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Abstract cles (AUV) equipped with side sonar scanners is to de-
tect and recognize objects (mines, wrecks or archeologi-
We present a complete characterization of shortest pagfind, etc.) on the sea bed (see €.¢[ 8, 10]). Side-scan
to a goal position for a vehicle with unicycle kinematsonar is a category of sonar systems that is used to effi-
ics and a limited range sensor, constantly keeping a givgiantly create an image of large areas of the sea. There-
landmark in sight. Previous work on this subject stugbre, in order to recognize objects AUVs must move keep-
ied the optimal paths in case of a frontal, symmetricaliig them inside the limited range of the sensor.
limited Field—Of—View (FOV). In this paper we provide Motivated by those application, in this paper we pro-
a generalization to the case of arbitrary FOVs, includin@se the study of optimal (shortest) paths for a nonholo-
the case that the direction of motion is not an axis of syMemic vehicle moving in a plane to reach a target position
metry for the FOV, and even that it is not contained in thghile making so that a given landmark fixed in the plane
FOV. The provided solution is of particular relevance tg kept inside a planar cone moving with the robot.
applications using side-scanning, such as e.g. in underThe literature of optimal (shortest) paths stems mainly
water sonar-based surveying and navigation. from the seminal work on unicycle vehicles with a
bounded turning radius by Dubins [9]. Dubins has char-
acterized the finite family of optimal paths for the particu-
lar vehicle while a complete optimal control synthesis for
this problem has been reported in [4]. Later on, a simi-
lar problem with the car moving both forward and back-
rd has been solved with different approaches$ in [11],

1 Introduction

In several mobile robot applications, a vehicle with no
holonomic kinematics of the unicycle type, equipped wi

a limited range sensor systems, has to reach a target w _ In particular, in [14] the optimal control synthesis

keeping some environment landmark in sight. For exa T the Reeds&Shepp car has been provided. Minimum

ple, in the Visual-Based control field th_e ve_h|<_:le usgal heel rotation paths in for differential-drive robots have
has an on-board monocular camera with limited Fielg—

. . - Deen considered in][6]. More recently, also the problem
Of-View (FOV) and, subject to nonholonomic constramgf determining minimum time trajectory has been taken

on its motion, must move maintaining in sight one Bhto account in[[16],[T1] and[7] for particular classes of
more specified features of the environment. On the othg, e.g. latter is on underwater robots. Finally, pre-
thand, in the f'el? OIZ ;Jndirvtvater surveljnr:jg andt na\\//'g&bus works on the same subject of this paper|([13]] [12],
lon, a common fask for Autonomous Underwater eh[m) have studied the optimal paths in case of a vehicle

*This work was supported by E.C. contracts n.224428 CHAWith a limited on-board camera but only with a symmetric
2;52724%0253YCC%NNEZT( ,\(ICOOPifa;"I‘Eg Ol?ieCtS) Ne(tjwmzk;%igcsll@ﬂm FOV with respect to the forward direction of the robot. In

etwork of Excellence) and n. anet H H

t The Interdept Research Center “Enrico Piaggio,t’ms paper, we pre_sentamore general s_ynth.eS|s of shortest
University of Pisa, via Diotisalvi 2, 56100 Pisa, Italy.Paths in case of side sensor system_s, ||k_e S'_de sonar scan-
paol o.sal aris, |.pallottino,bicchi @ng. unipi.it ners on UAVs, where the forward direction is not neces-
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sarily included inside the sensor range modeled as a cone A
centered on the vehicle. The impracticability of paths that
point straight to the feature lead to a more complex anal-
ysis of the reduction to a finite and sufficient family of
optimal paths by excluding particular types of path.

In the rest of the paper, we provide a complete opti-
mal synthesis for the problem, i.e., a finite language of
optimal control words (at most 15 words, depending on
orientation of the sensor with respect to the forward direc-
tion), and a global partition of the motion plane induced
by shortest paths, such that a word in the optimal lan-
guage is univocally associated to a region and completely

describes the constrained shortest path from any starting
point in that region to the goal point. Figure 1: Autonomous vehicle and systems coordinates.

