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Abstract
A control technique for the control of contact forces be-
tween the links of a multiple-chain robot system (such
as a robot hand) and an object is presented. The goal
of the control method is to optimise contact forces so
as to minimise a cost function, corresponding to min-
imisation of a weighted sum of factors such as energy
consumption and sensitivity to force disturbances. A
globally stable algorithm is provided, that asymptoti-
cally converges to the optimum.

1 Introduction

The force and moment balance equations for an ob-
ject subject to an external force f and moment m,
while grasped by a robotic mechanism by means of
n contact forces p;, can be written in matrix notation

as
w = Gt, m
where w = (f7,mT)7, ¢t = (pT,...,pI)7, and
Ie -+ I
G‘—_(clsx e cnsx)'

The relationship between contact forces and the
torques at the m joints can be written as

r=J3T¢,

where J is the equivalent of the jacobian matrix for
conventional manipulators. We assume that, in a
neighborhood of the equilibrium configuration under
investigation, G and J are full row rank. A general
solution of (1) can be written as

t= GRw + Ey, (2)

i.e., the sum of a particular solution of (1) (G® stand-
ing for a generic right-inverse of G), and a homoge-
neous solution (E being a basis matrix of the nullspace
of G). The coeflicient vector y € R* parametrises
the homogeneous solution. “Internal” contact forces
t = Ey have no direct effect on the external force w.
However, they play an important role in the robustness
of the equilibrium w.r.t. slippage induced by external
disturbances. Coulomb’s law of friction can be written
for each contact point as:

pTm > aillpill, ®3)
where n; is the unit vector normal to the object sur-
face at c;. Internal forces also contribute to the local

contact force intensity, thus influencing the danger of
damage on fragile objects, and the energy spent for
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maintaining the desired equilibrium. This ests to
keep contact forces below a suitable tlu'esh;l':gs

IPsll < fi,maa > 0. (4)

More constraints on contact forces may be added de-
pending on the particular task. Their treatment is
analogous, and omitted here for brevity. The problem
of :lptima.(lil:;d choosmg'ﬂ internal forcesel:las been exten-
sively studied, mostly as a constrained programming
problem in a linearised (e.g., E!ll) or non-lineg:r setting
({2])- In our approach a more efficient, globally asymp-
totically convergent algorithm is obtained which real-
ises the goal of keeping forces as far as possible from
violation of constraints (3) and (4).

2 Cost Function

Note that constraints (3) and (4) on the i-th contact
force can be written in the form

oiji(y) = aijIpill+ Big pimi+ %3 < 0, (5)
where a;1 = oy, fi1 = -1, and %,1 = 0 for friction
constraints; a;,3 = 1, Bi,2 = 0, and i3 = — fi mes for
maximum force constraints.

Let Of; C R indicate the set of grasp variables
that, in the presence of a given load w, satisfy con-
straints (5) of corresponding indices with a (small, pos-
itive) margin %, 0F; := {y | Jeq(y) < —x}. For the
i-th contact and the j-th constraint, consider the cost
function

(o) — (207571 Yy € 9
K"(')_{aa,-"j+ba.-,j+c y ¢ n}: ) (6)

An overall cost function is defined as the sum of such
terms:

. 2
V) =D wiiVii(y) (M

i=1j=1

where w;; > 0 are suitable weightis. By partitioning
(2) as

(7)o ()

we have
Pi(y)=P; w+My. (8)
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The gradient of the cost function with respect to y is
the weighted summation over i and j of the terms

Vij - _—'l.’j 9-01’51' yEX; (9)
a"’ (28005 +8) 234 yeay,
;;‘j = aig MTPi+ Biy MIny, (10)

and p = p/||p|] The cost function hessian is the
weighted summation of the terms

_a & 3 00:,10'5"
3’"-;..4:{ —ag—"‘ny*’?; :y _""':y"
o) P o .
oy (20005 +b) L + 2a258d —ﬁd,(

B _ . M- B M
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Imposing twice continuous differentiability of V;; on

the boundaries of (If; provides conditions on a, b, and
c.

