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needed to fully assess its potentials. Moreover, in the example the superpo-
sition facility has not been fully exploited. More complex tasks, involving
obstacle avoidance and grasping, are now under investigation to assess the
effectiveness of the approach.
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REACHABILITY OF ROLLING PARTS

Y. CHITOUR, A. MARIGO, D. PRATTICHIZZO, A. BICCHI*
Centro “E, Piaggio”, Universita di Pisa,
Ttaly

The probiem of dextrous manipulation and reorientation of polyhedral parts is
considered. In this paper we prove a necessary and sufficient controllability-ltike
result, which discloses some of the interesting aspects and perspectives of this
problem.

1 Introduction

Manipulating parts and designing mechanism for that purpose is a major prob-
lem in robotics. In some cases, the problem is that of reorienting a large num-
ber of parts coming in random posilions and orientations, to a given posture
within assemnbly tolerances. For such problems, industry most often uses ad
hoc fixtures, such as vibrating part—feeders, fenced conveyor belts, etc.. In
other cases, where the typology of parts is more variate, more flexible ma-
nipulation means are preferrable. In highly-flexible automation and robotics,
the design of manipulation devices has been attacked by several different ap-
proaches, such as by developing dextrous multifingered hands ([Jacobsen et al.,
1984], [Salisbury et al., 1985)); using “pushing” or “tilting” actions ([Peshkin
and Sandetson, 1988], [Lynch and Mason, 1995}; “regrasping” ([Tournassoud
ef al., 1987], [Goldberg, 1993}}; and “finger gaiting” ([Rus, 1992], [Chen and
Burdick, 1993]).

Among these manipulation strategies, those using discontinuous contacts
between the manipulator and the part are sometimes regarded as not reliable
enough in real-world, unsteady environments. On the other hand, multifin-
gered robot hands are often too costly, heavy, and complex, to be viable in
many applications.

The advantage of manipulation by rolling is that it accomplishes dexterity
with very simple hardware, while it guarantees that the object is never “left
alone” during manipulation. The intrinsic nonholonomic nature of rolling offers
many difficulties to the planification and control of such devices, of which only
few have been addressed so far.
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Figure 1: A parallel-jaw gripper can manipulate polyhedral parts

Among the various open problems, the one we start considering in this
paper is that of removing the limitation that manipulated objects should have
regular surface. The main motivation of such an assumption is that it is rarely
verified with industrial parts, which often have edges and vertices.

Again, the simple experiment of rolling a die onto a plane without slipping, -

and bringing it back after any sufficiently rich path, shows that its orientation
has changed in general, and hints to the fact that manipulation of parts with
non-smooth {e.g., polyhedral) surface can be advantageously performed by
rolling. :

Some aspects of graspless manipulation of polyhedral objects by rolling
have been considered already in the robotics literature (see e.g. Sawasaki
et al. [1089], Aiyama et al. [1993], Erdmann et al, [1991]). However, a
complete study on the analysis, planning, and control of rolling manipulation
for polyhedral parts is far from being available, and indeed it comprehends
many aspects, some of which appear to be non-trivial. In particular, the lack
of a differentiable structure on the configuration space of a rolling polyhedron
deprives us of most techniques used with regular surfaces. Moreover, peculiar
phenomena may happen with polyhedra, which have no direct counterpart with
regular objects. In this paper, we start such study by analysing the structure
of the set of configurations reachable from a given one.

2 Problem formulation

Consider the simple device depicted in fig. 1, consisting of two plates, one of
which is fixed, while the cther can (ranslate remaining parallel to the first.
A part of known shape is put between the plates, and successively moved by

a combination of vertical and horizontal forces at the contacts, that cause it

to move. The goal is to bring the part from a given initial configuration to
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another desired one. A few considerations are in order:

¢ as the part is constrained to keep in touch with the two plates, to specify
arbitrary desired configurations would require being able to move the
lower plate vertically. With no loss of generality we only consider different
configurations modulo a rigid translation of the whole mechanism;

e the surface of the part is considered to be piecewise flat, closed, convex
and comprised of a finite number of faces, edges, and vertices;

e in general, three motions of a polyhedron on a plane are possible: by
sliding on a face, tumbling about an edge, or pivoting about a vertex.

But for practical reasons, we assume that only tumbling about an edge
is allowed.