The vehicle’s task is to readhwhile keepingOy within
Lo a limited sensor range modelled as a planar cone (high-
2 Problem Definition lighted in color).

o,

Consider a vehicle moving on a plane where a right-

handed reference fran{@/) is defined with origin inOy,  the characteristic angle of the cone characterizing the lim
and axesXy,Zy. The configuration of the vehicle is deited Sensor Range (SR) and let us consider the most inter-
scribed byé (t) = (x(t),z(t),8(t)), where(x(t),z(t)) is esting problem in whicld < 11/2. Without loss of gener-
the position in(W) of a reference point in the vehicleality, we will consider 0< T < 7, so that, whe =0 the
and@(t) is the vehicle heading with respect to tigaxis Zc axis is aligned with the robot’s forward direction (i.e.,
(see fig[ll). We assume that the dynamics of the vehithe particular case solved in [13]), whereas, whea 7,

are negligible, and that the forward and angular velogs aligned with the axle direction. Considgr = — g

ties, v(t) and w(t) respectively, are the control inputs tndg, = I+ § the angles between the robot's forward di-
the kinematic model. Choosing polar coordinates for thgction and the right or left sensor’s border w.E¢.axis,
vehiclen = [py B]" (see fig[L), the kinematic model ofespectively. The restriction on<Or — a® < Twill be

the unicycle-like robotis removed at the end of this paper, and an easy procedure to
. —cosB O obtain the subdivision for any value bfwill be given.
[P] sing ol v Without loss of generality, we consider the position of
Y=\ L*’] : () the robot target poirf to lay on theXy axis, with coordi-
B # -1 nates(p, ¥) = (pp, 0). We also assume that the feature to

. . . " , be kept within the SR is placed on the axis through the ori-
We consider vehicles with bounded velocities which C%ﬂn Ow and perpendicular to the plane of motion. We con-

turn on the spot. In other words, we assume sider a planar SR with characteristic angle- |@ — @),

(v,w) €U ) which generates the constraints
with U a compact and convex subset of,Rontaining B-—® >0, 3)
the origin in its interior. B—@<0. (4)

The vehicle is equipped with a rigidly fixed sensor sys-
tem with a reference framéC) = {O¢, X, Y¢,Zc} such Note that we place no restrictions on the vertical di-
that the centerO. corresponds to the robot's centemension of the sensor. Therefore, the height of the feature
[X(t),z(t)]" and the forward sensor axds forms an angle on the motion plane, which corresponds toYgscoordi-
I" w.r.t the robot’s forward direction. Moreover, I8tbe nate in the sensor fram€), is irrelevant to our problem.



Hence, for our purposes, it is necessary to know only the
projection of the feature on the motion plane, i@.

The goal of this paper is to determine, for any p@jr
R? in the robot space, the shortest path fr@no P such
that the feature is maintained in the SR. In other words,
we want to minimize the length of the path covered by the
center of the vehicle under tlieasibility constraint{T]),

o (o)
@, @), andI(#). ” s X .
From the theory of optimal control with state and con- (8 Frontal: 0<T"< 3, B, = (b) Borderline Frontal:l" =
T1L7E2:T2R- §'E12H~E2:T2-

trol constraints (se€[3]) it is possible to show that, when
constraints[(8) and{4) are not active, extremals curves, 42z,
i.e., curves that satisfy necessary conditions for optimal
ity, are straight lines (denoted by symis)land rotation

on the spot (denoted by symbe). On the other hand,
when constraintd{3) and](4) are active, the correspond-
ing extremal maneuvers are two logarithmic spirals with
characteristic angleg; and @ denoted byl; andT,, re-

. - ]
spectively (se€ [13] for details). w S S O
Logarithmic spiralT with characteristic anglep > 0 (c) Side: < <52, E1=  (d) Borderline Side: I' =
TR E =T T2 E1=TR E;=C.

(¢ < 0) rotates counterclockwise (clockwise) around the
feature. We refer to counterclockwise and clockwise spi-
rals ad_eftandRight and by symbol3 " andTR, respec-
tively. The adjectives “left” and “right” indicate the half
plane where the spiral starts for an on—-board observer
aiming at the feature.