Proposition 1 The cost function defined in (7) with
a =32, b= 3%, end c = %, is strictly convez with

respecttoyeg“.

The proof follows from observing that the discontinous
terms in (5), (9), and (11) can be regarded as the lim-
its of sequences of fanctions continuously differentiable
over R*. Hence, the positive definiteness of the hessian
of V is a necessary and sufficient condition for its con-
vexity. Being (11) the summation of matrices which
can be trivially shown to be s.p.d., it will suffice to
show that the intersection of the nullspaces of each
addend is sero. Focusing on terms due to maximum
force constraint (j = 2), suppose there exists a vector

x € ®* such that, for every i,

¥o; ; o
x7 a;;’x =ox™MT (I — B, pi) Mix=0;
o ; 00T,
T8 iy axT To:PTMix=0.
ay ay ¢ Mi p p‘
These conditions imply that M;x should be parallel
and normal to P;, respectively. The only solution is
for M;x = 0. Since this must hold for every i, by
juxtaposing all such relationship we have the condition
Ex = 0. Being the columns of E independent (they
form a basis of the subspace of homogeneous solutions),

it follows xfg—;-‘;x >0,Vx+0. O

3 Control algorithm

The aim of this section is to design a suitable law
for controlling contact forces in the grasp of an object,
which is subject to an external force w. Such forces
are assumed bounded and resistible (i.e., there exists
at least one possible solution to the grasp equation (1)
with constraints (4), and (3)). Moreover, we assume
w to vary slowly, so that w ~ 0.
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Proposition 2 Assume that an object in a stable
grasp is subject to forces and torques w that are re-
sistible. Then, for ( > 0 and any initial condition
¥(0) = y,, the joint torque control law
rt)=-ITGRw + ITE y(t); (12)
with the update law
3vlav

y(t) = (— =, 13
=55 0 13)
ensures that the object equilibrixm is maintgined, while

asymptotically converging to the optimal (in the sense
of minimizing the cost (7)) set of contact forces.

Cleatly, the first term on the right-hand side of (12)
ensures that equilibrium is maintained. Since the cost
function has been shown to be strictly convex, the dy-
namics of the optimisation parameter vector y defined
in (13) have an unique equilibrium point in y, where
the cost gradient vanishes. To show the giobal asymp-
totic stability of §, introduce e(t) = y(t) — ¥, and con-

sider the p.d., radially unbounded Lyapunov candidate
V (e) obtained from (7):
. ovT avTevav
= . = e — ——— — 4
ety

which is clearly negative definite.0

Note that, should J be less than full row rank, an
arbitrary contact force t may not be realised by con-
trolling joint torques. In this case, which is of relevance
to robot systems using all their parts to manipulate ob-
jects (e.g., in “power ing” and in “whole-arm ma-
nipulation”), the optimal contact force must be chosen
in the range space of a suitably modified E matrix.

In (12), it is assumed that w is known. This is true
in the case that w is a pre- ed force-trajectory to
be realised by the object (used as a tool) upon the
environment. Thus, a feed-forward control scheme is
realized. In alternative, w can be measured by force
sensors. Note however that, once the static gain of the
joint position controller loops is set, the particular so-
lution of (1) corresponding to the physical distribution
of contact forces to balance w establishes joint torques
upon which the optimising term can be superimposed.

Although the control algorithm has been discussed
in the continuous time domain, it is straightforward to
derive its discrete time analog. In this case, however,
the global asymptotic convergence of the algorithm can
be proven only for values of { smaller than a limit value.
Such limitations on { will only allow the convergence
to a finite neighborhood of the optimal grasp.

The discussed method has been successfully simu-
lated in various conditions for different robotic mecha-
nisms. Preliminary experimental results have also been
obtahig;d, showing good applicative potentiality of the
method.
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