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Robotic Dexterity via Nonholonomy

Antonio Bicchi, Alessia Marigo, and Domenico Prattichizzo
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In this paper we consider some new avenues that the design and control of
versatile robotic end-effectors, or “hands”, are taking to tackle the stringent
requirements of both industrial and servicing applications. A point is made
in favour of the so-called minimalist approach to design, consisting in the
reduction of the hardware complexity to the bare minimum necessary to
fulfill the specifications. It will be shown that to serve this purpose best,
more advanced understanding of the mechanics and control of the hand—
object system is necessary. Some advancements in this direction are reported,
while few of the many problems still open are pointed out.

1. Introduction

The deveiopment of mechanical hands for grasping and fine manipulation
of objects has been an important part of robotics research since its begin-
nings. Comparison of the amazing dexterity of the human hand with the
extremely elementary functions performed by industrial grippers, compelled
many robotics researchers to try and bring some of the versatility of the an-
thropomorphic model in robotic devices. From the relatively large effort spent
by the research community towards this goal, several robot hands sprung out
in laboratories all over the world. The reader is referred to detailed surveys
such as e.g. [15, 34, 13, 27, 2].

Mulsifingered, “dextrous” robot hands often featured very advanced me-
chanical design, sensing and actuating systems, and also proposed interesting
anatysis and control problems, concerning e.g. the distribuiion of control ac-
tion among several agents (fingers) subject to complex nonlinear bounds,
Notwithstanding the fact that hands designed in that phase of research were
often superb engineering projects, the community had to face a very poor
penetration to the factory floor, or to any other scale application. Among the
various reasons for this, there is undoubtedly the fact that dextrous robot
hands were too mechanically complex to be industrially viable in terms of
cost, weight, and reliability.

Reacting to this observation, several researchers started to reconsider the
problem of obtaining good grasping and manipulation performance by using
mechanically simpler devices. This approach can be seen as an embodiment

"of a more general, “minimalist” attitude at robotics design (see e.g. works
E g

reported in [3]}. It often turng out that this is indeed possible, provided that
mare sophisticated analysis, programming and control tools are employed.
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The challenge is to make available theoretical tools which allow to reduce the
hardware cost at little incremental cost of basic research.

One instance of this process of hardware reduction without sacrificing
performance can be seen in devices for “power grasping”, or “whole-arm
manipulation”, i.e. devices that exploit all their parts to contact and constrain
the manipulated part, and not just their end-effectors (or fingertips, in the
case of hands). From the example of human grasp, it is evident that power
grasps using also the paim and inner phalanges are more robust than fingertip
grasping, for a given level of actuator strength. However, using inner parts
of the kinematic chain, which have reduced mobility in their operational
space, introduces important limitations in terms of controllability of forces
and motions of the manipulated part, and ensue non-trivial complications
in control. Such considerations are dealt with at some length in references
[37, 36], and will not he reported here.

In this paper, we will focus on the achievement of dexterity with simpli-
fied hardware. By dexterity we mean here (in a somewhat restrictive sense)
the ability of a hand to relocate and reorient an object being manipulated
among its fingers, without loosing the grasp on it. Salisbury [23] showed first
that the minimum theoretical number of d.of.’s to achieve dexterity in a
hand with rigid, hard-finger, non-rolling and non-sliding contacts, is 9. As a
simple explanation of this fact, consider that at least three hard-fingers are
necessary to completely restrain an object. On the other hand, as no rolling
nor sfiding is aliowed, fingers must move 50 as to track with the contact point
on their fingertip the trajectory generated by the correspondingcontact point
on the object, while this moves in 3D space. Hence, 3 d.o.f.’s per finger are
strictly necessary. If the non—rolling assumption is lifted, however, the situa-
tion changes dramatically, as nonholonomy enters the picture. The analysis
of manipulation in the presence of rolling has been pioneered by Montana
[25], Cai and Roth [9], Cole, Hauser, and Sastry [11}, Li and Canny [20).

In this paper we report on some results that have been ohiained in the
study of rolling objects, in view of the realization of a robot gripper that
exploits rolling to achieve dexterity. A first prototype of such device, achieving
dexterity with only four actuators, was presented by Bicchi and Sorrentino
[5]. Further developments have been described in [4, 22].

