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Abstract

Rolling between rigid surfaces in space is a well-
known nonholonomic system, whose mathematical
model has some interesting features that make it a
paradigm for the study of some very general systems.
It also turns out that the nonholonomic features of
thig system can be exploited in practical devices with
some appeal for engineers. However, in order.to
achieve all potential benefits, a greater understanding
of these rather complex systems and more practical
algorithms for planning and controlling their motions
are necessary. In this paper, we will consider some
geometric and control aspects of the problem of arbi-
trarily displacing and reorienting a body which rolls
without slipping among other bodies.

1 Introduction

Nonholonomic systems have been attracting much at-
tention in the control literature recently, due to both
their relevance to practical applications (in particular,
to Robotics) and to the challenges that arise in plan-

ning and controlling them. Nonholonomic systems:

commonly encountered in practice can be subdivided
in two groups: those where nonholonomy is, so to say,
incidental, and basically represents an annoyance for
the designer; and those where nonholonomy is intro-
duced on purpose. In the first class one may consider
for instance bicycles and cars (possibly with trailers),
and space platforms equipped with robotic arms sub-
ject to angular momentum conservation. The sec-
ond group is formed by devices whose nonholonomic
behaviour is purposefully introduced and exploited.
One of the characteristics of nonholonomic systems
that may attract engineers is that in general they can
be driven by a small number of inputs (i.e., actua-
tors) with respect to the dimension of their configu-
ration manifold, thus allowing to simplify the hard-
ware design, reducing costs and increasing reliabil-
ity. Examples of such systems have been reported
e.g. by Brockett [1989], Nakamura[1993], Ostrowski
et al. [1994], Sordalen and Nakamura [1994], Bicchi
and Sorrentino [1995].

On the other hand, planning and controlling non-
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holonomic systems is in general a considerably dif-
ficult task. The very fact that fewer degrees—of-
freedom are available than configurations involves
that standard motion planning techniques can not be
directly adapted to nonholonomic systems. From the
control viewpoint, nonholonomic systems are intrinsi-
cally nonlinear systems, in the sense that they are not
exactly feedback linearizable, nor does their linear ap-
proximation retain the fundamental characteristics of
the system (such as e.g. controllability). Simple (dif-
ferentiable, time—invariant) feedback control laws, on
the other hand, can not be applied to stabilizing non-
holonomic systems, as shown by Brockett’s theorem
[Brockett, 1983].

An important class of nonholonomic systems for
which a reasonably satisfactory understanding has
been reached in the recent few years is the class
of two-inputs nilpotentizable systems that can be
put, by feedback transformation, in the so-called
“chained” form [Murray and Sastry, 1993]. A com-
plete characterization of such systems (i.e., necessary
and sufficient conditions for the existence of a feed-’
back transformation to chained—form) has been pro-
vided by Murray [1994], while an algorithm for find-
ing the necessary coordinate transform has been pre-
sented by Tilbury, Murray, and Sastry [1995]. As an
example, a car pulling an arbitrary number of trailers
has been shown to be a chained—form system by Sor-
dalen [1993]. Planning algorithms for chained-form
systems in free space have been described by several
authors: in his early work Brockett [1981] used si-
nusoidal inputs, that were subsequently investigated
in more detail by Murray and Sastry [1993]. The
methods of Lafferriere and Sussmann [1991], Monaco
and Normand-Cyrot [1992], and Jacob [1992], using
piecewise constant inputs in different arrangements,
are particularly well-suited to chained systems, where
they achieve exact planning (only approximate, iter-
ative planning schemes are obtained in the general
case). Further, chained systems are differentially flat
in the sense of Fliess et al. [1992], and therefore the
techniques of Rouchon et al. [1993] can be profitably
applied. As for the problém of feedback stabiliza-
tion to a point, time-varying or nonsmooth feedback
schemes have been proposed that achieve the goal for
chained systems (see for instance [Samson, 1995] and
[Sordalen and Egeland, 1995], and references therein).

In this paper, we consider some aspects of the prob-
lem of planning nonholonomic systems that can not-
be put in chained form. In particular, we consider me-
chanical systems that include bodies rolling on top
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of each other without slipping. The fact that such
systems are among the simplest (in terms of number
of configurations and inputs) exhibiting more general
behaviours than chained systems, along with their ap-
plication potentials in robotics, explains our interest
in their investigation.

2 Rolling Motions of Surfaces
2.1 The Plate—-Ball Problem

The study of the rolling motion of a sphere on a plane
is a classical problem in rational mechanics, recently
brought to the attention of the control community by
Brockett and Dai [1991].

