%0 Journal Article %J IEEE/ASME Transactions on Mechatronics %D 2016 %T Variable Stiffness Actuators: Review on Design and Components %A S. Wolf %A G. Grioli %A O. Eiberger %A W. Friedl %A M. Grebenstein %A H. Hoppner %A E. Burdet %A D. G. Caldwell %A R. Carloni %A M. G. Catalano %A D. Lefeber %A S. Stramigioli %A N. G. Tsagarakis %A M. Van Damme %A R. Van Ham %A B. Vanderborght %A L. C. Visser %A A. Bicchi %A A Albu-Schaeffer %K Robotics %X

Variable stiffness actuators (VSAs) are complex mechatronic devices that are developed to build passively compliant, robust, and dexterous robots. Numerous different hardware designs have been developed in the past two decades to address various demands on their functionality. This review paper gives a guide to the design process from the analysis of the desired tasks identifying the relevant attributes and their influence on the selection of different components such as motors, sensors, and springs. The influence on the performance of different principles to generate the passive compliance and the variation of the stiffness are investigated. Furthermore, the design contradictions during the engineering process are explained in order to find the best suiting solution for the given purpose. With this in mind, the topics of output power, potential energy capacity, stiffness range, efficiency, and accuracy are discussed. Finally, the dependencies of control, models, sensor setup, and sensor quality are addressed.

%B IEEE/ASME Transactions on Mechatronics %V 21 %P 2418 - 2430 %8 10/2016 %G eng %U http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7330025 %N 5 %R 10.1109/TMECH.2015.2501019 %0 Journal Article %J Int. J. Robotics Research %D 2015 %T Variable Stiffness Actuators: the user’s point of view %A G. Grioli %A S. Wolf %A M. Garabini %A M. G. Catalano %A E. Burdet %A D. G. Caldwell %A R. Carloni %A W. Friedl %A M. Grebenstein %A M. Laffranchi %A D. Lefeber %A S. Stramigioli %A N G Tsagarakis %A M. Van Damme %A B. Vanderborght %A A Albu-Schaeffer %A A. Bicchi %K Robotics %B Int. J. Robotics Research %V 34 %P 727-743 %8 05/2015 %G eng %U http://ijr.sagepub.com/cgi/reprint/0278364914566515v1.pdf?ijkey=anmgudvoLz7ZloP&keytype=finite %N 6 %R 10.1177/0278364914566515 %0 Journal Article %J Robotics and Autonomous Systems %D 2013 %T Variable Impedance Actuators: a Review %A B. Vanderborght %A A Albu-Schaeffer %A A. Bicchi %A E. Burdet %A D. G. Caldwell %A R. Carloni %A M. G. Catalano %A O. Eiberger %A W. Friedl %A G. Ganesh %A M. Garabini %A M. Grebenstein %A G. Grioli %A S. Haddadin %A H. Hoppner %A A. Jafari %A M. Laffranchi %A D. Lefeber %A F. Petit %A S. Stramigioli %A N G Tsagarakis %A M. Van Damme %A R. Van Ham %A L. C. Visser %A S. Wolf %K Robotics %K Soft robotics %K Variable Impedance Actuators %X

Variable Impedance Actuators (VIA) have received increasing attention in recent years as many novel applications involving interactions with an unknown and dynamic environment including humans require actuators with dynamics that are not well-achieved by classical stiff actuators. This paper presents an overview of the different VIAs developed and proposes a classification based on the principles through which the variable stiffness and damping are achieved. The main classes are active impedance by control, inherent compliance and damping actuators, inertial actuators, and combinations of them, which are then further divided into subclasses. This classification allows for designers of new devices to orientate and take inspiration and users of VIA’s to be guided in the design and implementation process for their targeted application.

%B Robotics and Autonomous Systems %V 61 %P 1601–1614 %8 12/2013 %G eng %U http://www.sciencedirect.com/science/article/pii/S0921889013001188 %N 12