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Abstract

Nonholonomic constraints in robotic systems are
the source of some difficulties in planning and con-
trol; however, they also introduce interesting proper-
ties that can be practically exploited. In this paper we
consider the design of a robot hand that achieves dex-
terity (i.e., the ability to arbitrarily locate and reorient
manipulated objects) through rolling. Some interest-
ing issues arising in planning and controlling motions
of such device are considered, including exact plan-
ning for a spherical object and approximate planning
for general objects. An experimental prototype of a
three-plus—one d.of. hand achieving dexterous ma-
nipulation capabilities is described along with experi-
mental results from manipulation.

1 Introduction

Dexterous hands, i.e. cooperating multilimb robots
with the capability of manipulating an object so as
to arbitrarily steer its configuration in space, have at-
tracted much interest in the robotics literature. How-
ever, the high degree of sophistication in their me-
chanical design prevented dextrous robotics hand to
succeed in applications where factors such as reliabil-
ity, weight, small size, or cost, were at a premium.
One figure partially representing such complicacy is
the number of actuators, that ranges between 9 and
32 for typical hands. In this paper, we consider the
exploitation of the effects of rolling of the object be-
tween the fingers as a means of achieving dexterity
while reducing the number of necessary actuators in
the hand.

Rolling between rigid bodies in three—dimensional
space is a well-known case of nonholonomically con-
strained motion. A knife-edge cutting a sheet of paper
and a cat falling onto its feet are examples of nat-
ural nonholonomic systems, while bycicles and cars
(possibly with trailers) are familiar examples of arti-
ficially designed nonholonomic devices. The most no-
table characteristic of nonholonomic systems is that
they can be driven to a desired configuration in a
d-dimensional configuration manifold using less than
d inputs. Since “inputs” in engineering terms trans-
lates into “actuators”, devices designed by intention-
ally introducing nonholonomic mechanisms can spare
hardware costs without sacrifying dexterity. While
nonholonomy in a system is often regarded as an an-
noying side—effect of other design considerations (this
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is how most people consider e.g. car maneuvering
for parallel-parking), purposeful introduction of non-
holonomy in robotic system design has been consid-
ered previously by Brockett [3], and, in a spirit closer
to that of the present paper, by Sordalen and Naka-
mura [17].

Nonholonomic systems do have disadvantages, how-
ever, among which the most notable are perhaps the
difficulties in planning and controlling their motions.
Planning finger movements to steer an object between
an initial and a final desired configuration is not triv-
ial, and in most cases the task is beyond common hu-
man ability. This is particularly true when the shape
of the object is not known a priori, but has to be recon-
structed from sensory data during manipulation. This
paper is devoted to describing tools that may render
the design of a nonholonomic dextrous hand a viable
means of achieving dexterity with simple mechanical
design.

2 Background

We recall some basic definitions and facts that are
necessary to understand the techniques used in the
paper. We will deal with mechanical systems whose
configurations evolve in a d-dimensional manifold M,
i.e. a differentiable variety locally diffeomorphic to

R¢. To avoid unnecessary complication, we will be
only concerned here with local representations of the

systemn, so that local coordinates in IR? are assumed
throughout. According to the classical definition of
nonholonomy, a system described by its generalized

coordinates q € IR? is called nonholonomic if it is
subject to constraints of the type

c(a(t),q(t)) =0

and if there is no equation of the form ¢'(q(¢)) = 0
such that E%QD = ¢(q(t), q(t)). If also Pfaffian (as

is our case), the constraint is linear in q,

C(qa q) = A(Q) q =0,

and hence it can be rewritten in terms of a basis of
the kernel of A(g), denoted by G(g), as

q=G(q)u

This is the standard form of a nonlinear, driftless con-
trol systems. In the related vocabulary, components
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of u are tnputs, while columns of G(q) are input vec-
tor fields. The collection of the subspaces spanned by
G(q) at every q € U C M is a distribution. A dis-
tribution is nonsingular if rank (G) is constant over
its domain. It is involutive if the Lie-Bracket between
any of its vector fields is again a vector field in the
distribution, i.e. if

]def 6GJG _0G:
q
€ span (G(q)), Vi, J.

(G, Gy Gj

In terms of input vector fields, the nonintegrability
of the original mechanical constraint has its counter-
part in the well-known Frobenius theorem:

Theorem 1 (Frobenius). A nonsingular distribu-
tion i3 integrable if and only if it is involutive.