Clonsider a ball that rolls without slipping between
two horizontal plates, one of which (say the upper)
is moved relative to the other. We also assume that
friction prevents the ball from spinning about the axis

through the contact points. The problem is to move’

the ball from an initial configuration (position and
orientation) to a given final configuration, by means
of suitable movements of the upper plate. Among
the infinitely many possible solutions to this prob-
lem, one may ask to determine the maneuver of the
plane that minimizes the length of curve traced out
by the sphere on the lower plate. Formally, the prob-
lem can be described as an optimal control problem
on the five-dimensional Lie group G = IR? x SO(3) of
the configurations g = (z,y, R) of the sphere, where
z € R}, y € R! are the coordinates of the contact
point on the lower plate, and R € SO(3) is a proper
3 x 3 rotation matrix describing the orientation of a
frame fixed with the sphere, with respect to a frame
fixed onto the lower plate. The velocity of the sphere
is an element of the tangent space at g, g € T,G.
Since G is a Lie group (with the group operation
(z1, 91, R1)(2,y2, R2) = (21 +22, y1 + Y2, R1 R2)), we
can assoclate each element of T'gG with the Lie alge-
bra of G, T.G = L(G) = IR? x s0(3) (e is the group
identity, e = (0,0,Ig). We denote by S(a),a € R?
a generic element of the Lie algebra so(3) of 3 x 3
skew—-symmetric matrices, with the standard under-
standing that

0 —a; ay
S(a) = a, 0 —Cz |,
—@y Gy 0

such that S(a)v = a x v,Va,v € RE. Let V; =
(v1,S(a1)) and V3 = (vq,S(az)) be vector fields in
L(G), then their Lie bracket is defined as [V, V3] =
(0, S(az S(a1) - S(a.l )S(az))

The foregoing optimal control problem can now be
written as the minimization of the cost functional

1
L(ul,uz):/ 20 + £ dt, (1)

subject to

g(o) = Gstart; (2)
g(l ) = Jgoal; (3)
g = Xi(g)ur + X3(g)us, (4)
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where
1 1
Xi(g) = 0 ] ; Xa(g) = 0 ] ,
—R(g)S(ez) L R(g)S(er)

and e; are.the standard unit vectors in IR®. Note
that (4) is the conventional form of a linear analytic
control system, with inputs u; and uj representing
the components of the velocity of the center of the
ball (which is the same as the velocity of the contact
point. on the fixed plate, and 1/2R times the velocity
of the moving plate, i.e., the actual physical inputs).
Observing that [—S(e3), S(e1)] = —S(es), by com-
putation of the rank of the control Lie algebra one
gets that the system is weakly accessible, and, since
no drift term 1is present, can conclude for the com-.
plete controllability of the plate-ball system ([Li and
Canny, 1990]; [Jurdjevic, 1993]).

Brockett and Dai [1991] were interested in an ap-
proximate version of the problem, which fitted into
an Engels canonical form investigated in that paper.
They modified the cost functional to

1
L(ut,up) = / (u2(t) + ud(t)) dt,

which they showed to be equivalent to minimizing arc
length for their problem, and provided optimal plan-
ning solutions in terms of elliptic integrals (of the first
kind). Later on, Jurdjevic [1993] investigated optimal
solutions of the complete problem (with cost func-
tional (2.1)), and obtained a full characterization of
the solutions, which are also expressed in terms-of el-
liptic integrals (of the third kind). A most interesting
aspect of these solutions is that they also minimize

the functional .
1 .
=~ / k2di
2 Jo
d’z

where k? = &£ 4 %Z—},L is the geodesic curvature of the
curve traced by the ball on the fixed plate. In other
words, such curve is a solution of the elastica problem
of Euler.

From an engineering viewpoint, the efficiency of
computation of a path joining the start and goal con-
figurations is often of more concern than the opti-
mality of its length. This is particularly true when
planning has to be executed in the presence of obsta-
cles, in which case a viable solution is to first plan the
motion of the object disregarding the nonholonomic
constraint, and subsequently approximate such path
with a number of nonholonomic paths staying close
enough to the holonomic path. To this purpose, the
optimal planning methods above described may not
be suitable, and more direct procedures have been
sought in the literature. :

Li and Canny [1990] proposed a planning algo-
rithm based on the use of coordinate-free differen-
tial geometric relationships, obtaining an elegant al-
gorithm capable of bringing the sphere to the desired
position and orientation by a sequence of three steps.
In the first step the sphere center is brought at the
desired goal position; in the second step, two orienta-
tion parameters of the sphere are settled by executing
a closed path of the center, while the third step ad-
justs the holonomy angle by executing a movement

(5)



such that the contact point on the sphere follows a
latitude circle. While step 1 is straightforward, pa-
rameters of motions executed at step 3 are derived
from an application of the Gauss-Bonnett theorem,
and step 2 is based on an algorithm specific to the
geometry of the sphere.

