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Abstract: An approach to the optimal design of dynamic force/torque sensors is pre-
sented. The approach is based on the system invertibility properties of the truncated
normal modes representation of an elastic beam. Theoretical results are confirmed by

experiment simulations.
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1. INTRODUCTION

In many situations ariging in robofic systems, one
is interested in measuring the forces and torques
applied at the terminal point of a certain me-
chantcal structure. This information is usually ob-
tained from strain gauges conveniently placed on
the structure itself. The determination of the ap-
plied force {or torque) from the strain measure-
nients is most often obtained by assuming a quasi-
static relation between the force applied and the
strain. This assumption is usually well regpected
even if the force is time varving, provided that
the mechanical structure is rigid enough to make
negligible the effects of vibration in the structure
itself. This is the case, for instance, of force/torque
sensors mounted at the end-effector of robot ma-
nipulators.

Whenever the flexibility of the mechanical struc-
ture can not be neglected, the measured strain
will include components due to the vibration of
the structure, and the determination of the ap-
plied. time-varying. force cannot be done by us-
ing quasi-static relations. This paper addresses the
problem of recovering the applied force from the
strain measurement by taking into account the dy-
namic nature of the force-strain relation, and by
posing it as a problem of “system inversion” {Sain

and Massey, 1969).

The determination of the applied force, whether
in the quasi-static or in the full dynamic case, is
dependent on the placement of the sensing device
(the strain gauges) on the mechanical structure.
Certain placements can be more convenient than
others, in order to retrieve the force. A- general
setting for the optimal design of multivariate sen-
gors is described in (Bicchi and Canepa, 1994},
and its application to the specific case of quasi-
static force/torgue sensors is Hlustrated in (Bicchi,
1992). The case of optimal design of force/torque
sensors in the dynamic situation is much less ex-
plored, at least in the robotic literature. The ob-
jective of this paper is to Investigate the optimal
design of a dynamic force/torque sensor by ap-
plying general concepts of sensor design optimiza-
tion to the dypamic system relating the applied
force(s} to the measured strain.

The analysis carried out in the rest of the paper
specializes to the case of a flexible beam, and to
the study of transversal vibrations . As such. it has
to be considered as a preliminary investigation in
order to proceed in the future towards more com-
plex situations. However, even in this simple case,
it appears the interesting result that the sensor
design has to trade-off between the best accuracy
of the solution and the stability of the inversion
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Fig. 1. The physical situation considered: a beam
of length L. fixed at one end, free at the other
end, is subject to a time-varying force F'(#)
applied at the free-end that causes transverse
vibrations y(r,t}. A strain gauge, placed at a
position fi along the beam. is used to estimate
the applied force.

Process.

The paper is organized as follows: in the next
section, by using standard tools from fruncated
modal analysis, a system of ordinary differential
equations is obtained for the case of a flexible
beam. In section 3, the invertibility properties of
the system are investigated, a design critericn is
proposed, and consbraints on the design are dis-
cussed. The optimality criterion is derived inde-
pendently from the specific algorithm subsequently
employed for numerical inversion. However, the ef-
fect on the design of a change in the number of
modes iticluded in the model is einphasized. In
section 4, a robust numerical algorithm for sys-
tem inversion is described. Simulation results ob-
tained with this aigorithm and the design choices
from section 3 are reported in section 5, and fi-
nally some conclusions and description of the fu-
ture work are given.

2. MODAL ANALYSIS

The transverse vibrations y{z, t) excited in a flex-
ible beam of length L fixed at one extremity by a
titme-varying point force F(t) applied at the free
end are considered. The situation is schematically
depicted in Fig.1. The beam ig considered isotropic,
amd of total mass m homogeneousiy distributed.
A strain gauge is placed at a position h along the
heam. Qur design parameter is the position of the
gaunge h, and our objective is the retrieval of the
force F(t) at any time instant ¢ from the measure-
ment s(h.t) of the strain at the position h.