Although nonholonomy seems to be a promising approach to reducing the
complexity, cost, weight, and unreliability of the hardware used in robotic
hands, it is true in general that planning and controlling nonholonomic sys-
tems is more difficult than holonomic ones. Indeed, notwithstanding the ef-
forts spent by applied mathematicians, control engineers, and roboticists on
the subject, many open problems remain unsolved at the theoretical level, as
well as at the computational ard implementation level.

The rest of the paper is organized as follows. In Sect. 2. we overview
applications of nonholonomic mechanical systems to robotics, and provide
a rather broad definition of nosholonomy that allows to treat in a uniform
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way phenomena with a rather different appearance. In Sect. 3. we make the
point on the state-of-the-art in manipulation by rolling, with regard to both
regular and irregular surfaces. We conclude the paper in Sect. 4. with a
discussion of the open problems in planning and controlling such devices.

2. Nonholonomy on Purpose

A lknife-edge cutting a sheet of paper and a cat falling onto its feet are
common examples of natural nonholonomic systems. On the other hand, bi-
cycles and cars {possibly with trailers) are familiar examples of artificially
designed nonholonomic devices. While nonholonomy in a system is often re-
garded as an annoying side—effect of other design considerations (this is how
most people consider e.g. maneuvering their car for parking in parallel), it
is possible that nonholonomy is introduced on purpose in the design in or-
der to achieve specific goals. The Abdank-Abakanowicz's integraph and the
Henrici-Corradi harmonic analyzer reported by Neimark and Fufaev [30] are
nineteenth—century, very ingenuous examples in this sense, where the non-
holonomy of rolling of wheels and spheres are exploited to mechanically con-
struct the primitive and the Fourier series expansion of a plotted function,
respectively.

Another positive aspect of nonholonomy, and actually the one that mo-
tivates the perspective on robotic design considered in this paper, is the
reduction in the number of actuators it may allow. In order to make the idea
evident, consider the standard definition of a nonholonomic system as given
in most mechanics {extbooks:

Definition 2.1. A mechanicol system described by its generalized coordi-
nates q = (qu,qa, ..., n)7 43 colled nonholonomic if it is subject to constraints
of the type

e(a(t),a(t)) =0, (2.1)

and if there is no equation of the form &(q(t)) = 0 such that ﬂ%ﬂl =
clqlt}, q(t)). If linear in q, 1.e. if it can be writien as

c(a,q) = Alq)q =0,
o constraint is called Pfaffian.

A Pfaffian set of constraints can be rewritten in terms of & basis G(g) of
the kernel of A(y), as!

! in ‘more precise geometrical terms, the rows of A{q) are the covector fields of
the active constraints forming a codistribution, and the columns of G{g) are
a set of vector fields spanning the annihilator of the constraint codistribution.
If the constraints are smooth and independenst, both the codistribution and
distribution are nonsingular.
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4 = G(q)u (2.2)

This is the standard form of a nonlinear, driftless control system. In the
related vocabulary, components of u are “inputs”. The non-integrability of
the original constraint has its control-theoretic counterpart in Frobenius The-
orem, stating that a nonsingular distribution is integrable if and only if it is
involutive. In other words, if the distributior spanned by G(g) is not involu-
tive, motions along directions that are not in the span of the original vector
fields are possible for the system,

From this fact follows the most notable characteristic of nonholonomic
systems with respect to minimalist robotic design, i.e. that they can be driven
to a desired equilibrium configuration in a d~dimensional configuration man-
ifold using less than d inputs. In a kinematic bicycle, for instance, two inputs
{the forward velocity and the steering rate) are enough to steer the system to
any desired configuration in its 4-dimensional state space. Notice that these
“savings” are unique to nonlinear systems, as a linear system always requires
as many inputs as states to be steered to arbitrary equilibrium states (this
property being in fact equivalent to functional controllability of outputs for
linear systems).

Since “inputs” in engineering terms translates into “actuators”, devices
designed by intentionally introducing nonholonomic mechanisms can spare
hardware costs without sacrificing dexterity, Few recent works in mechanism
design and robotics reported on the possibility of exploiting nonholonomic
mechanical phenomena in order to design devices that achieve complex tasks
with a reduced number of actuators {see e.g. [39, 5, 12, 35]).

