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Abstract 
The coordination of the movements of multiple robot 
arms manipulating a common object is considered. In 
order to provide a general framework for the study of 
such cooperating systems as common industrial arms, 
multifingered hands, legged vehicles, and others, the 
analysis does not rely on the assumption of full mobil- 
ity for each cooperating arm, which is otherwise com- 
mon in related literature. The aim of the paper is to 
provide a systematic method to characteriae the mobil- 
ity and differential kinematics of general cooperating 
systems. The proposed analysis and algorithms pr- 
vide an insi ht in the structure of the input (joint) - 
output (tasf) relationship of such systems. 

1 Introduction 
The exploitation of robotic systems with more com- 

plex kinematics than that of conventional, serial- 
linkage mechanisms is widely perceived as one of the 
main avenues of development for robotics. An example 
is the use of multiple arms cooperating in the manip 
dation of common objects. The concept encompasses 
systems of different scales and characteristics, such as 
multifingered hands, multiple arms, and legged vehi- 
cles. In most cases, the kinematic analysis of the sys- 
tem is based on the assumption that every single co- 
operating manipulator has as many degrees-of-freedom 
as necessary to achieve arbitrary position/orientation 
in its task space. For example, cooperating arms that 
rigidly grasp a common object with their end-effectors 
are usually assumed to have at least six degrees-of- 
freedom, while the fingers of dextrous hands are sup 
posed to have at least three joints so as to be able to 
exert arbitrary forces at their fingertips. 

This assumption is not always verified in practical 
applications of cooperating manipulation, as for exam- 
ple in the case that common industrial manipulators 
with 3 or 4 joints are used. Moreover, the recent in- 
troduction of such devices as MIT’s Whole-Arm Ma- 
nipulator WAM) Salisbury, 19871, the University of 

1 9 9 4  as well as the desire for a more general theory of 
mampulation, renders it necessary to reformulate the 
problem of mobility and kinematic analysis by drop  
ping the above assumption, and motivates this paper. 
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In fect, the whole-arm manipulation idea implies that 
also inner links, having deficient kinematic mobility, 
can contribute to manipulation. Vassura and Bicchi 
[1990] applied this idea to ”whole-hand” manipulation; 
Mirra and Orin [1990] have shown the advantages of 
“power grasping” in terms of grip robustness. 

The aim of this paper is to provide a systematic 
method for analyzing the mobility and kinematics of 
multiple robot systems. The basic questions to which 
the paper attempts to give an answer are: a) h o s  many 
parameters are necessary to describe the configurations 
of a cooperating mechanisms and of its relevant sub- 
systems (mobility analysis), and b) which are the mo- 
tions that the object can undergo in a given configura- 
tion of the mechanisms, and which joint motions wil l  
realize them (kinematic analysis). Information on poe  
sible free motions of the object in an underconstraining 
grasp, and on redundant robot joint motions are also 
provided. 

2 Modeling of Multiple Robot Systems 
The model of the cooperating manipulation system 

we assume k comprised of an arbitrary number of robot 
arms (i.e. simple chains of links connected through 
rotoidal or prismatic joints), and of an object, which 
is in contact with some or all of the links (see fig.1). 
Several types of contact models, each of them affect- 
ing the motion capabilities of the system in a Mer-  
ent way, can be used to describe the interaction be- 
tween the links and the object. Among the most use- 
ful models are probably the point-contact-with-frictlon 
model (or “hard-finger”), the “soft-finger” model, and 
the complete-constraint model (or “very-soft-finger”) 
[Salisbury and Roth, 19821 [Cutkosky, 19851. 

We assume that, for the Cth of the t~ contacts, the 
location of the contact centroid ([Bicchi, Salisbury, and 
Brock 19901) q can be measured, for example by means 
of force/torque-based (intrinsic) contact sensors (as il- 
lustrated in the above reference), or any other equiva- 
lent tactile sensing device. Fig.1 shows the contact cen- 
troid vector ’q in the local frame E .  fixed to the j-th 
robot link. The 3-vector oj defines h e  position of the 
origin of E, in base frame. Both oj and the orientation 
of E, w.r.t base frame are known functions of the ma- 
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Figure 1: Local and base reference frames in cooperat- 
ing manipulation. 

nipulator(s geometry and current joint positions (col- 

imposed by the i-th contact can be explicited in terms 
of the relative velocities of two reference frames "Ci and 
"Cj both having the origin a t  the contact centroid q, 
and fixed to the object and to the manipulator link, 
respectively. 