The monodimensional beam subject to transverse
vibration is a well studied svstem (see for instance

(Meiroviteh, 1967)) governed by the Euler-Bernoulli

equations:
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= F(t)§{z — L) (1)

The solution of equation (1) can be expressed in
terms of its normal modes decomposition as:

y(z. 1) = ar{t)Vi(z) (2)

k=1

where the terms g () play the role of a weight in
time and the normal modes Y3(x), = € [0, L] are
defined as:

Yi(a) =
(sin(BeLl) — sinh(frL))(sin{frz) — sinh(Frx))+ (3)
+(cos(Br L} + coshi{ B LY (cos(fyz) — cosh(Brx))

with fr,k = 1,---, 00 solutions of the equation:
cos{FL)cosh(SL) = 1.

By truncating the modal expansion to the N-th
mode, and by defining time weights and their deriva-
tive as the state vector:

X = [!h(t).,' . QN(t}s q1 (t}, T !qN(t)]T (4)

after substitution in equation (1), the following
system of ordinary differential equations is ob-
tained:

*x=Ax + Bu
y=Cx {5)

where u(t) = F{t} is the input force to be esti-
mated, y = s(t) is the measurement signal from
the strain gauge positioned at /1, and the matrices
A, B and C have the following form:

4= [ s _QgA] (6)
B=[0--0%(L)- YD) ()

PYUR) | PV ()

C=| ox? Az

0.0 (8

The matrix A is a N x N diagonal matrix whose
kE — th diagonal term is Fx. Note that the design
parameter h, i.e., the position of the strain gauge,
appears in the matrix C.

3. DYNAMC INVERSION AND OPTIMAL
SENSOR DESIGN

Consider system (5), where matrices A, B, and €'
have been previously defined for a fixed number
N of modes , so that A & RN B ¢ RN
¢ € RUPN The estimation of the mput signal
1, given the measurement y and the knowledge



of the system structure can be cast into a prob-
lem of system inversion. A necessary and suflicient
condition for a systemn to be invertible has been
given hy Brockett and Mesarovitich {Brockett and
Mesarovic, 1965). To our particular case this con-
dition specializes as follows:

Theorem I. System 5 is invertible iff the matrix
M @ RN 12N jg of rank 2N

where the matrix A is defined as:

OB 0 ¢
CAB CB .

: 0
M=|o2N-1p ... ... CB ()
CANB .. CAB
Cap g

The rank test on the matrix A is nef the most
computationally efficient way to establish if a sys-
tem is invertible. Several other methods have been
proposed in more recent years {(Sain and Massey,
1969). (Silverman, 1969), (Moylan. 1977), (Tan
and Vandewalle, 1988), to name a few). However,
it is important to remark that matrix M plays the
role of the "measurement matrix” of equation (1)

in (Bicchi and Canepa, 1994) (see the demonstra- -

tion of the above theorem as given in (Sain and
Massey, 1969) for more details on this point). Ma-
trix M gives information on the invertibility of the
svstem, and on the properties of the inversion re-
sult, independently from the numerical algorithm
that will be actually used. Note that, in our case,
A depends (through ) on the position A of the
strain gauge along the beam. The properties of
Af are natural candidates for the definition of the
optimal design problem, te., to establish design
criteria for the placement of the strain gange that
are generally valid.

One possible optimal design criterion is the maxi-
mization of the system inversion accuracy through
the maximization of the minimum singular vaiues
of Af (Bicchi and Canepa, 1994). Hence, the opti-
mal choice A* of the strain gauge placement takes
on the form:

h* = arg 3 min{ h 10
Arg, max o {M{h}} {10}

Note that, for those h such that o, (M{h)) =0,
the system ig not invertible.