2.1.1 Rolling General Surfaces

To address the more general problem of manipulating
an object with general surface by rolling, some tools
from the geometry of surfaces are needed. Both the
rolling bodies are assumed to be smooth solid surfaces
% embedded in IR®. The surface of one of the bodies,
called the “object”, is also assumed to be convex. The
other body, whose position is assumed to be fixed in
space, will be sometimes referred to as the “finger”.
We attach to such surfaces local coordinate patches
(£, U);£:U C R? - Ty C T, so as to form an atlas.
We assume that the coordinate systems are orthog-
onal, i.e. £fI'f, = 0. In these coordinates, a Gauss

(normal) map n : £ — S% C R3, can be written as
£, xf.

n = Ilf'.xf.,u)' It is also useful to define a normal-,

ized Gauss frame [z,y, 2] = [fu/llfull,f,/|}f,||, n], with
ff f, =0.

The kinematics of rolling motions can be de-
rived from either the classical differential geomet-
ric viewpoint (using first and second fundamental
forms for £ at p, I, and II, respectively, and
Christoffel symbols of the first and second kind,
[i7, k] and I‘,l'j); or using Cartan’s definitions of met-
ric form My diag(jlfull, Ifs]]), curvature form
Ks = [x,¥]7[24,2,]M3", and torsion form Ty =
¥7 [xu, X0 ] Mgt
sults more convenient, we recall that the relation-
ship between the two sets of forms is given by
Ms = /I, Kz = M3T I, Mz', and TsMy
Mo MHIZ,, T2,). (of. e.g. Murray, Li and Sas-
try[1994]).

The kinematic equations of motion of the contact
points between two bodies rolling on top of each other
describe the evolution of the (local) coordinates of
the contact point on the finger surface, ay € R?,
and on the object surface, a, € R?, along with the
(holonomy) angle between the z—axes of the two gauss

frames 1, as they change according to the rigid rela-
tive motion of the finger and the object described by

the relative velocity v and angular velocity w. Ac-*

cording to the derivation of Montana [1988], in the
presence of friction one has

. —_ — —Ww.

g = MIIKTI[ ,.,;’];

G = M:lRwK:‘[;‘:”}; (6)
’l/.) = TiMypa; + T Moé,;

where K, = Ky + RyK, Ry is the relative curvature
form, and

—sin ¢

—cos Y

cos ¢
—siny

|

While the latter description re- -
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We note explicitly that, while this formulation of the
kinematics of rolling motions differs from the one used
earlier in this paper, simple geometrical relationships
exist relating the representation of the object orienta-
tion by means of R € SO(3) and that employing the
contact point coordinates a,,ay and the holonomy
angle .

The rolling kinematics (6) are readily written in
the standard control form, £ = gy (€)vy+ga(£)va, if we
consider a local parametrization of the configuration
manifold as given by the state vector £ € R% ¢ =
[#,9,2,v,%]F and take the angular velocities of the
rolling object as the system inputs, v1 = w, and vy =
wy. In the case of a unit sphere rolling on a plane, for
instance, the control vector fields adre

0 1
-1 0
g@)=| & | n®= %; ;
Tvgxﬁ T,Cy
where the shorthand notation S,,Cqa,Ta for
sin{a), cos(@) and tan(a), respectively, is used. By

computing the controllability filtration

To = span (g1,82)
I''n = To+[lo, T
'z = T+,
Te = Tacr+ [Tr-1,Tdl,

and its associated growth vector,

v =[dim Ty, dim Ty, ..., dim [}],

one obtains ¥ = [2, 3, 5, 5, ...] at every £ except
where the parametrization of the configuration man-
ifold is singular. In their controllability argument, Li
and Canny [1990] circumvented the latter problem by
using a different chart of the atlas covering the sphere.

Our interest here is however in pointing out that
(even in this simplest plate-ball example), nonholo-
nomic system comprised of rolling surfaces do not fit
conditions for most known exact planning methods to
be applied. In fact, since dim I'; # 4 + 2, there does-
not exist any state and feedback transforms that can
put the system in chained form (Murray, 1994]. Sim-
ilarly, Rouchon et al. [1993] observed that the system
is not differentially flat. On the other hand, system
(6) is not in nilpotent form, so that application of
the constructive method of Lafferriere and Sussmann
[1991] would only provide approximate results. Fur-
thermore, direct application of multirate digital con-
trol techniques to the system (6) is not possible, since
the corresponding exact sampled model is not avail-
able.