Let wbe the angular velocity of the manipulated ob- 
ject, and v the linear velocity of a reference point fixed 
with the object, both expressed in base frame. Choose 
the object reference point to coincide with the origin of 
base frame at the instant being considered. The linear 
and angular velocity (expressed in base frame) of "Ci 
can be written as 

lected in t i! e r-vector q). The kinematic constraints 

O w i  = w, (1) = v + w x q, 

or, for the n contact points, as 

where 

U = ( P , w T ) T ;  
O X  = ("k? ,..., ok:,owT ,..., Ow,) T T  ; 

and S(q)  is the cross-product matrix for q. 
Analogously, the linear and angular velocities of 

frame "Ci corresponding to joint velocities q can be 
written in compact form as 

"x = Dq, (4) 
where 

m -  m - T m - T  m . T m W T m  T 
X = (  c1, C l , " . ,  =,, 1 , Wl,...,mW:)T, 

and D M a 6n x r matrix whose elements are functions 
of the robot geometric parameters, joint angles, and 
contact locations. 

Assuming a rigid-body model of the object and the 
links of the manipulators, the kinematic constraints 
imposed by contacts can be expressed as 

H (OX-" X) = 0 (5) 

c 

x z  

Figure 2: Two onclink manipulators holding an ob- 
ject. 

where E = b,, (the 6n x 6n iden tity matrix) for 
complete-constraint contacts, and H = (I&nlO~,,)nx~) 
(where O j x k  is a j x k block matrix of reroes for 
hard-finger contacts. For soft finger contacts, we h ave 

H= (-1 0 0  0 9 

where ni is the normal to the contacting surfaces at 
the contact centroid. This choice of H amounts to 
imposing that relative motions are only allowed which 
consist of pure rolling, i.e. rotations about axes lying in 
the tan ent plane to contacting surfaces at the contact 
centroit. An appropriate H matrix can be easily built 
even in case the nature of contacts is not homogeneous 
for Merent contacts in the same manipulation system. 

It should be pointed out that we will not consider ex- 
plicitly unilateral or conic constraints on contact force 
in this paper, although such are usually in effect for, 
e.g., the hard and soft finger contact models. This is 
because we assume that the system of forces grasping 
the object is force closure, which ensures that grasp 
ing forces can always be exerted on the object such 
that both balance equations and contact force con- 
straints are not violated. An optimal grasp force con- 
trol scheme that r e h e  grasp stabilisation is discussed 
in [Bicchi, 19921. 

2.1 Example 
To illustrate the procedure used to build up the G, 

D and H matrices, we consider the simple example 
reported in fi 2. Two one-link arms hold a common 
object. The tnks  of the manipulators and the die 
tance between the two rotational joints are assumed 
of the same length L. The link frame E1 coincides 
with the base frame, so that we have 01 = (0 0 O)T; 

c1 = (L L O ) T ;  nl = (1 0 O)=; n1 = (-1 0 O)=. The 
0 2  = (L 0 0)T; a1 = a2 = (0 0 1)T; c1 = (0 L 0 ) T ;  
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matrices G and D are evaluated as 
1 0 0  1 0  0 0 0 0 0 0 0  

0 0 1  0 0  1 0 0 0 0 0 0  
0 1 0  0 1  0 0 0 0 0 0 0  

G =  ( 0 0 1  0 0  L I O O I O O  
0 0 0  0 0 - L O 1 0 0 1 0  

- L O O - L L  0 0 0 1 0 0 1  

and 
- L O 0  0 0 0 0 0 1 0 0 0  

DT=( 0 0 0 -5 0 0 0 0 0 0 0 1)' 

The matrix H changes depending on the assumed con- 
tact models. For instance, if both contacts are hard- 
finger, H = (b loaxs ) .  1 f both contacts are soft-finger, 
the matrix H results 

If the contact on the first link is soft-finger and hard- 
finger on the second link, we have 

while, for two complete-constraint contacts, we have 
H = 113, and so on for different possible combinations. 