Tt is worthwhile mentioning at this point that nonholonomy occurs not

only because of rolling, but also in systems of different types, such as for
instance:

— Systems subject to conservation of angular momentum, as is the case of
the falling cat. This type of nonholonomy can be exploited for instance for
orienting a satellite with only two torque actuators [26], or reconfiguring a
satellite-manipulator system [29, 17].

— Unederactuated mechanical systems, such as robot arms with some free
joints, usually rvesult in dynamic, second-order nonintegrable, nonholo-
nomic constraints [32]. This may allow reconfiguration of the whole system
by controlling only actuated joints, as e.g. in {1, 12]. A

— Nonholonomy may be exhibited by piecewise holonomic systems, such as
switching electrical systems [19], or mechanical systems with discontinuous
phenomena due to intermittent contacts, Coulomb friction, etc.. Brock-
ett {8] discussed some deep mathematical aspects of the rectification of
vibratory motion in connection with the problem of realizing miniature
piezoetectric motors (see Fig. 2.1). He stated in that context that “from
the point of view of classical mechanics, rectifiers are necessarily non-
holonomic systems”. Lynch and Mason {21} used controlied slippage to
build a 1-joint “manipulator” that can reorient and displace arbitrarily
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Fig. 2.1, Hlustrating the principle of a mechanical rectifier after Brockett. The
tip of the vibrating element oscillates in the z direction, while a variable pressure
against the rod is controlled in the y direction. When the contact pressure is larger
than a threshold yg, dry friction forces the rod to translate in the z direction

most planar mechanical paris on a a conveyor belt, thus achieving control
on a 3 dimensional configuration space by using one controlled input (the
manipulator's actuator) and one constant drift vector (the belt velocity).
Ostrowski and Burdick [33] gave a rather general mathematical model of
locomotion in natural and artificial systems, showing how basically any
locomotion system is a nonholonomic system. In these examples, however,
a more general definition of nonholonomy has to be considered to account
for the discontinuous nature of the phenomena occurring.

— Nonholonomy can be exhibited by inherently discrete systems. The simple
experiment of rolling a die onto a plane without slipping, and bringing it
back after any sufficiently rich path, shows that its orientation has changed
in general (see Fig. 2.2). The fact that almost all polyhedra can be brought
close to a desired position and orientation by rolling on a plate, to be
discussed shortly, can be used to build dextrous hands for manipulation of
general (non-smooth} mechanical parts. Once again, these nonholonomic
phenomena can not be described and studied hased on classical differential
geometric tools.

A more general definition than (2.1) is given below for time-invariant sys-
tems:

Definition 2.2. Consider o system evolving in a configuration space Q,
a time set (continuous or discrete) T, and o bundle of input sets A, such
that for each input set Alq,t) defined atq € G, t € 7T, it holdsa . (q,t) —
q', q' € Q,Va € A(q,t). If it is possible to decompose @ in a projection
or base space B = IT(Q) and o fiber bundle F, such thot Bx F = Q
and there exists o sequence of tnputs in A sterting of qo and steering the




40 A. Bicchi et al.

system 20 q* = An(gn-1,tn-1) 0 - cay{qo, to), such that I {qo) = I (g*)
but qe # q*, then the system is nonholonomic af G-

Fig. 2.2. A die being rolled hetween two parallel plates. After four tumbles over its
edges, the center of the die comes back to its initial position, while its orientation
has changed

According to this definition, a system is nonholonomic if there exist con-
trols that make some configurations go through closed cycles, while the rest
of configurations undergo net changes per cycle (see Fig. 2.3).

For instance, in the continuous, nonholonomic Heisenberg system

Ty 1 0
Be | = 0 Uy + 1 , (2.3)
i3 -3 T

it is well known (see e.g. [8]} that “Lie-bracket motions” in the direction of

0
[Gi(x),Ga(x)]=| 0
2

are generated by any pair of simultaneous periodic zero—average functions
u; (), uz(-}. Definition 1 specializes in this case with Q = R?, 7 = R., and
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Fiber Bundle

Base space

Fig. 2.3. Illustrating the definition of nonhclonomic systems

A(x,t) = {exp(t(Gru1 + Gaug)) X,V piecewise continuous u;(-) : {0, —
RR,i = 1,2.}. The base space is simply the z1,z5 plane, and the fibers are
in the 3 direction. Perjodic inputs generate closed paths in the base space,
corresponding to a fiber motion of twice the (signed) area enclosed on the
base by the path.