Noting that any system with n < 4 states and
m = 2 inputs can be put in chained form ([Hermes,
1989]), and hence is differentially flat, nilpotent, and
its sampled model can be exactly. computed, it can .
be observed that rolling systems with n = 5,m = 2 .
are in a sense the simplest systems to which powerful
known methods fail to apply.

We return to the case of an object with general
smooth, convex surface rolling on top of a plane.
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Notwithstanding the genericity of its Lie filtration
growth, the rolling kinematic equations do possess a
structure that can be exploited to find efficient plan-
ning algorithms. An useful result in this sense is the
following

Proposition 1 There ezist a state diffeomorphism
and a regular static state feedback law such that the
kinematic equations of contact (6) for planar fingers
assume a strictly triangular structure (as defined e.g.
in [Murray and Sastry, 1993]).

Proof. Rewrite (6) as

ay = M;lK,le: (7)
& = M;'RyK;'w;
b = [TsRy+ TJK 'w,

where w¥ = [~w, w,]. Recall that for plane fingers,
Ty = [0 0], and M; = I;. Define the regular state
feedback w = y(ay, a,, Y)W as

7(‘1)‘1 Qo, ¢) = KrMowa (8)

and apply a change of coordinates that suitably re-’
orders the states, to obtain

a, = W;
¥ = T,Mow;
&y = RyM,w,
which is strictly lower triangular. 0

As an instance of application of this technique,
consider the case of an object with an axial symme-
try rolling on a planar finger. Axial-symmetric ob-
jects are convenient for computations, since a single
patch of cylindrical coordinates provides an orthog-
onal parametrization of the whole surface except at
the north and south poles, and at one meridian. Let
such coordinate system be (f, (—m, 7) x IR),

[ plu,)Cy ]
f = '

p(ua v)Su
v
and notice that, for systems with an axial symme-
try, gﬁ = 0. Denoting %E = py, evaluating the sur-
face forms and applying the triangularizing feedback
above, the control system associated with the rolling
kinematic equations is obtained as ¢ = gi(q)v: +

gz(‘I)'-’z, with q-= ["’1 v, ¢7 T, y]T and

1 ; 0

0 1

g@=| "7 | mla)= 0
C’,/,p —-\/1+Pv25¢
—Syp —/ 14 p,2Cy

Objects with an axis of symmetry are of practical in-
terest in industrial parts handling applications, for
instance. Bicchi and Sorrentino [1995] discussed the
design of a dextrous robot hand for manipulating ob-
jects by rolling them between two plane fingers (see
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Figure 1: The nonholonomic dextrous hand
oped at the University of Pisa

devel-

fig. 1). Exploitation of nonholonomy allowed the
hand to be built using only three actuators, with sub-
stantial savings in terms of cost, weight, and failure
likelyhood with respect to other dextrous hands us-
ing actuators in numbers ranging between 10 and 30.
The viability of such a solution is subject to the va-
lidity of the conjecture that controllability of rolling
motions between surfaces is generic, i.e., almost every
pair of surfaces form a controllable rolling kinematic
system. An argument in favour of such conjecture is
that Li and Canny f[1990 showed that in the rolling
of a sphere on top of another sphere, controllability is
lost only when the radii are coincident or when either
vanishes. Based on the developments above, we can
give here another partial argument in support of that
conjecture:

Proposition 2 The kinem_atic system comprised of
any smooth strictly conver awial-symmetric surface
rolling on a plane is controllable.

Proof. The Lie brackets of the control vector fields
are computed as

0
0

0

g3 = [g1,82] =

0
0
0

gs = g1, gs] = ve ‘
el
(1+p'3')’ 7PLy

0
0

Pvvy 1+P’)_3kvP:v
gz gsl=| = £+(1+pz)=7’=
w0 Ce
oL

g5 =



The growth vector of the controllability filtration
is [2, 3, 5, 5, ]] whenever the distribution
span{g) g2 gs ga g5t i1s full rank. The singulan-
ties of the distribution are at the roots of either of
the equations

9)

Pov = 0; (10)

Condition (9) indicates that the distribution is singu-
lar when the object degenerates to a point (infinite
curvature surface). Note that, for convex surfaces
with finite curvature, the radius p can only vanish at
the north and south poles (no hourglasses allowed).
The poles are not covered by the above described
cylindrical coordinate patch anyhow.