3 Mobility and Kinematic Analysis 
manipula- 

of fieedom of the overall mechanism and of its signif- 
icant subsystems. In particular, we are interested in 
the evaluation of the connectivity, redundancy and in- 
determinacy of the system. 

The connectiwity number (Ne) of a cooperating 
mechanisms manipulating a common object c y  be 
defined ([Salisbury and Roth, 19821) as the " m u m  
number of parameters required to specify the position 
and orientation of the object with respect to the base 
frame, subject to the kinematic and contact constraints 
of the system. The redundancy number (Np) is d o  
fined as the minimum number of parameters required 
to specify the position and orientation of every link of 
the mechanism, when considering the object as k e d .  
The sum of the connectivity and redundancy numbers 

strict sense. Finally, the 
of a cooperating manip 
the minimum number of 

parameters required to specify the position and orien- 
tation of the manipulated object with respect to the 
base frame, when all joints are locked. With respect 
to previous results on the subject, the proposed mobd- 
ity analysis is able to take into account singularities of 
the mechanism, thus providing exact results whereas 
the well-known Griibler's formula would only provide 
inequality relationships. More importantly, the pro- 
p d  method allows not only the enumeration of the 
degreecl of freedom, but also their kinematic descrip- 
tion. It is in fact the aim of the kinematic analysis 
of a general cooperating robot system to provide the 
analytic description of its degrees of freedom and their 

The mobility analysis of a cooperatin 
tion system consists of the enumeration o 4 the degrees 

relationships, i.e., to understand which motions can be 
imparted to the object, and which joint movements can 
realire them. 

Consider for instance the case of a single arm m e  
nipulating an object firmly grasped by its end-effector, 
and suppose that the arm has the minimum number of 
independent joints necessary to achieve any task-space 
goal l. Obviously, N, = Ni = 0 in this case, while the 
connectivity of the mechanism is full (equal to the di- 
mension of the task-space). Given any desired velocity 
of the object U, the corresponding joint velocities can 
be evaluated as 

The case of multiple cooperating arms, each in minimal 
configuration and firmly grasping the object, is also 
simple. In fact, in this case the matrix D introduced 
in (4) must be invertible, and we can write 

q = D-lU. 

To such a system it is possible to apply the so- 
called master-slave control method for cooperating 
arms [ N a h o ,  et. al., 19741, consisting in position con- 
trolling one of the manipulators (the master), and force 
controlling the remaining arms. Other, more complex 
techniques proposed in the field of cooperating arms 
also apply to this case, see for example [Uchiyama and 
Dauchee, 19881, [Kokkinis, 19891. 

When all the cooperating arms are minimal, except 
at least one which is redundant, and use only their 
end-effectors to completely constrain the object, we 
still have full connectivity and aero indeterminacy, but 
N, > 0. The problem of finding the joint velocities 
corresponding to a given object velocity U has multiple 
solutions. It is customary in the analysis of redundant 
robotic systems to write all possible solutions as 

(6) q = D + G ~ U  + (I - D+D) y, 

where D+ is the Moore-Penrose pseudeinverse of D, 
and y is a free vector that parameterizes the homo- 
geneous part of the solution. Note that the above 
relationships only provides a particular solution and 
a parameterisation of possible homogeneous solutions 
to our problem. The common interpretation that, for 
y = 0, we obtain the "minimum norm" solution is to 
be rejected, as discussed in [Melchiorri, 19901. 

