

ThimbleSense: A New Wearable Tactile Device for Human and Robotic Fingers

E. Battaglia, G. Grioli, M. G. Catalano, M. Bianchi, A. Serio, M. Santello and A. Bicchi

System Description

We present ThimbleSense, a design for a wearable sensor system which gives force and torque measurements from each finger, allowing reconstruction of contact point positions. This is achieved by combining a commercial six axis force/torque sensor with a pair of support shells. Integration with a marker-based motion capture system provides position and orientation of the system.

Exploded view of CAD model

Section

Prototype implementation

Experiment I: Reconstruction of contacts

Target points

Pressing with a pen

Reconstruction

Experiment II: Grasping Objects

Several objects with different shapes

Full-fledged force and posture reconstruction

Grasping an egg

Reconstruction

Experiment III: Invert T Comparison

Normal forces

Comp. moment & lift force

Contact point on thumb

Contact point on index

Conclusions

Qualitative experimental validations show accuracy in estimating contact points (I) and position and orientation of fingertips (II).

quantitative validation (III),performed comparison with a reliable reference, shows some small differences, which can be ascribed to the glove setup. Future work will involve performing a more thorough validation, and designing a more stable setup.

References:

[1] E. Battaglia, G. Grioli, M. G. Catalano, M. Santello, A. Bicchi, "ThimbleSense: an individual-digit wearable tactile sensor for experimental grasp studies", accepted by 2014 IEEE International Conference on Robotics and Automation.

[2]W. Zhang, A. M. Gordon, Q. Fu, and M. Santello, "Manipulation after object rotation reveals independent sensorimotor memory representations of digit positions and forces," The Journal of Neurophysiology, vol. 103, no. 6, pp. 2953 – 2964, 1998.