From an algorithmic point of view, an additional
requirement of an inverse system is that the in-
verse system must be stable. In terms of transfer
functions (since we are considering a single input
- gingle output case) this is equivalent to say that
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Fig. 2. Cost function and constraints for the op-
timal design problem, computed with a 3-
modes model. +: minimum singular value of
M. *: sign of the maximum real part of the
zeros of G(s). o1 suggested sensor placement
accordingly to the defined criterion

we wish that the transfer function of the system
(5}, for the specific choice of h selected, must nof
have any zero with positive real part. This poses
an important constraint on the optimal choice of
h. Having defined as G{s} = C(sl ~ A)"'B the
transfer function of (5}, the design criterion now
becomes:

h* = arg h]:éllga)} | Trmin(M{A))

subject to: (11)
Re(z(G{s))) < 0V 2(G{s))

The above constrained optimization problem, that
in general is solved with nonlinear programming
methods, can be tackled, in our simplified case,
by exhaustive search and visual inspection. For
instance, in Fig. 2, we report the behaviour of
the minimum singular valie of M as a function
of the position h of the strain gauge on a normal-
ized (L = 1) beam. In the same figure the sign of
the maximum reat part of the zeros of G(s) is re-
ported: the sign function takes on value -1 where
the zeros of G{s) have all negative real part (ad-
missible region) and +1 region where at least one
of the zeros of G(s) has positive real part (inad-
misgible region}. From the figure, by inspection,
it is clear that the maximization of the minimum
singular value of Af is obtained at the left extremne
of the admissible region. By taking info account a
normalized tolerance of 5% in the positioning of
the sensor, the design choice is the placement of
the strain gauge at the position A* = 0.5, i.e., at
the middle of the beam.

Fig. 2 has been obtained by considering the modal
approximation of order 3 (i.e.,, N = 3). As the
number of modes included in the approximation
increases, the behaviour of the minimum singular
value of Af does not change. However, the posi-
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Fig. 3. Cost function and constraints for the opti-

mal design problem computed with a 4-modes

model. Symbols ag in Fig. 2.

tions of the zeros of G(s) in the complex plane
do change: in Fig. 3 the same quantities of Fig.
2 are reported, this time obtained by considering
the modal approximation of order four (N = 4). It
can be seen that the admissible region for a stable
inverse has been shrunken, and in particular the
position h* = 0.5 now belongs to the inadmissible
region. This means that the optimal design of the
sensor needs a priori the specification of the max-
imum musber of modes that one wishes to invert
for. Such number may be determined by the dy-
namic range of the strain gauge, the precision one
wish to achieve, efc.. However, once this choice has
been made, and the strain gauge placed appropri-
ately, the sensor cannot be used to invert data by
using a model with more modes than those spec-
ified in advance. Note also that, as the number
of modes increases, the admissible region shrinks
progressively towards the free end of the beam. In
the limit case (N — oo). the only admissible point
is the free end, hut at the free end the system is
aot invertible (as seen from the minimum singular
value, that approaches zero at the free end).

At this point, clearly appears that the inversion
algorithm relies on a truncated modal approxima-
tion of the system. The neglected, higher order,
modes will act on the inversion process as a distur-
hance due to model mismatch. One question rises
naturally: how will this disturbance affect the in-
version results? This will in turn depend on the
numerical algorithm chosen. and imposes the re-
guirement of a robust inversion algorithm.

4. INVERSION ALGORITHM

In order to determine the applied force, the reg-
tlarized backward Euler algorithm proposed in
(Caiti and Cannata, 1995) has been selected. This
algorithm, originated from the numerical study of
implicit (or singular) systems, has intringic robust-

ness properties, and allows to estimate the input
to a system with one-step delay with respect to
the measured output.