In the general case addressed in this paper, we have 
to consider also the case where the system comprises 
at least some manipulators with deficient kinematics. 
This may imply that not all arbitrary task-space tar- 
get velocities can be achieved (the connectivity is less 
than full), while redundancy can be present (Np 2 0 
Also, on account of considering general contact moi- 
eh, general systems may result indetermined (Nc 1 0). 
In such a general case, the pseudo-inverse solution can 
not be applied meaningfully, and we have to turn back 
to (5 to obtain the correct answer. Substituting (2) 
and t4) in (5), we have 

H G ~ ~  - H D ~  = BT; - fi;l= 0. 

I w e  wil l  term such non-redundant, non-deficient CO- 

tiOM 88 "&sl" 
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This relationship can be conveniently put in matrix 
form as 

(GT - D )  (i)=o. (7) 

Let Q = (CP - D) (Q is a 6n x (6+s) matrix), and 
C a (6 + v )  x q matrix whose columns form a basis of 
the q-dimensional nullspace of Q. Finally, partition C 
as C = (CT CT)T, where C1, and Ca are 6 x q, and 
v x q blocks, respectively. 

The columns of C1 span the subspace of all possible 
rigid first-order differential motions of the object that 
do not break the contact constraints, and the columns 
of Ca span the corresponding subspace of joint m e  
tions. A complete description of the input-output re- 
lationship of a multiple-arm system can be obtained 
based on the two matrices C1 and Ca. In fact, by 
applying column operations only and partitioning a p  
propriately, it is always possible to put the matrix C 
in the following form: 

where the columns of [Cll Cl,] form a basis of 
the range space of C1, R(C1), and the columns of 
[Cas Cas] form a basis of R(C3). Therefore, we have 
that there exist some coefficient vectors XI, xa, and 

(whose dimensions suit the problem at hand such 
that every possible pair of object velocity U an d joint 
velocity q that comply with the kinematic and contact 
constraints of the multiple arm system can be written 
as 

3.1 Discussion 
Equation (9) and the structure of the block matrices 

in 8 contain the desired information on the mobility 

analysis results can be summarbed as follows: 
an Ah ematics of general cooperating arms. Mobility 

0 The mobility of the system is equal to the rank of 
the C matrix, i.e. N,,, = rank(C). 

0 The connectivity of the system is equal to the rank 
of the C1 block, Ne = rank(C1) (and hence to the 
sum of the number of columns of Ctl and Cia). 

0 The indeterminacy of the system is equal to the 
number of columns of C11, Ni = rank(C11). 

0 The redundancy of the system is equal to the num- 
ber of columns of Cas, Np = rank(C2s). 

More detailed kinematic information can also be 
elicited from (8): 

0 72 C11 is the indeterminacy subspace of object 
ve I ’  ocities that are left free by contact constraints. 
Note that ‘R(C11) = Al GT). These object me 

nation of joint motions. Accordingly, if the object 
tions cannot be actuat e6 directly by any combi- 

is moving along some direction in this subspace at 
some instant without external or unmodeled itic- 
tion forces disturbing it, it will move indefinitely 
at constant speed in that direction ’. 

0 R(C28) is the redundancy subspace of joint veloc- 
ities that do not affect obiect velocities. but onlv 

0 

0 

0 

4 

modify the configuration 5 the manipdtor  arm;. 
Note that ‘R(C2a) = n’(D). 

If both Cas and C11 result empty (Nj = N, = 
0), there is a one-to-one correspondence between 
joint velocities in R(C21) and object velociti es in 
R(C,,), which can be written in parametric form 
as 

Vx E w. (10) = Ca2x (“ U = C12x 

If the number of columns of the blocks C11 and 
Caa equals the dimension of the task space, the co- 
operating system is “minimal”. The mapping (10) 
can be used for further analysis of the kinematic 
capabilities of the mechanism (e.g., manipulabil- 
ity ellipsoids), or for resolved-rate control of the 
object motions. 

If Ni = 0 and N, > 0, any desired velocity of the 
object in the feasible subspace R(C12) can be o b  
tained by means of infinitely many combinations 
of joint velocities. From (9) we obtain 

q = c2,c$i + c w y ,  VU E R(Cl,), (11) 

where y E SNr is a free coefficient vector. Equa- 
tion (11) presents a particular and arameterised 
homogeneous solution similar to (67. Any veloc- 
ity U ‘R(C12) can not be achieved by the sys- 
tem without breaking contact constraints. Note 
however that second- or higher-order differential 
motions in the forbidden directions may still be 
possible, see e.g. [Nielsen, et. al., 19911. 