As an instance of embodiment of the above definition in a piecewise holo-
nomic system, consider the simplified version of one of Brockett’s rectifiers
in Fig. 2.1, The two regimes of motion, without and with friction, are

& Uy 1 0
gl=qu =0 u+{1|u, v<y;
L 2 | _OJ L O] 0
and L _ _ L L
I U1 1 0
y|=fu |[=|0|uwu+il|us v=uyo
L £ ] | 1 | L 1] 0]

respectively, In this case, base variables can be identified as x and ¢, while the
fiber variable is z. Time is continuous, but the input bundle is discontinuous:
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& = x4+ [ u(o)ds;
¥<Y: y = y+ [y ux(o)do;
o=z
Alw,y, 2,4) =
r - T+ ft wy(o)de;
Y=Y v = y+ [ uso)ds;
{ z = z+ fnt w(o)do.

By changing frequency and phase of the two inputs, different directions and
velocities of the rod motion can be achieved. Note in particular that input 2,
need not actually to be tuned finely, as long as it is periodic, and can be fixed
&g as a resonant mode of the vibrating actuator. Fixing a periodic 1, (-} and
tuning only ug still guarantees in this case the (non-local) controllability of
the nonholonomic system: notice here the interesting connection with results
on controllability of systems with drift reported by Brockett (6], Theorem 4
and Hirschorn’s Theorem 5).

Finally, consider how the above definition of nonholenomic system spe-
cializes to the case of rolling a polyhedron. Considering only configurations
with one face of the polyhedron sitting on the plate, these can be described
by fixing a point and a line on the polyhedron (excluding lines that are per-
pendicular to any face), taking their normal projections to the plate, and
affixing coordinates «, y to the projected point, and 8 to the angle of the pro-
jected line, with respect to some reference frame fixed to the plate. Therefore,
Q =R*? x 5! x F, where F is the finite set of m face of the polyhedron. As
the only actions that can be taken on the pelyhedron are assumed to be
“tumbles”, i.e. rigid rotations about ane of edges of the face currently lying
on the plate that take the corresponding adjacent faces down to the plate,
we take 7 = IN; and A the bundle of m different, finite sets of neighbouring
configurations just described. Figure 2.2 shows how a closed path in the hase
variables (z,y) generates a #/2 counterclockwise rotation and a change of
contact face.

3. Systems of Rolling Bodies

For the reader’s conventence, we report here some preliminaries that help in

fixing the notation and resume the background. For more details, see e.g.
(28, 5, 4, 10].

3.1 Regular Surfaces

The kinematic equations of motion of the contact points between two bod-
tes with regular surface (i.e. with no edges or cusps} rolling on top of each
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other describe the evolution of the (local) coordinates of the contact point
on the finger surface, ay € R?, and on the abject surface, a, € IR?, along
with the holonomy angle ¢ between the z—axes of two gauss frames fixed
on the surfaces at the contact points, as they change according to the rigid
relative motion of the finger and the object described by the relative velocity
v and angular velocity w. According to the derivation of Montana [25], in the
presence of friction one has

&

Wy

1 —1 —w .
My

G = MIRK! [ ~y } ; (3.1)

&
¢. = TJerdf'!'ToModo;

where K = Ky + RyK Ry is the relative curvature form, M,, My, T,, Ty
are the object and finger metric and torsion forms, respectively, and

sz[ costy —sing ]

—siny  —cosy

The rolling kinematics {3.1) can readily be written, upon specialization of
the object surfaces, in the standard control form

£=gilé)n + g2l)m, ‘ (3.2)
where the state vector £ € RS represents a local parameterization of the
configuration manifold, and the system inputs are taken as the relative an-
gular velocities v; = w, and vy = wy. Applying known results from nonlinear
system theory, some interesting properties of rolling pairs have been shown.
The first two concern controllability of the system:

Theorem 3.1. (from [20]} A kinematic system comprised of o sphere rolling
on a plane is completely controllable. The same holds for a sphere rolling on
another sphere, provided that the radii are different and neither is zero.