If a distribution is not involutive, then motions in the
Lie-bracket directions are possible which are not in
the span of the original vector fields. Hence, an al-
ternative viewpoint on nonholonomy is that a system
q = G(q)u is nonholonomic if G(q) is not involutive.
A fundamental question at this point is, under what
conditions can a d-dimensional nonholonomic system
be steered by less than d inputs to an arbitrary config-
uration. Note that also higher order Lie-brackets rep-
resent directions of possible motion. Therefore, one is
naturally led to consider the filtration

Py = span (G;)
Iy =To+ [To, To)
= span (G, [G;, Gi]);
[y = T'e—1 + [Tr_1, Do](brackets of order < k ~ 1);

The construction stops at some level, say k =
p, when dimTgy; = dimT%. The number k is
called “degree of nonholonomy”. Let dim(I;) =
v; be constant in some open set. If p > 0 and
7p = m, the system is completely controllable and

it 1s said “maximally nonholonomic” (Chow’s theo-
rem). Vectors ¥ = [70 71 Y ]T and ¥ =

[Y0 71~ —yp-1 ¥, are called “growth
vector” and “relative growth vector”, respectively.
The planning problem, i.e. to explicitly find a con-
trol u : [0,1] — IR™ that steers the nonholonomic
system q = G(q)u(t) from given q(0) to an arbitrary
q(1), has been given much attention in the literature
recently. Murray and Sastry [13] investigated a class of
systems for which a normal, or “chained” form, of sys-
tem equations can be obtained, and showed that opti-
mal inputs (in a certain sense) for systems in this form
are sinusoids and cosinusoids at integrally related fre-
quencies. Their method, along with extensions made
by Sordalen [16], solved the problem of parking cars
with an arbitrary number of trailers. On the other
hand, Rouchon et al. [14] showed that “differentially

flat” systems can be conveniently planned looking at
their “flat” outputs only. Monaco and Normand-
Cyrot [10] proposed to apply nonlinear multirate con-
trol to the planning problem for systems that admit
an exact sampled model (while maintaining control-
lability under sampling). Lafferriere and Sussman [§]
described a powerful “constructive” method for ex-
actly steering nilpotent systems, l.e. systems whose
higher—level Lie-brackets are identically null.

We describe now some tools of surface geometry
necessary to deal with our specific problem of manip-
ulation by rolling. Both the object and finger surfaces
are assumed to be simple surfaces ¥ embedded in IR?,
to which coordinate patches (f,U);f : U C R? —
Yy C X, can be locally attached so as to form an
atlas. In these coordinates, a Gauss (normal) map

n: Y — 5% C R3 can be written as n = ”—fz%"”)

It is also useful to define a normalized Gauss frame
[, v,2] = [fu/|lfu]l, /£, n], with £, = 0. The
kinematics of rolling motions can be derived from ei-
ther the classical differential geometric viewpoint (us-
ing first and second fundamental forms for ¥ at p,
I, and II, resp., and Christoffel symbols of the first
and second kind, [i5,k] and Tf;); or using Cartan’s
definitions of metric form My = diag (||f.|, l|£]]),
curvature form Ky = [x, y]%[24, 2,]Mgz", and torsion
form Tg = y7 [Xu, X, ]Mgz'. While the latter descrip-
tion results more convenient, we recall that the re-
lationship between the two sets of forms is given by
Mg = \/ 5 Kz = M—GTII Mgl, and T)_';Mg =
MngljL [T}, T1,] (cf. e.g. Sarkar [15]).

e 1nemat1c equations of motion of the contact
points between two bodies rolling on top of each other
describe the evolution of the (local) coordinates of the
contact point on the finger surface, ay € IR?, and on
the object surface, o, € R2, along with the (holon-
omy) angle between the z-axes of the two gauss frames
¥, as they change according to the rigid relative mo-
tion of the finger and the object described by the rel-
ative velocity v and angular velocity w. According
to the derivation of Montana [11], in the presence of
friction (soft—finger contact model) one has

Wy

o2 o

T 1 —1 | —W .
a, = M, RyK; { wzﬂ])
$ = TyMyay + ToM,co;

where K, = Ky + RyKoRy is the relative curvature
form, and

re=[ g Ziy .