The only motions of the parts we will be concerned with are therefore comprised
of a sequence of rotations about one of the edges of the face being in contact
with the plate, by the amount that exactly brings another face in contact,

This action on the parts will be referred to as an elementary tumble, or ET
for short,

3 Definitions and first properties

Let P be a convex polyhedron rolling on a plane P by elementary tumbles.
We associate to P the following sets:

(a) V= {vt,...,vm} is the set of vertices of P and m = 17#;
() E={ey,. .., €x} is the set of edges of P and k = E#.
(¢) F={F,. .., Fy} is the set of faces of P and [ = F#.

By the assumption of convexity, parts are topological spheres, hence for their
Eulet characteristic it holds x=m-—k4+l=2

The configuration space M of our problem is the restriction of the space of
rigid body configurations SE(3) to those that have one face in contact with the
plane P. We give two papameterizations of M and the first one is as follows.
Let Ozy be a fixed reference frame on the plane P. For each face F,1<i<
let ¢; be the center of giavity of F; and u; one of its vertices., Let (zi,31) be
the coordinates gf ci, and #; be the oriented angle between Oz and c‘-_ﬁ,-. A
configuration of P on P is uniquely determined by the quadruple (z:, 41,04, 7),
where i € {1,...,1} is the index of the face in contact with P. Then we have




M:IR,ZXSIXF. (1)

The space M is endowed with the product metric associated to the metrics
of the euclidean space IR?, of the quotient space S' = R/27Z, and of the
discrete space F, respectively. The latter is taken to be p(Fi, Fj) = 1 — &5,
the Kronecker symbol. Although very intuitive, this parameterization does
not turn out to be the most convenient for our developments. We therefore
introduce a slightly more technical description of M as the set of equivalence
classes on a set M’ by the relation ~, where

- the set M’ is defined as the subset of R? x ¥ x S x F of pomts (z,v,v,0,1)
where i is the index of the face F; in contact with P, v is any of the
vertices of F; (shortly F; 3 v), (z,y) are the coordinates of v and & is the
oriented angle between zz' and civ;

- two elements of M’ are equivalent under the relation ~ if i = i and ¢ —# is
equal to the oriented angle between ¢jv and ¢; ', for any fixed point ¢;
on face F;

Note that corresponding to each configuration of the polyhedron, we have
an equivalence class with nr, elements, where ng; is the number of vertices of
the face F;.

The actions we take on the configurations of the polyhedron are finite
sequences of elementary tumbles, referred to as “trips”. The length of a trip
is the number of ET’s it 18 comprlsed of. This paper is concerned with the
structure induced on the configuration space by trips. We therefore define
reachability of a configuration as
Definition 1 The configuration q; is reachable from qo if there exists a trip
steering P from ¢ to 92 In this case, we write go — 9.

For every g € M let Rq be the reachable set from ¢, i.e. the set of configura-
tions that can be reached from g in a finite number of ET’s.

The structure of the reachable set can be very diverse for differént polyhe-
dra. Note first that R, 1s countable by its definition and therefore the inclusion

R,cM
is strict. Introducing'the canonical projections
I, : i - R?, |
I : M — 581,
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we have that I (R" ) is trivially infinite and unbounded in R?. Various possi-

bilities can occur: Hl( ) {resp. Il (R ) ) can be discrete in IR? (resp. finite
in S!), can have a finite or infinite number of points of accumulation in TR
(resp. idem in S') or can be dense in IR* (resp. idem in S'). One can even
distinguish differently dense structures for Ry, among which are the following:

a) Density in M:

(DM) Ve > 0,Y¢; € M,
3¢’ € R, such that ¢’ € Be(qy)

b) Density in IR* x S! for a given face i:

Ve > 0,Yqy = (z,y,0,1) € M,
(PM), { 3¢’ € Ry such that
"L ¢ eB(ay)

1

¢) Density in IR? for a given vertex » (disregarding the contacting face and its
final erientation):

Ye > 0,Y(z,y) € R,
(DM) { 3¢’ = (&, /,v,0", ) € R, such that
(z',y') € Be(z,y).

Here, B, (-) indicates a ball centered in its argument of radius € in the suitable

metric. Note that
(o) = (o1, = (o)

As usual, if the above properties hold for any initial configuration ¢, the prop-
erties will be said to hold globally. In this paper, we explicitly consider the
case where the reachable set is dense in M.