Theorem 3.2. (from [4]) A kinematic system comprised of any smooth,
strictly conves surface of revolution rolling on o plane is completely con-
trollable.

Remark 3.1. Motivated by the above results, it seems reasonable to conjec-
ture that a kinematic system comprised of almost any pair of surfaces is
controflable, Such fact is indeed important in order to guarantee the possi-
bility of building a dextrous hand manipulating arbitrary {up to practical
constraints) objects.

The following propositions concern the possibility of finding coordinate
transforms and static state feedback laws which put the plate-ball system
in special forms, which are of interest for designing planning and control
algorithms:
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Proposition 3.1. The plate-ball system can not be put in chained form 27
it is not differentially flat /38]; it is not nilpotent [14].

These results prevent the few powerful planning and control algorithms
known in the literature to be applied to kinematic rolling systems (of which
the plate-ball system is a prototype). The following positive result however
holds:

Theorem 3.3, (from [5]). Assuming that either surface in contact is (lo-
cally) a plane, there exist a state diffeomorphism and o reqular static stale
feedback law such that the kinematic equations of contact {5.1) assume a
strictly triangulor structure.

The relevance of the strictly triangular form to planning stems from the fact
that the flow of the describing ODE can be integrated directly by quadratures.
Whenever it is possible to compute the integrals symbolically, the planning
problem is reduced to the solution of a set of nonlinear algebraic equations,
ta which problem many well-known numerical methods apply.

3.2 Polyhedral Objects

The above menticned simple experiment of rolling a die onto a plane without
slipping hints to the fact that manipulation of parts with non-smooth (e.g.
polyhedral) surface can be advantageously performed by rolling. However,
while for analysing rolling of regular surfaces the powerful tools of differen-
tial geometry and nonlinear control theory are readily available, the surface
regularity assumption is rarely verified with industrial parts, which often have
edges and vertices.

Although some aspects of graspless manipulation of polyhedral objects
by rolling have been already considered in the robotics literature, a complete
study on the analysis, planning, and control of rolling manipulation for poty-
hedral parts is far from being available, and indeed it comprehends many
aspects, some of which appear to be non—trivial, In particular, the lack of
a differentiable structure on the configuration space of a rolling polvhedron
deprives us of most techniques nsed with regular surfaces. Moreover, pecu-
liar phenomena may happen with polyhedra, which have no direct caunter-
part with regular objects. For instance, in the examples reported in Figs. 3.1
and 3.2, it is shown that two apparently similar objects can reach config-
urations belonging to a very fine and to a coarse grid, respectively. In the
second case; the mesh of the grid can actually be made arbitrarily small by
manipulating the object long enough; in such case, the reachable set is said
to be dense, .

In fact, considering the description of the configuration set of a rolling
poiyhedron provided in Sect. 2. it can be observed that the state space Q is
the union of ! copies of IR? x §!. The subset of reachable configurations from
some initial configuration R is given by the set of points reached by applying
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Fig. 3.1. A polyhedron whose reachable set is nowhere dense

Fig. 3.2. A polyhedron whose reachable set is everywhere dense

all admissible sequences of tumbles to the initial configuration. Notice that
the set of all sequences is an infinite but countable set while the configuration
space is a finite digjoint union of copies of a 3-dimensional variety. Thus, the
set of reachable points is itself countable. Therefore, instead of the more
familiar concept of “complete reachability” (corresponding to R = Q), it
will only make sense to investigate a property of “dense reachability” defined
as closure{R) = Q. In other words, rolling a polyhedron on a plane has
the dense reachability property if, for any configuration of the polyhedron
and every ¢ € R, there exists a finite sequence of tumbles that brings the
polyhedron closer to the desired configuration than . We refer in particular
to a distance on Q defined as.

”(mlv?flvglyFi) h ($2:y2:92aF,|7')" =
mac {/(or =02+ (o~ 2%, 101~ Gol, 1~ 6(F, )}

The term discrete will be used for the negation of dense. On this regard, the
following results were reported in [22] (we recall that the defect angle is 2
minus the sum of the planar angles of all faces concurring at that vertex, and
equals the gaussian curvature that can be thought to be concentrated at the
vertex):

Theorem 3.4. The set of configurations reachable by a polyhedron is dense
in & if and only if there ezists a vertez Vi whose defect angle is irrational
with .