3 Hand Kinematics

To completely describe the manipulation system,
we need to attach the rolling equations above to the
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kinematics of the manipulating hand by means of the
constraint equations imposed by the no-slippage con-
dition. Let ¢; € C; C SE(3) describe the position
and orientation w.r.t. base frame of the Gauss frame
at the contact between the i-th finger and the object.
Denoting by q: € @; C R¥ the joint coordinates and
by ay, € U; C IR? the contact coordinates for finger
2, let A; : U; x Q; — C; represent the translational
part of ¢;(q;, ay,), and n;(q;, ay,) the normal map at
the ¢-th contact point. For the contact pair between
the object and the i—th finger, soft-finger frictional
constraints impose that

O =ty P x A )
0q; :
TY

T .
n; “J;q; =n; “w

where ?v, bw are the velocity and angular velocity of

the object in a base reference frame, and “J;(q;, ay,)
represents the rotational Jacobian operator mapping
joint velocities q; in the angular velocities of the con-
tact Gauss frame on the i—th finger. Note that (3)
is obtained by equating constrained velocities of the
contact point as part of the finger and of the object
respectively, and cancelling out the contributions of
rolling (terms in a;, &,) that have already been taken
into account in deriving the equations of rolling kine-
matics. Introducing the notation

8A;

e I —A;ix
, — a4 T = :
J'_[n%"‘EJa]’ ’—[0 n ]

and constructing a global hand “jacobian” matrix J =

diag (J;) and “grasp” matrix G = [Gy Gy - -], the
hand kinematics can be written as
J(q,ah,ah,‘..)d:GT(q,afl,afz,..‘)bl'l (3)

where q = [qf qf -7, and bu = PvT 2T, One
further step 1s necessary to relate joint motions to the
relative velocities between the object and one of the
fingers, used as a reference member. This involves

expressing %0 in terms of the sum of the velocity of
the reference member and of the relative velocity w,
and bringing the former part to the right hand side
of (3). Having modified the hand Jacobian matrix
accordingly, the hand kinematics equations (dropping
arguments for simplicity) reads as

JGg-GTu=0 (4)

Joint motions can be easily solved in terms of object
motions if the hand Jacobian is invertible. However,
in order for this condition to apply, it is necessary that
the hand has at least four joints per finger. Note that,
in the design of a hand system intended to exploit
rolling to reduce the number of actuators, the hand
Jacobian is certainly not invertible (i.e., the hand is
kinematically defective). The kinematics of defective
hands have been studied by Bicchi, Melchiorri, and
Balluchi [2]. Using their terminology and methods,
and assuming that the system is graspable and not

/

a8

T ——

q2

Figure 1: Kinematics of the hand developed for exper-
imenting dextrous manipulation by rolling.

redundant, one can evaluate two matrices U, and Q,
such that their columns span the subspaces of com-
patible object and joint velocities, respectively. In
these hypotheses, there is a bijection between rela-
tive velocities u € range (Up,) and joint velocities
q € range (Q,), which can be expressed as
q=Q,Utu, uc€ range (U,). (5)
Note that, by construction, only the w,, w, compo-
nents of u € range (Up) result nonzero. Elements of
the matrix QPU; are functions of finger configura-
tions q and of contact coordinates on all fingers oy, .
Example 1. The kinematic structure of the
hand realized in our laboratory for studying dexter-
ity through rolling is depicted in fig.1
For the plane surface of fingers, described in Carte-
sian coordinates, the forms involved in the equations
of rolling are My = Iz, Kp = Ozx3, and Tp = Oay.
For a spherical object of radius R, in spherical coor-
dinates, one has K, = R711,, and
R 0
M, = [0 Rcos(u,)] ’
T, = [0 — R~ tan(u,)] .

Using notation as described by fig.1, the finger kine-

matics are written as

q [ 1 0
A=qapa | Ji=]0 595 =1} 01,
ayy,2 L 0 0

0 0
; Ja=1 1 0 }:5%3,=
0 1

and

0
AZ = [ Qa1 + q
af1y2+q3
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Note that for a sphere between two parallel fingers the
vector Ay — Ay 1s constant and equal to —2R. Using
(2) and (3), and renaming contact coordinates on the
lower finger as z, y, and on the sphere as u, v, one gets
(on an open subset of the state space not containing

v = cos™1(0)):

z 0 R

U} R 0

u cosy _sing

R VR D e
¥ | 7 | tanvcosey e tanvsing | ¥
a1 0 0

) 0 2R

s 2R 0

(6)
where the contact coordinates on the upper finger fin-
ger are trivially obtained and not reported for brevity.