The notion of “relative angle” 3, at a vertex will turn out to be funda-
mental in the rest of this study. For each vertex v € V, let I, be its valence,
i.e. the number of faces of P which are adjacent to v, and name such faces as

Fiyy oo By, Let a4y, 1 < j <4y, be the angle at v corresponding to face F;;.
The relative angle at v is then defined as

B
Bo=27~ ay. (2)
i=t
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Figure 2: The relative angle at vertex V is defined as 8, = 27 — (a1 + aig + oia)

The relative angle at a vertex (see fig. 2) is also known in the literature as
the curvature concentrated at the vertex. Note that 0 < By < 2w since Pisa
convex polyhedron with null curvature on its faces. We also have the classical
Euler relation given by

Proposition 1 (Euler relation) Let P be a convew polyhedron and V the set
of its vertices. Then,

> B =dm. (3)

vEV

Next follow two remarks that are basic properties of the motion of a pelyhedra
on a plane.

Remark 1. Let v € V and suppose that P rests on P on a face F with
F; 5 v. By rolling P on all the faces containing v until coming back to [
while keeping v immobile, P is rotated clockwise of an angle 8, around an axis
7, orthogonal to P and passing through v, i.e., it moves from (x,y,v,8,%) to
(:r: y, v, 0+ 5,,i). We denote this trip by Rg,, and the analogous ant1c:10ckw1se
trip by R_g,. By repeating Rg, clockwise or counterclockwise we can go from
(z,y,v,8, z) to (z,9,v,0 +nby, i), n €Z.

When %l’- is irrational, then {nB,}ncz is dense in S? and the property of
reorienting P “arbitrarily close” (AC for short) to any direction holds.

Remark 2. Suppose that a configuration ¢; = (21,1, v,01,7) is steered
in g} = (2,9, 8,,#) by a certain trip 7. Then, applying 7" to any configu-
ration ¢ = (z,y,v,8,1), we end up at ¢’ = (&', ¢/, ', &,i’), where

(#y) = L) t+E-e,y-n)

+(exp (z‘(& - 91)) — 1)(:::'1 - 2,4 ),
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o = 8 +(6~6)

Fori=1,...,1 let M; = R? x St x {i}, and T: be the set of all trips
starting and finishing with F; in contact. For any choice of m — 1 out of the
m vertices of P, labeled as vy, -, vm—1, we have:

Proposition 2 For every trip T € i-, there exist m — 1 integers (n;)1<i<m—~1
such that Afyp, the total variation of orientation along T' is given by:

m—1

Abp = Z 1 Gy

i=1

Proof. To each trip T' & T we associate a closed continuous path ~r
defined as follows: let T' = Fj.-- FjFy---F;. For all pairs of adjacent faces
F; Fy, with common edge e, pick a continuous path ;% in ﬁ\ff starting from
¢; and finishing at cx, which passes through the edge e only.. The path 77 is
then defined as the concatenation of the ;. for all pairs of successive faces in
T.

The polyhedron p is topologicaly equivalent to a two-dimensional sphere

52 and is associated to P, a curvature function K defined as follows ([Spivak,
1979]):

K(e) = ifz e P\V,
ﬁu, ife=v,1<i<m.

Let 91, + -, 7m—1 be a homology basis of P\V (2 32\17) (see [Spivak, 1979]).
Every path vr is therefore homologous to

m—1 )
an, nmed 1<i<m—1

i=1

Each 7, 1 <i<m—1, is a simple continuous closed curve on ﬁ\f;' enclosing
only v; in one of the two connected components it defines. Since any trip T
associated with such a +; has the same effects on the polyhedron as the trip
Rg,,, we get that the change of orientation along yr is equal to (Gauss-Bonnet
theorem) '

m-—1

Abir =" nify,. (4)

i=1
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4 Density of the reachable set

In this section, we state and prove the main result of this paper:
Theorem 1 For every ¢ € P, R, is globally dense in M if and only if there
exists a vertexr ¥ such that 'fr—ﬂ is irrational,
Proof. = The proof of the “if” part is subdivided as follows:
'B—ﬂ irrational (1:3) (DM) holds for some face 7
n §1

8,

4 (DM) holds .

Proof of (i): By assumption, there exists a trip that brings the polyhedron
AC to (', ¢/, #,41) for some ;. Let T be a trip that brings {21, 4,6:,1%) into
(%2, ¥a, 02, 1), for any fixed i. Since we can go AC to (z1,y1,81,%1), where

(z1,11) = (2 ¥)+ (21— 22,51 — 12)
—(exp (5(9' - 92)) - 1) (22 — 21,92 — 1),
31 = 9’ - (92 - 91),

by remark 2, there exist a concatenation of trips that brings AC to (2,4, 8',1)
from {z9, y2, 02, 1), q.e.d.