Notice that, forg = m/2 the left sensor border is
aligned with the axle direction and the spifalbbecomes a
circle centered iDy (denoted byC), whereas fokp, = 0 o,
the right sensor border is aligned with the direction of mo- (e) Lateral: n8 T <X (f) Symmetric Lateral:[ =
tion andT; becomes an half line througby (denoted by E1=TR Ex=Ts. I E=TRE=T,

H).

Extremal arcs can be executed by the vehicle in eithEgure 2: Sensor configuration depending on anglasd
forward or backward direction: we will hence use supeg-
scripts+ and— to make this explicit (e.g$™ stands for
a straight line executed backward).

We will build extremal paths consisting of secan be built such that, for any initial condition, it contsin
quences of symbols, owords in the alphabetezr — @ word describing a path to the goal which is no longer
{*,S", S, E{,E;,EJ, E; }, where the actual meaningthan any other feasible path. Correspondingly, a partition
of symbols depends on anglEsandd as in fig[2. Rota- Of the plane in a finite number of regions is described, for
tions on the spot«) have zero length, but may be used t¢/hich the shortest path is one of the words4®.
properly connect other maneuvers.

Let .2t be the set of possible words generated by the .
aforementioned symbols i/ for each value of . The 3  Shortest path synthesis
rest of the paper is dedicated to showing that, due to the
physical and geometrical constraints of the considerecthis section, we introduce the basic tools that will allow
problem, a sufficient optimal finite languagéo C .2t us to study the optimal synthesis of the whole state space

o

w




of the robot, beginning from points on a particular sub— The F map has some properties that make it very use-
set of R such that the optimal paths are in a sufficiefial to the study of our problem in a way which is to some
optimal finite language. extent similar to what described (for a differdntmap)

in [13]. In particular, the locus of point® such that

Definition 1. Given the target point P= (pp, 0) in polar fo(P) = Q, is the circle with center iy and radiugpe.

. 2 . .
coordinates, and @ R*\ Ow, Q= (pq, ¥Q) Withpo # 0.\ il denote this circle byC(P) and the closed disk

let fo : R? — R? denotes the map within C(P) by D(P).
C(P) has an important role in the proposed approach
(pGpP N wQ) for pg # 0 since properties dfg will allow us to solve the synthesis
fo(pe. e) = (5)  problem from points orC(P), and hence to extend the

(0,0) otherwise. synthesis td(P) and to the whole motion plane. Indeed,
€ C(P) andVy € Zq, F € Piopy With f
The mapfq is the combination of a clockwise rotamorbQ (P) Y Q Q.(y) fo(P a(P) €
, 1.e., a path from a point 08(P) to P is mapped in
by angleyis — Yo, and a scaling by a fact@p/pq that a path fromC(P) to P.

mapsQin P. FurthermoreFq transforms an extremal i/ in itself
Remark 1. The alphabeter is invariant w.rt. rota- but followed in opposite direction. HencBg maps ex-
tion and scaling. However, it is not invariant w.r.tifremal paths inZr in extremal paths it For example,
axial symmetry, as it happened in the particular cadet W= S~ xH~ xS"« TI" be the word that character-
(i.e., the Frontal case with = 0) considered in[[1B], ize a path fromQ to P, the transformed path is of type
where the map  was defined as a combination of r0z= T, S *H* xS*. With a slight abuse of notation,
tation, scaling and axial symmetry. For example, logave WI|| write z= Fq(w).

rithmic spirals are self-similar and self-congruent (unde roposition 1. Given Qc R? and a pathy ¢ g of

scaling and rotation they are mapped into themselve
On the other hand, left (right) spirals are mapped int 793!,1" the length of the transformed pajth= Fo(y) is

right (left) spirals through an axial symmetry and alpha-— ro
bet invariancy can be lost. Indeed, for example, con-
sidering the Side case alphabet (see [fig.|2@}qe =
{*,S", S, T}, T, TR, T 1, and applying an axial
symmetry we haveR— T} ¢ o/5iqe the same occurs for
the Frontal alphabet with > 0.