4 Planning Manipulation by Rolling
In this section we will discuss the planning problem
for a hand system such as that described in fig.1, with
particular reference to the manipulation of a sphere.
Although this is perhaps the simplest case, it still pro-
vides important insight in the more general problem
of manipulating objects of an arbitrary shape.
Considering the filtration associated with system
(6), one easily finds that the growth vector for this
system is [2, 3, b, 5, ---], whence it follows that the
manipulation system is not controllable as a whole.
However, from closer inspection, it turns out that sys-
tem (6) can be effectively decoupled in the upper 5-
dimensional part (kinematics of the object rolling on
a plane finger), which is controllable, and the lower 3-
dimensional part (hand kinematics). Therefore, an ar-
bitrary change of position and orientation of a sphere
can be achieved by the hand of fig.1, provided that an
additional rigid translation of the hand—object system
as a whole can be actuated by a fourth motor (not
shown 1n fig.1). The final position of fingers will not
be controllable. For more general cases, the only re-
sults (to our knowledge) are those of Li and Canny [9],
showing that controllability is lost in the rolling of a
sphere on top of another sphere only when the radii are
coincident or either of them vanishes. Motivated by
these results, it seems reasonable the conjecture that
controllability of rolling motions between surfaces is
generic. Note also that, in the hand shown in fig.1,
actuation of joint 1 is only necessary in order to main-
tain contact and prevent slippage between surfaces,
which goal could be in principle realized by using pas-
sive devices (e.g., preload springs). According to the
conjecture above, and recalling our previous definition
of a dextrous hand as a device capable of arbitrarily
positioning and orienting the object, a general remark
can be stated as:
a dexterous hand can be built in principle by using only
three actuators.

The study of the rolling motion of a sphere on a
plane is a classical problem in rational mechanics, re-
cently brought to the attention of the control com-
munity by Brockett and Dai [4], who provided opti-
mal planning solutions for an approximated version

of the problem. Jurdjevic [7] investigated optimal so-
lutions of the original problem and showed its rela-
tionship with the clasical problem of the elastica. Li
and Canny [9] proposed a planning algorithm based
on the use of the Gauss—Bonnet theorem in differen-
tial geometry, obtaining an elegant algorithm capable
of bringing the sphere to the desired position and ori-
entation by a sequence of three movements. However,
these techniques are special ‘to the case of a spheri-
cal object, and there is no clue as to how they could
generalize to arbitary surfaces.

In the broader repertoire of planning methods for
nonholonomic systems, effective planning algorithms
are available for systems that can be put in a conve-
nient form. However, it can be shown, based on the
fact that the relative growth vector of the system (6),
ie. y=1[21 2]7, that it cannot be put in chained
form, nor 1t is differentially flat (see Murray [12]). On
the other hand, system (6) is not in nilpotent form,
so that application of the constructive method of Laf-
ferriere and Sussmann [8] would only provide approx-
imate results. Furthermore, direct application of mul-
tirate digital control techniques to the system (6) is
not possible, since the corresponding exact sampled
model is not available.

Notwithstanding the genericity of its growth vec-
tor, the controllable part of the kinematic equations of
manipulation does possess a structure that can be ex-
ploited to find efficient planning algorithms. An useful
result in this sense is the following, holding for arbi-
trary surfaces rolling on a planar finger:

Proposition 1 (Bicchi and Sastry, 199/). Assum-
ing that either surface in contact is (locally) a plane,
there ezist o state diffeomorphism and a regular static
state feedback law such that the kinematic equations of
contact (2) assume a strictly triangular structure.

Proof. Rewrite (2) as
ay :M}‘le‘lw; (7)
&0 = M Ry K 'w;
¥ = [TsRy + TJK; 'w,
where wT' = [~wy w,]. Recall that for plane fingers,

Ty = [0 0], and My = I,. Define the regular state
feedback w = B(ay, ae, %) + y(ay, o, Y)W as

Blog, 00, %) = 0; (8)
Y(az, o0, ¥) = K, Mow,

and apply a change of coordinates that suitably re-
orders the states, to obtain

Qo = W;
% = ToMow;
ap = RyM,w,
which is strictly lower triangular. O

As an instance of application of this technique, con-
sider again the case of a spherical object on a planar
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finger, (6). The state feedback law

_ | cosvcosy —siny | .
- { —cosv sinyg —cosp | (9)
transforms (6) in
- /il, 1 -~ 1 3 - 0 -
v 0 1
P sin v 0
z | _ | —Rsiny cosv . —Rcos®
v | Rcos®y cosv Wit _Rsing | Y
i 0 0
g; —2Rsin®y cosv —2Rcos®
| s | 2R cos 1 cosv | —2Rsin? |
(10)

The relevance of strictly triangular forms to plan-
ning is in the relative ease by which the flows of the
vectorfields can be obtained. In our example, in fact.
one has (for the part concerning contact variables)

ug + 1
V0
%o + tsinvg
o + tafvn [cos(to + tsin vg) — cos o)
Yo+ t_mafvu [sin(¥o + Esinvg) — sin ¥q]