If Ni is not zero (C11 is not empty), the object ve- 
locity corresponding to a given joint velocity is not 
uniquely determined by the quasi-static analysis. 
In fact, from (9), 

U = c1ac&i + CllY, vq E R(C,,), (12) 

where y E RNi is a free coefficient vector. The 
apparent physical non-sense of such indeterminacy 
is due to the assumed quasi-static model of the 
system, and can be readily solved by taking into 
account the object dynamics. 

Case Studies 
In the following, two case studies are presented in 

order to illustrate the application of the above tech- 
nique. The first case refers to the example of fig.2, i.e. 

%owever, some of these “!&” motions can be indirectly con- 
trolled in iome CMCS via exploitation of the dynamic couplings 
the object might have. For a related d i r d o n ,  see e.g. (Jab 
and Rodrigues, 19911. 
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two onolink arms holding a common object. The m e  
bility and kinematic analysis of the system is presented 
in mme different h potheses about contact constraints. 
The seeond exampe refers to two cooperating SCAM- 
like robots, together manipulating an object: the cases 
of completoconstraint contacts and hard-finger con- 
tacts are considered. 
4.1 Case Study 1 

Consider the simple example shown in fig. 2, for 
which the matrices G, D, and the matrices H cor- 
responding to different contact models have been pre- 
sented previously. The mobility and kinematic analysis 
of the mechanisms proceeds accordingly. 

If both contacts are modeled as hard-finger, at eech 
contact point the object is free to rotate about any 
direction in the space. Obviously, we expect that some 
of these rotations will be inhibited by the other contact 
constraint. In fact, by applying the mobility analysis 
algorithm, we obtain 

2 

Accordingly, the mobility and connectivity of the sys- 
tem are Nm = Ne = 2, being the redundancy N, = 0. 
The system is quasi-statically indeterminate (Ni = 1). 
In fact, the object may freely rotate, without violating 
contact constraints, about the axis through the contact 
points, which is normal to the contact planes: this ono 
dimensional indeterminacy subspace is analytically de- 

Besides this free motion, the system may realise a 
unique coordinated motion consisting of a translation 
of the object in the z direction, ueoop = aC12, V a  E S1. 
Such motion can only be realized by contemporane- 
fnsly moving the two joints with the same velocity, 

If both contacts are soft-finger (i.e., rotations about 
the normal direction to the contact surface are pre- 
vented by friction), the indeterminacy of the previous 
case is eliminated. In fact we have 

xribed by &-&* = aCl!,Va E %'. 

qeoop = aC22. 

from which Nm = Ne = 1, Ni = N, = 0. In this case, 
only the coordinate movement of joints displacing the 
object along the 2-direction is possible for the system. 
Note that the same result is obtained if any single con- 
tact is modeled as soft-finger. 

If any of the contacts are complete-constraint, all 
the C<j block matrices result empty, and hence Nm = 
Ne = Ni = N. = 0. There are no possible motions 
for the mechwm,  as can be easily understood from 
direct inspection of the system. 
4.2 Case study 2 

In this example, we will consider two four-degrees- 
of-freedom, SCAM-type robots manipulating an ob- 
ject, M shown in fig. 3. Contact points are located 

X V - c 

Figure 3: Two SCARA robots cooperating to manip- 
ulate an object. 

at cl = (L L L)T,  and c2 = ( 3 L  L L)T; the corro 
sponding normal unit vectors are nl = (1 0 O)', and 
PI = (-1 0 O)T. The origin of the link reference frames 
are at 01 = (0 2~ o ) ~ ,  0 2  = ( L  2~ o ) ~ ,  0 8  = (L L o)', 