The proof is easily obtained from a similar result

Based on the properties ¢y, optimal paths from
points onC(P) completely evolve insid€(P). To prove
this statement we first report the following result,

Let y be a path parameterized by [0,1] in the plane
of motiony(t) = (p(t), Y(t)). Denote with#q the set of
all feasible extremal paths frop{0) = Q to y(1) =

Theorem 1. Given two points A= (pa, Ya) and B=

(P, YB), with Ya > Y and p = pa = ps, and an ex-
tremal pathy from A to B such that for each point G pf
Definition 2. Given the target point P- (pp, 0) and Q= pc > p, there exists an extremal pajhfrom A to B such
(Pa, Yo) with pg # 0, let thepath transfornfunction ky  that for each pointG of , pg < p and/(y) < £(y) (see

be defined as fig.[3).
Fo: 2 = Piyp) The proof of this theorem can be found in secfidn .1 in
O es folv(1_ ). Vi e | (6) the Appendix.
y(t) = fo(y(1-t)), vt el. An important but straightforward consequence of the

Notice thatj(t) = Fq(y(1—t)) corresponds toy(t) theoremis the following

transformed byfg and followed in 0pp05|te direction. In- Corollary 1. For any path in%q with Q& C(P) there ex-

deed,y is a path fromy(0) = fo(P) = ( l,UQ) ists a shorter or equal-length path i&vg that completely
(1) = fo(Q) =P. evolves in DP).



path toP is shorter or equal to the following paths based
on the value of and?:

e Frontal (0<T < $): S"*S™ orH* xH~ of length
P+ pe;

e Side § <T < Z2): TR «TR, of length

(m + M), whereN is the intersection point

cosQy COS
between spiral$ 3, and T} throughQ andP respec-
tively;
Figure 3: An example for theoref) 1: pagh=y1)> (i o Borderline Side [ = %2: TR* +Cp) of length
followed by ) of type T}~ S~ « TX" from Ato Bis short- opp hereN is the .
ened by a patff = {4 { of type T/ * T*S~ by applying (COS@ +(Un— wp)pp) » whereN Is the intersection
path transformatiof to pathy. point between spiral${* andC;

_ _ o Lateral (2 < T < J): Ty TR, of length

4 Optimal paths for points on C(P) (MJFM
coS@, [ L

Our study of the optimal synthesis begins in this section between spiral$;, andT}.
addressing optimal paths from points 6(P). We first
need to establish an existence result of optimal paths.

), whereN is the intersection point

The system is also controllable because there always ex-
ists an intersection point between two spirals (even if de-
Proposition 2. For any Qe C(P) there exists a feasiblegenerated in half-lines or circumferences) with different
shortest path to P. characteristic angle even if both clockwise or counter-
clockwise around the feature. Hence, Filippov existence
Proof. Because of state constrainf$ (3), abd (4), and thorem for Lagrange problems can be invoked [5]0J
restriction of optimal paths iD(P) (Corollary1) the state
set is compact. Furthermore, it is possible to give anin the following we provide a set of propositions that
upper-bound on the optimal path length forfakt [0, 7]. completely describe a sufficient optimal finite language
Indeed, given a poir@ at distancgp from Oy the optimal for all values ofl” < [0, 7].



Figure 5. Forward and backward straight path Regions
fromGfor0<T < 4.

Definition 3. For any starting point G= (pg, Yc), let

SK(G) (SB(G)) be the set of all points reachable from G G;
with a forward (backward) straight line without violating
the SR constraints. Figure 6: Forward and backward straight path Regions

_ fromGfor 70 < < 7.
We denote withdSk(G) anddSk(G) (dSBi(G) and

JdSB(G)) the borders 0BF(G) (SBG)). Also, letCi(G)
denote the circular arcs fro@ to Ow such that,¥V € arc between G and & SF(G) is the region between arc
Ci(G), GVOy = m— |q|. 0SK(G) =Cg. and chorddSk(G) = S, . Consider the