Condition (10) corresponds to surfaces which are
not strictly convex. In fact, the curvature form for
surfaces of revolution in cylindrical coordinates is
evaluated as

1
K = [ P;; 1+p3
° 0

p=0;

(1;93“)”’7 2 ]

Note incidentally that such surfaces may still be con-
trollable, with a higher local degree of nonholonomy.
Surfaces with pw(v% = 0 are cones and cylinders with
linear generators. For such surfaces, the growth vec-
toris[2, 0, 0, .. ], hence cones and cylinders (as well
as the point surface) are actually noncontrollable.
The proof of global controllability for convex sur-
faces can be finalized by defining other suitable coor-
dinate patches to cover the borders of the cylindrical
patch (the meridian ¥ = —x and the north and south
poles of the object), and going again through the Lie
algebra rank condition calculations. a

3 Applications to Planning

The relevance of the strictly triangular form above
derived to planning is in the relative ease by which
the flows of the vectorfields can be integrated (the
term “integration” for “solution” of an ODE is used
properly in this case). In the plate-ball example, for
instance, the state feedback law

CyS. C .
w= { Gy =4, ]W (11)
transforms (6) in
% 1 1 0
v 0 1
y —54Cy -Cy
One has therefore, for any constant § € R
3 ug + 8t
Yo
(1)691 - ‘1&0 + 6t5vo , (13
t zo + TIT., [sin(vpo + 625y, ) — Sy,) (13)
[ 90+ 7= [cos(to + 8t5u,) — Cy,)

2816

and
Uo
vp + 6t
Qf’ = Yo . E (14)
To — 6t5¢o
Yo — 6tC1/»‘o
A solution to the planning problem for systemn (6) can
now be applied, consisting in a particular arrange-
ment of piecewise constant inputs. In fact, by con- .
catenating a sequence of constant inputs of the form

Wy = 1

{ Wy =0 0<t<T
1171:0 ' .
A ) T<t<2T .
2 = Wy

Wy = Wy
{ Wy =0 ° AT <t < (2k+ 1T
The 2k+1 unknown variables @4 i, W3 ; can be evalu-
ated by solving the system of five nonlinear equations
obtained by equating the final to the desired config-
uration, namely .

D1, kg1 D3,193 T1,191 —
¢T2h+1 —T5 0 - 'OQT;—TI °‘I>Tl (x0)—%Xge, = 0 (15)

Naturally, other concerns such as minimizing the
length of the path or avoiding limits of the workspace
can be taken into account by building a suitable opti-
mization problem constrained by (15). In [Bicchi and
Sorrentino, 1995] are reported the results of the ap-
plication of this method to planning for the plate~ball
problem. .

4 Discussion

While the fact that the alternating control scheme in-
troduced above works for planning local motions de-
scend directly from the controllability of the system
(the arguments in the proof of controllability for non-
linear systems rely precisely on such a construction of
the control sequence, see e.g. [Hermann and Krener,
1977]), what is the minimum number of control steps
that guarantees the existence of a solution for the-
generic motion in the large (in particular, whether
such number is 2k + 1 = n = 5), is an open prob-
lem. A close relationship with other piecewise con-
stant input based methods is observed, in particular
with the multirate schemes of Monaco and Normand--
Cyrot [1992].

The planning technique based on the triangular-
ized form above introduced can be applied to more
general cases, including that of a general surface of
revolution between flat fingers. For even more general
surfaces, a continuation algorithm of Sussman [1993]
can be applied. In its practical implementation this
method, just like other related approximate iterative
techniques suffers from an excessive demand of time
for planning. Also, the failure of the method because
of abnormal extremals encountered along the path to
be lifted , is possible theoretically. Research in this
direction 1s also being undertaken.

One of the main problems in the actual implemen-
tation of the techmque on manipulation systems is
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that, due to the feedback transformation used, control
inputs used for planning are not the available physi-
cal inputs (say joint velocities in a robot hand), but
rather complex functions of system states evolving
along the planned trajectory. Furthermore, in many
practical implementations it is hardly reasonable to
expect that the full state vector is available for mea-
surements.
are difficult to measure . While it is possible to inte-
grate the kinematic equations for the sphere to obtain
desired joint trajectory, this is difficult for objects of
general shape. Moreover, such approach would re-
sult in a completely open-loop control scheme. In
[Bicchi and Sorrentino, 1995] a technique based on
controlling the coordinates of the contact point on
the lower finger so as to track the trajectory resulting
from planning, by using real-time tactile feedback, is
described and experimental results are reported.
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