Theorem 3.5. The reachable sei is discrete in both positions and oriento-
tions if and only if either of these conditions hold:

i) all angles of all faces (hence oll defect angles) are integer multiples of = /3,
and all lengths of the edges are rotional w.r.t. each other;
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i) all angles of oll faces (hence all defect angles) are 7/2, and all lengths of
the edges are rational w.r.t. each other;
i) all defect angles are 7.

Theorem 3.6. The reachable set is dense in positions and discrete in ori-
entations if and only if the defect angles are oll rational w.r.1. m, and neither
conditions i), i), or iti) of Theorem 8.5 apply.

Remark 3.2, Parts with a discrete reachable set are very special. Polyhedra
satisfying condition i) of Theorem 3.2 are rectangular parallelepipeds, as e.g.
a cube or a sum of cubes which is convex. Polyhedra as in condition ii) are
those whose surface can be covered by a tessellation of equilateral triangles,
as e.g. any Platonic solid except the dodecahedron. Condition it} is only
verified by tetrahedra with all faces equal.

Remark 5.3. Observe that in the above reachability theorems the conditions
upon which the density or discreteness of the reachable set depends are in
terms of rationality of certain parameters and their ratios. This entails that
two very similar polyhedra may have qualitatively different reachable sets,
This is for instance the case of the cube and truncated pyrairid reported
above in Figs. 3.1 and 3.2, respectively, where the latter can be regarded
as obtained from the cube by slightly shrinking its upper face. In fact, for
any polyhedron whose reachable set has a discrete structure, there exists
an arbitrarily small perturbation of some of its geometric parameters that
achieves density,

In view of these remarks, and considering that in applications the geomet-
ric parameters of the parts will only be known to within some tolerance, ie. a
hounded neighborhood of their nominal value, a formulation of the planaing
problems ignoring robustness of results w.r.t. modeling errors will make little
sentse in applications.

4. Discussion and Open Problems

One way of reducing what is probably the single highest cost source in robotic
devices, i.e. their actuators, is offered by nonholonomy. It has been shown in
this paper how nonholonomic phenomena are actually much more pervasive
in practical applications than usually recognized. However, the real challenge
posed by nonholoromic systems is their effective control, including analysis
of their structural properties, planning, and stabilization. The situation of
research in these fields is briefly reviewed below.

Controllability. A nonhclonomic system according to the above definition
may not be completely nozhelonomic, i.e. not completely controllable in
some or all of the various senses that are defined in the nonlinear control
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literature. Detecting controilability is a much easier task for continuous
driftless systems, such as e.g. the case of two bodies rolling on top of
each other (see Eq. 3.1), because of the tools made available by nonlinear
geometric control theory [16, 31]. Even in this case, though, there remains
an open question to prove the conjecture that almost any pair of rolling
bodies are controllable, or in other words, to characterize precisely the
class of bodies which are not controllable, and to show that this subset is
meager. Another question, practically a most important one, is to define
a viable (i.e. computable and accurate) definition of a “controllability
function” for nonholonomic systems, capable of conveying a sense of how
intense the control activity has to be to achieve the manipulation goals,
in a similar way as “manipulability” indices are defined in holonomic
robots.

The controllability question is much harder for discontinuous systems or
for systems with discrete input sets. Ag discussed above, relatively novel
problems appear in the study of the reachable set, such as density or
lattice structures, Very few tools are available from systems and automata
theory to deal with such systems: congider to this regard that even the
apparently simple problem of deciding the density of the reachable set of
a l-dimensional, linear problem

Tpgl = ATk + Up, up & U, a finite set

is unsolved to the best of our knowledge, and apparently not trivial in
general. It is often useful in these problems to notice a possible group
structure in the fiber motions induced by closed base space motions (see
Fig. 2.3): such group analysis was actually instrumental to the results
obtained for the polyhedron rolling problem.