Remark 2. Based on simple geometric considerationmtatIon and scale that mapseGn G and G in G- we

ased RavedSBi(G) = ISR (Gg), i.e. ISB(G) = ISF(Gg).
b B): B

Ecli:oi?gl Cs:?srg;gsgg)n }S?:e (rggi ourIIGl)),et]:/cv); e?agar(é) i Moreover, foEH)ointV on the circular arg@\from &
Co(G) and dSK(G) = C1(G). Let ry(G) (r2(G)) denote t0 G, angleGsV Oy = 11— ||, and angleOwGeG = 1.
the half-line from G forming an anglgs — ¢ (Y — @) Notice that, in this case, 3B) lays completely in the cir-
with the Xy axis (cf. fig[5). SBG) is the cone delimited €l€ With center in @ and radlgspG. Notice that, in the
by 9SBy(G) = r1(G) and ISBy(G) = r»(G), outside cir- particular case in Wh!CHI_ = 152 (Borderline Side Case_),
cle with center in @ and radiuspg. Notice that, SFG) E2 =C anddSk(G) is an arc from G to G on a semi-
lays completely in the circle with center inyOand ra- Circle with diameterpg.

dius pg. Moreover, in the particular case in whidh= 5 g 5 consequence of Rema&lkSH(G) is tangent inG
(Borderline Frontal Case), E= H anddSk (G) degener- TRandTf or C. Moreover,SF(G) is tangent inGg to
ates in the chordGOy) between G and @, aligned with TRandTR orC, see figH.

ri(G). Fig.[8 shows theSF(G) and SB(G) regions described
As a consequence of Remélk 2, b6 G) andSBG) in[3for the Lateral case. Notice that, in this caS&(G)
are tangent i1G to T,- or H and TR, does not lay completely in the circle with centerGyy
and radiugpg.

Remark 3. For any starting point G= (pg, Ys), and for
g <r< "—55 (Side case), let& be the chord between GRemark 4. Optimal forward (backward) straight arcs

and G = (PG::E—%, W+ (@ — @) € Cx(G), i.e. such fromany G endsong (Cg,) (see alsol[1B] for details).
that O\TG\GF = @ (cf. fig.[4). Naming with g the Based on all the above properties, we are now able to



obtain a sufficient family of optimal paths by excluding @ e @ e

particular sequences of extremals.

Theorem 2. Any path consisting in a sequence of a back-
ward extremal arc followed by a forward extremal arc is 6 e e e
not optimal.

The proof of this theorem, whose details can be found 6 e e e

in section.2 of the Appendix, is based on the fact that b
for continuity of paths, for any sequence of a backward a) )
extremal followed by a forward one, there exist poiAts

Figure 8: Feasible extremals and sequence of extremals
andB that verify hypothesis of Theorem 1. d g

from pointin D(P): a) in Side and Lateral cas§3<( r<

Theorem 3. Any path consisting in a sequence of an e¥). b) in Frontal case (& ' < ‘—g).
tremal arc k and an extremal arc Ffollowed in the same
direction is not optimal for any,jj € {1, 2} with i # j.
between extremals is finite and less or equal to 3, for any
Notice that the feasible sequences consisting of twalue ofl andd. Hence, the thesis. 0

extremals that we still need to discuss are those starting
or ending withS followed in any direction E"E~ and ~ We now study the length of extremal paths fr@tP)
E~E™ are obviously not optimal). to P in the sufficient family above.
Without loss of generality, it is sufficient to study the
length of extremal paths of tydg « E; S E; only from
ointsQ on the semicircle oE(P) in the upper-half plane
denoted byCS). Indeed, up to a rotation, optimal paths
ftypeES"ES *E; from the rest of£(P) can be easily
obtained. Referring to fig.]9, let the switching points of

Propositior[B implies that paths of ty(® «E; and the optimal path be denoted B, My andM or N, M;
S *E, are not optimal. Indeed, they can be shortené@dMz = P, respectively, depending on the angular values
by SE; andE, S, respectively (see il 7 for the Sidem, OF ay;,. Moreover, in order to do the analysis, it is
case). useful to parameterize the family by the angular vatye

By using all previous results, a sufficient family of optiof the switching pointM; along the ar€;(P) betweerP

mal paths is obtained in the following important theorerandZ or the angular valuen, of the switching poinM;
) ) along the extremdt; betweer’- andOy.
Theorem 4. For ‘—; < < 7,i.e. Side and Lateral cases,

and for any Qe D(P) to P there exists a shortest path oTheorem 5. For any point Qe CS, the length of a path
type B *E, S E; oroftype E'S'E) xE; . ForO<I < ye Pqgoftype § *E, S E; is:

g, i.e. Frontal case, and for any ©@D(P) to P there exists
a shortest path of type'®&,” « E; S~ or of type SE;