From the system (5, the following implicit system
is built:

o] =[] ][]

The implicie system (12) can be written in the
more compact form Ew = Fw + Gy, with obvi-
ous meanings. Note that the system (12) is just
a rewriting of the system (5) as an implicit sys-
tem. By exploiting the non-directionality of im-
plicit representations, it is possible to exchange
the role of input and output. Moreover, the sys-
tem (12) is solvable, i.e., admits unique solution,
if and only if the system (5) is invertible (see for
instance (Lewis et al., 1987}). According to (Caiti
and Cannata, 1995), the system (12) is discretized
as follows:

)

(E—7(=+a)F)w(j+1) =
(E+7(= —a)F)w(j)+ (13}
+TGK% +a)(y(i +1) —y()) + ()]

o

jiv

where 7 is the sampling step, and a > 1/2 is
the regularization parameter. For & = 1/2 the
method above is the Backward BEuler method. As
« increases, the solutions of the discretized equa-~
tion {13) are low-pass filtered versions of the cor-
rect solution, with cut-off frequency progressively
decreasing. Note also that o can be adaptively
changed at each computational step.

The method (13) is simple to implement, gives
the estimated input with one-step delay from the
measurement y{t), can be applied also in multi-
input multi-output situations, and is robust with
respect to disturbances thanks to the presence of

. the regularization parameter.

5. EXAMPLES

The following simulative cases have been consid-
ered. A beam of unitary length and homogeneous
unitary mass has been considered. The damping
of the systern has been fixed at £ = 0.8. Two
time-varying forces (F)(¢) and Fa(t) in the follow-
ing, see Fig. 4) have been selected. one continnous
with discontinuous derivative, the other one dis-
continuous. The strain gauge has been considered
as placed at A = 0.5, i.e.. in the optimal position
for a 3-mode model.

The strain gauge measurements (Fig. 5) have been
generated in both cases using a truncated model of
the 4-th order (N = 4), while the estimation has
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Fig. 4. (a): Force F1(¢) considered in the simula-
tive test. (b): Force F3(t) considered in the
simulative test
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Fig. 5. (a): strain gauge measurement i {f) ob-
tained ag a result of the application of force
Fi(t) using a 4 modes approximation. (b}):
gtrain gauge measurement y-{t) obtained as
a restlt of the application of the force F3(t)
using a 4 modes approximation.

been obtained by using in the inverse system {12}
a 3-rd order model. This has been purpozefully
done in order to investigate the effect of model
mismatch disturbances.

The results of the application of the algorithm (13)
with e = 1/2 (ie., in the backward Euler case) in
both cases are shown in Fig. 6. This figure has to
be compared directly with Fig. 4. It can be seen
that in both cases the applied forces are well re-
constructed, notwithstanding the model mismatch
problem. ezcept in the cose of jump discontinuity
of the applied force. In the case of a jump discon-
tinuity. the computed inverse solution shows, in
correspondence of the jump instant, an impulse-
fike spurious response. However, in this case, by
simply low-pass filtering the inverse solution (for
ingtance. increasing the value of the parameter o
in the algorithm {13). the signal reperted in Fig.
7 is obtained. It can be seen that low pass filter-
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Fig. 6. (a) Reconstructed signal using a 3-rd order
approximation in building the inverse model,
and the backward Euler algorithm for com-
puting the solution. The input to the algo-
rithn is the signal (a) of Fig. 5. The desired
solution is the signal (a) of Fig. 4. (b) Recon-
structed signal using a 3-rd order approxima-
tion in building the inverse model. and the
backward Euler algorithm for computing the
solution. The input to the algorithm is the
signal (b) of Fig. 5. The desired solution is
the signal (b} of Fig. 4.
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Fig. 7. {a) Desired solution (Fa(t)). (b) Low-pass
filtered signal obtained from signal (b), Fig. 6.

ing allows for a faithful reconstruction of the inpit
force even in the case of jump discontinuity

6. CONCLUSIONS AND FUTURE WORK

In this paper a preliminary investigation of the
problem of optimal design of dynamic force-torque
sensors has been pursued. The case of a single flex-
ible beam has been considered, and simulative re-
sults have been presented, showing that it is in-
deed possible to obtain robust solutions, notwith-
standing the use of an approximated model in the
building of the inverse system. Future develop-
ments of this work are foreseen on one side in an



experimental investigation of the estimation algo-
rithin, and on the other side, on the extension of
the approach to the case of multiple force/torques
acting on the systermn.
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