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A b s t r a c t  

In this paper, a nonhonolonomic vehicle is stabi- 

calibration, see [8] and therein references. In [8] the 
authors also present a classification of visual servoing 
lized to a desired pose through a visual servoing tech- 
nique. The vision-based regulation of the nonholo- 
nomic vehicle, we propose, is built through a discon- 
tinuous change of coordinates and Lyapunov-based de- 
sign, which ensure asymptotic stability of the closed- 
loop visual system. A dynamic estimation procedure, 
based on the optical flow equations, is also presented 
to deal with uncertainties in the observed environment. 
Simulations results on an autonomous mobile robot are 
reported, that show the practicality of the proposed ap- 
proach. 

1 I n t r o d u c t i o n  

Path planning and control of nonholonomic robots 
have been widely investigated in the literature [5, 2, 
11, 12, 10]. Wheeled mobile robots lead to intrinsic 
nonlinear control problems, since linearization around 
a fixed equilibrium is uncontrollable, and it is also 
not possible to stabilize the nonhonolonomic system to 
a given set-point by a continuous and time-invariant 
feedback control [4]. In the literature two different 
approaches have been used to solve the point stabi- 
lization problem [10, 1], one uses a time-varying state 
feedback while the other avoids the problem pointed 
out in [4] by means of discontinuous feedback. The 
control law considered in this paper belongs to the 
second family of stabilizing controllers. The nonlinear 
control problem results to be more involved because 
of the visual feedback. Visual servoing have been re- 
cently applied to mobile robotics [7, 13, 6]. It essen- 
tially consists of defining the control goals and design- 
ing the feedback law directly in the image domain. De- 
signing the feedback at the sensor level increases sys- 
tem performances especially when uncertainties and 
disturbances affect the robot model and the camera 
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systems. The approach here is known as image-based 
visual servoing, the error between the robot pose with 
respect to a target object or a set of target features 
is computed directly in terms of image features, since 
any visual task is described in the image plane as a 
desired evolution of object appearance towards a goal 
one. 
This paper deals with the problem of controlling the 
pose of a nonholonomic mobile robot with respect to 
a target object. The mobile robot is equipped with a 
camera grabbing the object cues whose image plane 
projections are stabilized to desired positions through 
the visual servoing procedure. The paper is organized 
as follows. Section 2 introduces the camera-object vi- 
sual interaction model in terms of the planar optical 
flow equations. In Section 3, the control system is 
synthesized, after the reduction of the configuration 
space coordinates, and the introduction of a discon- 
tinuous diffeomorphism in the state space. In Sec- 
tion 4, the 3-D parameters characterizing the target 
object are estimated through a robot self-calibration 
procedure, while during the control task execution an 
on-line gradient-based update can be also performed. 
Section 5 reports simulation results carried out to val- 
idate the theoretical framework. Finally, in Section 6 
the major contribution of the paper is summarized. 

2 Visua l  M o d e l i n g  

We consider a unicycle model of a robotic vehicle, 
with a reference frame < c > =  {xc, yc, zc} fixed on 
it. Let the configuration of the unicycle be described 
by q = [X, Y, 8IT (see fig. 1). The control input to 
the mobile robot is the steering velocity w = 0 and 
the translational velocity v along the zc axis. Assume 
that  a pinhole camera is fixed to the unicycle and that  
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Figure 1: Notat ion for the unicycle with a fixed cam- 
era mounted on. 

its camera frame is < c >, where z~ is the optical axis 
of the camera, and y~ is parallel to Zb. Consider a 
set of n > 2 fixed point features in the environment, 
whose coordinates in the moving frame < c > are 
P~ = [X~, Yi, Zc] T, and notice that ,  because the ve- 

hicle moves in a plane, Y~ dej hi is costant. For the 
remaining coordinates of P , ,  one has 

[ - v  + ] " (1) 

Equation 1 is a nonlinear dynamic system, affine in 
the control inputs and without  drift term. Under the 
assumption that  the projective geometry of the cam- 
era is modeled by perspective projection, the point 
P~ = [Xi, hi, Z~] T, will project,  if Zi ~ 0, onto the 
image plane (xc, y c ) a s  xi = lzX', Yi = //~t, where 
f is the focal length of the camera lens. Assuming 
hi ~ 0, the full perspective projection can be inverted 
as X~ = h~zi Zi = I_~ By deriving camera projec- 