07 = ( 4 L  L 2L)*, and 0 8  = (4L  0 2L)T,  respectively. 
The joint axes are q = s2 = = s4 = (0 0 l)T, and 
SS = S6 = s7 = sg = (1 0 O)T. Note that joints 4 and 
5 are prismatic. Accordingly, the G and D matrices 
are: 

0 4  = ( L  L o )T ,  0 5  = ( 4 5  L L)T , 0 6  = (4& L 

G= 

1 0  0 1 0  0 0 0 0 0 0 0  
0 1 0  0 1 0 0 0 0 0 0 0  
0 0 1 0  0 1 0 0 0 0 0 0  
0 - 1  1 0 - 1  1 1 0 0 1 0 0  

-1 1 0 - 1  8 0 0 0 1 0 0 1  
1 0 - 1  1 0 - 8 0 1 0 0 1 0  

DT = 0 0 0 1 0 0 0 0 0 0 0 0  ' 

r l l 0  0 0 0 0 0  1 0  0 0 
1 0 0 0 0 0 0 0 1 0 0 0  
0 0 0 0 0 0 0 0 1 0 0 0  
o o ~ ~ o o o o o o o o  
0 0 0 0 0 0 0 0 0 1 0 0  
o o ~ o i o o o o i o o  

r 0 0 0 0 1 1 0 0 0 1 0 0  I 
If two complete-constraint contacts are used to model 

the grip on the object, we obtain 

/ ; - ;  -1 0 0 

\ 0  0 1 1  

The system in this configuration has connectivity 
Ne = 3, no redundancy nor indeterminacy. The feasi- 
ble motions for the object are all pure translations (the 
last three rows of C11 are zeroes), achieved by moving 
the joints with suitable combinations of the columns of 
c22. 

On the other hand, if two hard-finger contacts are as- 
sumed to be in effect (which can be imagined if the 
grippers in fig. 3 are substituted with two sticks), we 
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have: 

C =  

0 
1 

-1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

- 

L O 0 0 0  
0 L 0 0 0  
O O L O O  
0 0 0 0 0  
0 0 0 1 0  
0 0 0 0 1  
0 1 0 0 1  

0 0 0 0 0  
0 0 L - L  0 
L 0 0 L - L  
0 0 0 0 0  

0 0 1 - 3  0 

1 -1 0 1 - a  

0 1 - 1  a a 

0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
1 0  
0 0  
0 0  
0 1  
0 0  
0 0  

- 

In this case, the mechanism has full connectivity 
(Ne = 6), although one of the movements of the object 
is quasi-statically indeterminate (Ni = 1). The system 
also exhibits redundant degrees of freedom in this con- 
figuration (N, = 2). By inspection of the columns of 
the block matrices above, it can be easily seen that the 
indeterminacy is due to rotations of the object about 
the axis joining the two contact points, which cannot 
be resisted by hard-point contacts. Also, redundant 
motions of the arms are obtained by moving any of 
the third and sixth joint, i.e. rotations about the axis 
of the last links of the SCARA arms. 

5 Conclusions 
We discussed the mobility and kinematic analysis of 

robotic systems consisting of multiple arms and a com- 
mon object, considering the general case in which some 
or all of the cooperating arms have deficient kinematic 
capabilities. This problem is relevant to some cases of 
industrial manipulation. However, the most important 
applications of the proposed analysis are probably in 
the field of dextrous manipulation. In fact, the pro- 
posed method allows to understand the structure of 
the instantaneous input-output relationship between 
joints and object velocities for the mechanism under 
given contact constraints: cases of multiple contacts 
on the same manipulator, even in passive links such as 
the palm, may be considered and solved. The case of 
single robots may be regarded as a special case of the 
presented technique. 

Among the limitations of the proposed method, it 
must be noted that no information is provided as to 
the evolution of contact point position in case rolling 
contact are present. Among the activities for further 
development of the presented technique, the authors 
are addressing the problems of the static analysis (in 
the force domain) of cooperating manipulators, the def- 
inition of some index expressing the kinematic capabil- 
ities of the mechanisms, and the problem of the hybrid 
control of cooperating manipulation. 
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