Proposition 3. From any starting point A, any paty of
type S xE; and S+ E; to B can be shortened by a pat
of type SE; or E; «E; . Moreover, any patty of type
S"xEf" or S*xE, can be shortened by a path of typ
E;/SforE/ «E,.

e forO< oy, <@®— @, ie. fromP toZ (notice that
the last arc has zero length):

E;S.
. . 1

Proof. According to all propositions above several con- L =pp { coSam +

. cos@  Cosp
catenations of extremal have been proved to be non op- o
timal. Considering extremals as node and, possibly opti- ~ cosg +cosg, e(wqfaMl)% (Sin(tpzf aMl))iﬁ
mal, concatenations of extremal as edges of a graph, the COS@| COS{p sing '
sufficient optimal language®o from Q in D(P), for dif- @)

ferent values of andd, are described in fifl] 8. Indeed, it
is straightforward to observe that the number of switches



2=

o,

(a) FromAto B, pathS" *TZR+ through z and v can (b) FromAto B, pathS* «T;%~ through z can be short-
be shortened b§S+T2R+ through v, whereS arc is ened by a path of typS+T2R+ through v, whereas from
tangent torR. Ato B by a path of typel, " « TR~ through g.

(c) From A to B, path S* x TlR+ through z can (d) FromAtoB', pathS™ « T, through z can be shortened
be shortened by a path of tyﬂ?f*S+ through v, by a path of typeTlF”S+ throughv, whereas fronA to B”
whereSarc is tangent ta R by a path of typeTlR+ * T, through g.

z, z,

Figure 7: Examples of paths shortened in proposition 3 feiSiue case.

o foram, > @ — @, i.e. from Z to Qy: Theorem 6. Given a point Q= CS,

. Sin(@—@) cos@y+cosp
B 2 Cawt [COS@—@) 1 o for 0< Yo < Ygr, = COS(L COSP In (sin(pzsin(q)zf(pl))’
L=ppq——+€ "™ +
cosgy

cosg cosgy optimal path is of type ExE, ;

tt. i 71‘%& .
cszcgl%tzz;fpz el¥o—(@—a)lgt (%) ? 1” o for yr, <ngQ< lpRZ-W”:h YR, := (@ — @) + Yr, +
@) tangIn (Sm%) optimal path is of type fi* E, S,
with t; = 1/tang; and b — 1/tang. o for Yr, < Yo < m the optimal path is E «E
through Q.
The analytical expression for the lendthis based on
a direct computation. Having the path’s length as a funitoreover, foryig = Yr,, any optimal path of type Ex
tion of two parameterrarM1 or oy, and g, we are now E, SE; turns out to have the same lengthof optlmal
in a position to minimize the length within the sufficienpath §" « E; . Hence, foryio = Y, also § «E, S E;
family. is optimal.
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Figure 9: Path of typ&;” * E, STE; or the degenerate [ SE,

case of typ&E,” «E, S fromQ e CS _ . S
Figure 10: Optimal synthesis insidxP).

Previous results have been obtained computing first agd . .
second derivatives df and nonlinear minimization tech- Shortest paths from any pomt In

niques. , , N the motion plane
We are now interested in determining the locus of

switching points between extremals in optimal paths. The synthesis oi€(P) induce a partition in regions of
D(P). Indeed, for anyQ € D(P), there exists a point

pVe C(P) such that the optimal pathfrom V to P goes
Sing sin(@,— . throughQ. The Bellmann’s optimality principle ensure

M = (op C?ﬂmigwfﬁ’ Ym) (included), wheregm = 0 optimality of the sub—path fro@ to P. Based on this

tangIn (g—;). construction the partition €(P) is reported in figl_Tl0.