Proof of (i1): Let v € f;’, a vertex different from ©. Suppose that p =
(0,0,9,0,41). We can surely reach a point gq = (zo, Yo, v, 00,%’) where & =
(zo0,%0) # 0. The trip steering p to go is denoted L and the reverse trip, L—L.

Finally, consider the trip T, 5, defined as

L_IR_guLR_ﬁﬁL_lRﬁuLRpa .

-

By remark 2, a simple computation shows that we reach p1 = (t,9,0,4;), where

Be (.ﬁv + ﬁu) S

. 5

5 ) exp li— W (5)

Given ¢ € S, we can replace in equation (5) and T, g, first, 5 by any angle

AC to ¢ and second 3, by any of 1ts multiples nd,, n integer. In addition, we
can easily have the translations nf, n integer.

Since é{”— is irrational and ta.kmg into account the Euler relation, we can

suppose that v # . Therefore, for every integer k, we also have, as in equation
{5), the translation

{= 451:1(@ )sin(—-

tg = 4sin(g, ) sin(

501y oxp (58220 g, (6)

2 2

that corresponds to Tig, 23,. We choose k so that iy is AC to 85 — By In
this case, ¥ and ¥ are AC to be parallel and the ratio of their lenght X is AC

to
3 ED—QU
2 cos(ﬂz—")%l =12 cosz(’gz1J ) —sin(3y) cot(ﬁﬂ)
sin( &)

By remark 1, we can choose |A| as small as we want, which in turn, insures
that we can get AC to any point of the line directed by exp (z et ")u’)’. Using

again remark 1, we can rotate this line and prove (DM) . Furthermore, by
remark 1 the polyhedron can be brought AC to {(z,y,0,%,71). Therefore we
have (DM) C.oqed.

K]
<= Assumelnow that there exists a vertex v and a face F; with F; 2 v such
that (DM) holds. We show next (a)=>{c).

v,0,i

If ﬁ—;h is rational for 1 < i < m, we have

Bo,=Yx, pingi=1.
'
Let g be the smallest common multiple of the ¢;’s. As a consequence of equation
(4), the variation of orientation along any vr is a entire multiple of %, which is

a contradiction with (DM) . Therefore there must exists € V such that

v,i,8

'Ljr—" is irrational. This ends the proof of Theorem 1.

5 Conclusions

In this paper we started the study of the structure of the set of configurations
that a polyhedron can be brought to reach by rolling on a plane about its edges.

The problem appears to be important to practical applications, such as that of
automatic part manipulation, as well as theoretically stlmulatmg Among the
many open problems that are left for future work, we mention two of them: the
first one concerns a characterization of the reachable set for a general convex
polyhedron and a second question deals with defining an efficient algorithm for
planning motions of polyhedra by rolling.
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The present contribution fits the topics of computer aided optimal design for
robotic grasping systems, with special concern to its application for the choice
of a suitable grasp. Speaking of robotic graspng, if it is true that an industry
required very crucial demand is to make it as more as possible flexible, special care
has to be devoted to the fact that flexibility must be achieved never at expences
of stability and robustness. In the present work a technique, to evaluate the ro-
bustness of a grasping action is presented. The method which is discussed leads
to the introduction of a transmission strengths ellipsoid. Such ellipsoid is con-
ceived to retrieve the axes directions along which an object grasp displays major
or minor capability to resist to any external perturbation. To be pointed out that,
having to be defined onto a dimensionally non-homogeneus spaces, as the one of

forces and torques, such ellipsaid to be properly defined requires an a-priori space
homogeneization procedure.

1 Introduction

Grippers are key components in robotized assembly systems. They can repre-
sent a significant part of robotized cell cost. Consequently, it is highly wished
to increase their flexibility (i.e. their ability to handle all the variants of the
workpieces family).

This flexibility in grasp is rarely satisfied by industrial systems and sup-
poses a re-design, or at least an adaptation, of existing grippers. This design
operation requires proper consideration of several factors and is basically a
complex problem. More precisely, the design process has to take simultane-
ously into account various constraints, as accessibility to the workpieces, their
size and geometry, their mechanical properties, task requirements (surfaces