Planning. The planning problem (i.e. the open—loop control) for some par-
ticular classes of nonholonomic systems is rather well understood, For
instance, two—inputs nilpotentiable systems that can be put, by feedback
transformation, in the so—called “chained” form, can be steered using si-
nusoids [28}; systems that are “differentially flat” can be planned looking
at their (flat) outputs only [38]; systems that admit an exact sampled
model (and maintain controllability under sampling) can.be steered us-
ing “multirate control” [24]; nilpotent systems can be steered using the
“constructive method” of [18]. However, as already pointed out, systems
of rolling bodies do not fall into any of these classes. At present, planning
motions of a spherical object onto a planar finger can be done in closed
form, while for general objects only iterative solutions are available (e.g.
the one proposed in 140]).

Stabilization. The control problem is particularly challenging for nonholo-
nomic systems, due to a theorem of Brockett {7] that bars the possibility
of stabilizing a nonholonomic vehicle about & nonsingular configuration
by any continuous time-invariant static feedback. Non—smooth, time-
varying, and dynamic extension algorithms have been proposed to face
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the point-stabilization problem for some classes of systems (e.g. chained-
form). A stabilization method for a system of rolling bodies, or even for
a sphere rolling on a planar finger, is not known to the authors.

References

{1} Arai H, Tanie K, Tachi § 1993 Dynamic control of a manipulator with passive
joints in operational space. JEEE Trans Robol Automal, 9:85-93

(2] Bicchi A 1995 Hands for dextrous manipulation and powerful grasping: a diffi-
cult road towards simplicity, In: Giralt G, Hirzinger G (eds) Robotics Research.
The Seventh International Symposiurn, Springer-Verlag, London, UK, PP 2-15

i3] Bicchi A, Goldberg K (eds.) 1996 Proc 1996 Work Minimalism in Robotic
Manipulation 1996 IEEE Int Conf Robot Automal. Minneapolis, MA

[4] Bicchi A, Prattichizza D, Sastry S 8 1095 Planning motions of relling surfaces.
In: Proc 1995 IEEE -Conf Decision Contr. New Orleans, LA

[5] Bicchi A, Sorrentino R 1095 Dextrous manipulation through tolling. Tn: Proc
1995 IEEE Int Conf Robot Automat, Nagoya, Japan, pp 452-457

[6] E]i;(c;c)kgtlt % W 1976 Nonlinear systems and differential geometry. Proc IERE.

{7] Brocketi R W 1983 Asymptotic stability and feedback stabilization. In: Brock-
ett R W, Milimann R S, Sussman H J (eds) Differential Geometric Control
Theory. Birkhiuser, Boston, MA, pp 181-208

18] Brockett R W 1989 On the rectification of vibratary motion. Sensors and
Actuators, 20:91-56

[9] Cai C, Roth B 1987 On the spatial meotion of a rigid body with peint contact.
In: Proc 1987 IEEE Int Conf Rabot Aulomad. Raleigh, NC, pp 686-695

[10] Chitour Y, Marige A, Prattichizzo D, Bicchi A 1996 Reachability of rolling
parts. In: Bonivento C, Melchiorri €, Tolle H (eds) Advances in Robotics: The
ERNET Perspective. World Scientific, Singapore, pp 51-60

[11] Cote A, Hauser J, Sastry § § 1989 Kinematics and control of a multifingered
robot hand with rolling contact. [EEE Trans Robot Automat. 34(4)

{12} De Luca A, Mattone R, Oriolo G 1995 Dynamic mobility of recundant rahots
using end-cffector commands, [n: Proc 1996 [BER Jnt Conf Robot Automet.
Minneapolis, MA, pp 1760-1767

[13] Grupen R A, Henderson T ©, McCammon [ D 1989 A survey of generai-
purpose manipulation, Int J Robol Res. 8(1):38-62

[14] Guyen C, Petitot M 1995 Flatness and nilpotency, In: Proe 2rd Euro Contr
Conf. Rome, Italy

[15) Hol!erbach J M 1987 Robot hands and tactile sensing. In: Grimson W E L,
Patil R 8 (eds) Af in the 1980°s and beyond, MIT Press, Cambridge, MA,
pp 317-343

f16] {;iﬁlori A 1995 Nonlinear Clontro! Systems. (3rd ed) Springer-Verlag, London,

17 Kolmar}ovsky I'V, McClamroch N H, Ceppola V T 1695 New results on control
of m7u]t1body systems which conserve angular momentum. J Dyn Contr Syst.
1:447-462