For points outsid€(P), functionFg has been defined

Proof. From Theoreni 16, the optimal path fro@< CS in[g in order to transform paths starting fro@ inside

to P is of typeE;" «+E, . For (ig = YR, the intersection : . _(PE :
betweerE;” andE; isM. EEE; in paths starting fronfg(P) = (pQ, L[JQ) outside

Proposition 5. For Q € CS withyr, < Yo < Yr,, the  From other properties d¥, such as Propositidd 1, we
loci of switching points M and N are thedSk(P) and have also that an optimal path is mapped into an optimal
ISk (M). path. Hence, the optimal synthesis from points outside
C(P) can be easily obtained mapping through niragll
Eorders of regions insidg(P).

Proposition 4. For Q € CS with 0 < (o < YR,
the switching locus is the arc of ;Ebetween

Proof. ForQ e CSwith yr, < g < Yr,, considering the
values ofay, obtained in the computations of Theoren
we obtainM; € dSK(P). Furthermore, substituting thoseproposition 6. Given a borderB and Q< B map R
values in the equation of the intersection pdinbetween transforms:
E; throughQ andE; throughM, we obtainN € Sk (M).

O 1. B=C(P)intoitself;

Finally, for Q € CSwith YR, < ¢ < m, the switching 2 B= 9SR(Q) in dSB(fo(P))
locus reduces to the origiBy since two extremak; in-
tersect only in the origin for= 1, 2. 3. B=0JSK(Q) in 9SB(fo(P))



Figure 12: Partition of the motion plane fbr=3/2 (i.e.
Figure 11: Partition of the motion plane f§r< < ”%5 a SR border is aligned with the robot motion direction,
Borderline Frontal).

4. B =Ej in arcs of the same type £ 1,2)

Proof. The proof of this proposition can be foundin]13].
O

Based on Propositiol] 6, the optimal synthesis of the
entire motion plane is reported in fig.]11.

6 Optimal synthesis for genericl”

We first obtain the synthesis of the Borderline Frontal
case, i.el = g, reported in figlZI2 from the one obtained
in the previous section. _ N _ 5
Notice that,E; = TR of the Side case degenerates infigure 13: Partition of the motion plane for0I" < 3,
straight lineH throughOw for I = $. Indeed, referring "-€: Frontal case.
to fig.[10, pointdVir andP- degenerate 0By. As a con-
sequence, Region IV, IV andl’ while coordinate$Pr, ¢ .: COS®; 4CO . .
andWg, of pointsR; andR; can be obtained from vallljes% In (W) +t11 In(—singy) — é In (singz). No-
in[B replacingg, = 0. tice that forg = — @, this circle coincide wittC(P) and
In the Frontal case,E; = H becomes a spiralthe synthesis proposed n[13] is obtained.
Tl'-, straight lines fromP and R, split in straight  Referring again to fid. 10, in the Borderline Side case
line and a spiral arc generating the partition réfF = "—55, i.e. the SR border is aligned with the axle
ported in fig.[IB. In this case@ < 0 and points direction andg, = %), Ex = TR degenerates i, = C.
Ry and R, do not lay onC(P) but on a circle PointsR; = M andR; lays onC(P) with Wg, = 15ne

. sif g —sirf @ _ I : oS
throughP with center(0, —ppm), where§ = andWg, = 7 — @ + Wr, +tan@ In(sing). The obtained




Figure 14: Partition of the motion plane fbr= "%5 (i.e.
a SR border is aligned with the axle direction).

Figure 15: Partition of the motion plane f@%‘s <r<j
(i.e. axle direction is included inside the SR).

synthesis is reported in fig. 14. For the Lateral dase C

become&, = T} and the synthesis of the Lateral case, re-

symmetry w.r.t Xy axis of each subdivision of the motion
plane for eacl € [0, 1] allows to obtain the correspond-
ing subdivision fol™ € [—m, 0].

7 Conclusions and future work

A complete characterization of shortest paths for unicy-
cle nonholonomic mobile robots equipped with a limited
range side sensor systems has been proposed. A finite suf-
ficient family of optimal paths has been determined based
on geometrical properties of the considered problem. Fi-
nally, a complete shortest path synthesis to reach a point
keeping a feature in sight has been provided. A possible
extension of this work is to consider a bounded 3D SR
pointing to any direction with respect to the direction of
motion. A more challenging extension would be consid-
ering a different minimization problem such as the mini-
mum time.
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