(11)

g1 _
B¢ =

and
Uuo
vo + 1
o + tsinvg \ (12)
2o — Rt cos g
Yo — Rt sin ’(/)0

g2 _
P =

A solution to the planning problem for system (6) can
now be applied, which is closely related to the mul-
tirate technique, and consists in concatenating a se-
quence of constant inputs of the form {wy = [,y =
0,0 <t < Tl}, {ﬁ)l =0,w = 1,7 <1< Tg},
oAy = Lwe = 0,74 <t < Ts}. The 5 unknown
variables T; can be evaluated by solving the system
of five nonlinear equations obtained by equating the
final to the desired configuration, namely

R g, 0OF 5 o @R 4 0®F g1 0BF (X0) ~Xaes =0
13)
Equivalently, one can fix time interval lengths (and
vary the amplitude of inputs. Also, allowing a finer
discretization of the time scale, other concerns such as
minimizing the length of the path or avoiding limits of
the workspace can be taken into account by building
a suitable optimization problem constrained by (13).
Results of application of this technique to planning
the manipulation of a sphere so as to realize a rotation
of 30 deg. about the vertical direction, while bringing
the contact points on the sphere and on the object
back to the original position, are reported in fig.2. The
lower left, diagram shows the path to be followed by
the contact point on the finger surface.

5 Experimental

A nonholonomic dextrous hand with three actua-
tors has been built in our laboratory according to the

0.4 0.6
024 1 0.4t

0 k 0.2F

s >
L0021 1]
04f 1 021
0.6 L . 0.4 L .
0 2 4 6 8 0 2 4 6 8

psi

Figure 2: Planned trajectories of the contact coordi-
nates for a rotation of 30 deg., obtained with a se-
quence of 7 piecewise constant inputs

scheme of fig.1. Joints are actuated by three D.C. mo-
tors, and position are sensed by linear potentiometers.
One important feature of the hand is that its upper
finger is equipped with an intrinsic tactile sensor ( [1])
which provides real-time sensing of the actual posi-
tion of the contact point on the finger. Exploiting the
capability of intrinsic tactile sensing to provide also
the direction of the contact force (including tangen-
tial components), the system is also able to detect the
contact point position on the lower finger. The verti-
cal axis is controlled so as to maintain a suitable level
of contact force on the object, to avoid slippage. Ac-
tive grasp force control is particularly important when
manipulating objects whose surface is not spherical.
The main problem in realizing planned manipula-
tions is related to the fact that control inputs w used
for planning are not the same as the physical inputs
actually available to the controller, that is, joint ve-
locities q. While it is possible to integrate (10) so as
to obtain the desired joint trajectory for the sphere,
the same is much more complex for objects of general
shape. Moreover, such process results in a completely
open-loop control scheme that is prone to a number of
errors in practical implementation. The approach we
followed tends to exploit the possibility of using tac-
tile sensing in real-time. In fact, having the system
two degrees of freedom, to follow a planned path for
the whole system it will suffice that two state variables
are made to follow their planned trajectory accurately
enough. In our case, we try to control the coordi-
nates of the contact point on the lower finger to track
the trajectory resulting from planning, and use tactile
feedback to make this control effective. The tracking
controller is designed according to a standard P.D. +
feedforward scheme. In fig.3 are reported the planned
trajectories for the contact coordinates (dotted line),
and the actual trajectories followed by the systerh are
superimposed for comparison (solid line). A rather
good tracking accuracy can be observed, which re-
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Figure 3: Planned and experimental trajectories of
the contact point on the lower finger of the dexterous
nonholonomic hand of fig.1

sulted in an overall accuracy in the reorientation ma-
neuver of less than Imm in position and a few degrees
on the planned rotation.

6 Discussion

In order to prove the practicality of the proposed
approach to the design of nonholonomic dextrous
hands, more work has to be done under several re-
spects. In particular, planning should be demon-
strated for more general object shapes. At present,
we are able to manipulate an object of arbitrary (reg-
ular) shape by using an adapted version of a contin-
uation method proposed by Sussmann [18]. However,
in its practical implementation this method, just like
other related approximate iterative techniques (see
e.g. Fernandes, Gurvits, and Li [6], and Divelbiss and
Wen, [5]) suffers from an excessive demand of time for
planning. More effective planners are being consid-
ered for objects belonging to classes of practical in-
terest. Another important topic of research is con-
cerned with manipulation of objects whose shape is
not known a priori, and can be explored while manip-
ulating through the use of tactile sensing.
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