[18] L'fxﬁ'erriere‘G, Sussmann H 1991 Motion planning for controllable systems
without drift. In: Proc 1991 JEEE Int Conf Robot Automat. Sacramento, CA,
pp 1148-1153

[19)
[20)
[21]
[22)
(23]

[24]

[25)
[26]

[27

(28]
29]
[30]
(31)

(32

[33]

(34]

(3]

(36

[37

[38]

(39]

[40]

Robotic Dexterity via Nonholonomy 49

Leonard N E, Krishnaprasad P 5 1995 Motion control of drift free, left invariant
systems on Lie groups. IEEE Trans Automat Contr, 40(9)

Li Z, Canny T 1990 Motion of two rigid bodies with rolling constraint. JEEE
Trans Roboi Aufomat. 6:62-72

Lynch 1< M, Mason M T 1995 Controllabitity of pushing. In: Proc {995 [REE
Int Conf Robot Automat. Nagoya, Japan, pp 112-119

Marigo A, Chitour Y, Bicchi A 1997 Manipulation of polyhedral parts by
rolling. In: Proc 1987 IEEE Int Conf Robot Automat. Albuquerque, NM
Mason M T, Salisbury J K 1985 Robot Hands and the Mechanics of Manipu-
lation, MIT Press, Cambridge, MA

Monaco 8, Nermand-Cyrot, D 1992 An introduction to motion planning under
multirate digital control. In: Proc 31st IEEE Conf Decision Contr. Tucson, AZ,
Pp 1780-1785

Montana D J 1988 The kinematics of contact and grasp. [nt J Robot Res.
7(3):17-32

Morin P, Samsen C 1997 Time varying exponential stabilization of a rigid
spacecraft with two contrel torques. JEEE Trans Automat Contr. 42:528-533
Murray ® M 1994 Nilpotent bases for a class of non-integrable distributions
with applications to trajectory generation for nonholenemic systems. Math
Conir Sign Syst. 7:58-75

Muray R M, Li Z, Sastry S S 1994 A Mathematical Introduction to Robotic
Manipulation. CRC Press, Boca Raten, FL

Nakamura Y, Mukherjee R 1993 Exploiting nonhelonomic redundancy of free
flying space robots. JEEE Trans Robot Automat. 9:489-506

Neimark J I, Fufaey N A 1972 Dynamics of Nonholonomic Systems, American
Mathematical Society Transtations of Mathematical Monographs, 38
Nijemeijer H, van der Schaft A J 1990 Nonkneor Dynamical Control Systems.
Springer-Verlag, Berlin, Germany

Oriclo G, Nakamura Y 1991 Free joint manipulators: Motion centrol under
second—order nonholonomic constraints. In: Proc IEEE/RSJ Int Work Intel
Robot Syst. Osaka, Japan, pp 1248-1253

Ostrowski J, Burdick J 1995 Gecmetric perspectives on the mechanics and con-
tral of robotic locemotion. In: Giralt G, Hirzinger G {eds) Robotics Research:
The Seventh International Sympesium. Springer-Verlag, London, UK
Pertin-Troccaz J 1989 Grasping: A state of the art. In: The Robotics Review
{, MIT Press, Cambridge, MA, pp 71-98

Peshkin M, Celgate I E, Moore C 1996 Passive robots and haptic displays
based on ronholonomic elements. In: Proc 1996 IEEE Int Conf Robot Automat.
Minneapolis, MA, pp 551-556

Prattichizzo D, Bicchi A 1997 Consistent specification of manipulation tasks
for defective mechanical systems. ASME J Dyn Syst Meas Clonir, 119
Prattichizzo D, Bicchi A 1997 Dynamic analysis of mobility and graspability
of general manipulation systems. JEEE Trans Robot Automat. 13

Rouchon P, Fliess M, Lévine J, Martin P 1993 Flatness, motion planning,
and trailer systems. In: 32nd IEEFR Conf Deciston Contr. San Antonio, TX,
pp 2700-2705

Serdalen O J, Nakamura Y 1994 Design of a nonhelonomic manipulator. In:
Proc 1894 IEEE Int Conf Robot Automat. San Diege, CA, pp 8-13
Sussmann H, Chitour Y 1993 A continuation method for nonholonamic path-
finding problems. In: Proc IMA Work Robot.






