, this is clearly not practically feasible, due to non—causality
problems. In the following we will consider the perfect decoupling of the controlicd outputs
by means of state feedback. More in detail, we will show that noninteraction, by state feed-
back, of the rigid-body object motions, the reachable internal forces and of the manipulator
redundancy is a structural property of manipulation systems with general kingmatics, exclu-
ding only the case of systems with indeterminate motions. The gevmetric approach is used
it such analysis. In particular, the result of this section regards the noninteracting coutrot
of general manipulation mechanisms and is based on necessary and sufficiest conditions for
the existence of the noninteraction control law given in [1].

Definition 13.2 A control law for the dynamic system (18.18) is noninteracting with respect
to the regulated oulputs ey,ey and ey if there evists a partition Ty.,m and Tor 0f the inpul
vector T such that for zero initiel condition, each input 71y (uwith oll other inpuls identically
zero] only affects the corresponding oulpui €()-

The following theorem, proved in [14] states that the noninteraction of the regulated out-

puts ey.,ey and e, for the dynamic system (13.18), is an intrinsic structural property of
general maunipulation systems.

Theorem 13.3 (Noninteraction) Cousider the lincgrized dynamics (13.18) of a menipu-
lalion system. Under the hypothesis that the system is nof indeterminate (ker {GT) = {0}),
there exists a state-feedback matriz F such that the sulpuls

O the rigid-body object motions e,

O ihe reachable internal forces ey;

O the mecharism redundancy €grs
are nonmnteracting.
Remark 13.2 In Theorem 13.2 we proved that the cutpuls, ey, e; and ey, are functionally
conirollable and exhaust the control capabilities, i.e., the input-ouiput representation is

invertible and square. In the last theorem we prove that there always exists a state-feedback
controller which is noninteracting with respect to these outputs. ®
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The geometric concept from which the previous result develops is the S-constrained con-
trollebility. Tt consists of those state space vectors reachable through trajectories entirely
lying in the constraining subspace 8.

In other words, for the aforementioned outpuis ey and ey, there exists a decoupling and
stabilizing state feedback matrix F, along with two input partition matrices Uy and Uy,
such that, for the dymamic triples

(Eu, A + B,F, B, Uy);
(13.30)
(E.., A +B,F,B,U,),
it holds:
Ry = minZ (A + B, F B, Uy) C ker(E,.);
Rey = im.(By);
EqRu "’ﬂ( [ ] (13.31)

Ruc = minT (A £ B;F, B, U,) C ker (E);
FucRue = i (B,

Here, maxT (A, ker (C}) = (7 A'ker (C') is the maximum A—invariant subspace contai-
ned in ker (C) with respect to the triple (A,B,C).
Moreover, matrices U, and U,,; satisly the following relationships

im(B; Uy} = im(By) N Ry
im(B,Uy) = im{B,)NRy; (13.32)
and the stabilizing matrix F is such that
(AJP‘ BTF)RHG c Ruc; q
(A+B,F)R: < Ry (13.33)

13.7 Conclusions

In this chapter we considered a linearized model of rather general mechanical systems
for manipulation, and discussed in some detail results available from the literature on their
structural properties and gecimetric control. Being robotic systetus highly nonlinear in na-
ture, one may guestion the validity of the linearization approach to the analysis. As a
justification of this approach, the simplicity of results achievable by linearization appeared
to be important at this rather early stage of investigation of complex manipulation systems.
Moreover, it is well known that some of the results on the Hnearized system imply analogous
local properties for the full system. It can be noted that conditions on the linearized system
are only sullicient in general, and that wider applicalilily of sotne property may hold for the
nonlinear system. This is the case for instance when constraints of nonholoncinic type are
present (as it happens when considéring rolling in 3D between fingers and objects). Further
efforts are necessary to capture the wealth of possibilities cffered by the nonlinear nature of
the problem.
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Chapter 14

Design of parallel force/position controllers
and observers for robot manipulators

The goal of this chapler is to present a class of foree/vosition controllers for robot manipu-
lators interacting with compliant surfaces. Such controllers ave designed in the framework of
the so-called parallel approuch; they share the property thot, al the equilibrium, the contoct
force 1 regulated to a desired constant value at the expense of an end-effector position error
whick depends on the surface stiffness. If tracking of position alung the wnconatrained task
space directions is desited, o passivity-based controller can be used. On the other hand, if
only regulation of posttion is desired, o simple PID controller with grovity compensation can
be used. Both schemes can be extended to the cese when velocily measurements are not
available; o passivitg-bused observer and e Hnear observer are respectively designed for the
iwo types of controllers. Stabilily of the various schemes is analyzed by resoriing to classical
Lyapunov wrgunients,

14.1 Background

Many practical robotic tasks involve interaction between the manipulator and the envi-
ronment, e.g., when the end effecior has to manipulate an object or perform some work on
a surface. The contact force is the quantity describing the state of interaction in the most
complete fashion, and the interaction control problem [1] has attracted a wide number of
researchers in the last decade.

Interaction control strategies can be grouped in two categories; those performing open-
loop force control and those performing direct elosed-loop force control, The main difference
between the two categories is that the former achieve indirect force control via closed-loop
position control, without explicit closure of a force feedback loop; the latter, instead, offer
the possibility of controlling the contact force to a desired value, thauks to the closure of a
force feedback loop.

!Contributed by: Bruno Sicilianc and Luigi Villani, Dipartimento di Informatica e Sistemistics,
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