Yi ' y~ ' 
tion equation, from (1), it ensues tha t  the optical flow 
of P~ in the image plane is 

= v . (2) 
Y~ Cd 

-- f h, f 

3 S e t - p o i n t  s t a b i l i z a t i o n  

Assume tha t  features are sufficiently many and are dis- 
t r ibuted in space such tha t  the collection of their co- 
ordinates in the image plane, x = [ x l , y l , . . .  , xn ,  y~], 
uniquely determines the robot configuration. The dif- 
ferential kinematic model of the visual interaction of 
the robot with the environment is described by the 
2n optical flow equations (2) of the image vector x. 
This section deals with the problem of stabilizing the 
image vector x with respect to a constant reference 
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known. Notice that ,  although x is a point in a 2n di- 
mensional space, its evolution is constrained on a sub- 
manifold of dimension 3, which is locally diffeomorphic 
to the vehicle's configuration space ]R 2 × S 1. There- 
fore, in the absence of noise, stabilization of any three 
independent combinations of components of x would 
guarantee stabilization of the whole image, hence of 
the vehicle. However, image points will inevitably be 
affected by measurement errors; moreover, visual oc- 
clusions might exclude from view those features tha t  
have been chosen for visual servoing. In view of this 
considerations, and to introduce some robustness to 
measurement errors and occlusions, we introduce a 3- 
dimensional state vector ~ that  incorporates informa- 
tion from all visual cues in the image. 

Let the displacement between the actual and desired 
position of the i - th  feature be 6~ = [X~ - X~,des, Z~ - 
Zi,des] T, and denote with ¢ the angular displacement 
between the lines through the actual and the desired 
positions of the i - j  pair of features, be represented as 

]__R ([ ] 
(a) 

where 

- sin g/ cos ~b (4) 

Assuming a uniformly distributed normal noise on the 
measurement of P~, i = 1 . . . .  , n, the best estimate of 
the linear displacement is the average value 

n 

The third component of vector ~ can be obtained as 
an estimate of ~ from all equations of the form (3) 
with i < j .  Notice that  obtaining an optimal estimate 
of d¢ is more involved, due to constraints on the or- 
thonormulity of the rotat ion matr ix  appearing in (3): 
constrained optimization techniques should therefore 
be adopted, such as those reported in [9]. By using 
the full perspective transformation, the (unperturbed) 
dynamics of the reduced coordinate vector ~ can be 
writ ten in terms of the parameters  hi, i = 1 , . . . ,  n as 

43 -- 'U'2 

where control inputs are defined as ul  = v and u2 = 
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-w.  Consider the change of coordinates aim of avoiding motion inversion during visual servo- 
ing. Consider the feedback control law 
[ ] r2 = cos((3)(1 - sin((3)(2f , 

r3 - - ~ 3  

(6) 

which represents a global diffeomorphism since f # 0 
and define the error vector z 

Zl = r l  -- r~ d) 

z2 ~ r2 -- r~ d) 

z3 ~ r3 

(7) 

whose dynamics can  be written as 

[,] [ ] z2 = sin(za)u2 . 
z3 u2 

(s) 

Hence, the dynamics of the optical flow (in the 
above assumptions) are equivalent, up to a coordinate 
change, to those of a unicycle Ill. To stabilize the 
nonlinear dynamics in eq. (8), the approach used in 
[1] might be applied by rewriting the system in polar 
coordinates, i.e. 

{ p = vqT + zg 
a = -z3 + arct an 2 ( - - - ~  , z  _ _ = _ ~ z  

¢ arctan 2( - - - -~ar~/ ,  - - - ~ ' W )  

The corresponding dynamics results 
(9) 

- cos (aM ] 
u ' 

- -  2"t- p Ul 
sin(a) U p 1 

(lO) 

which can be asymptotically stabilized by means of 
a Lyapunov-based design [1], leading to the following 
closed-loop control law 

{ ul = kz cos(a)p (11) 
u2 = k 2 a  + k l  -~°~(~)~i"~) ( 4  + k3 ¢) a 

A simulative analysis of the closed loop system per- 
formance shows the presence of cusps in the state tra- 
jectory, corresponding to backward motions of the ve- 
hicle, that  would lead to loose visibility of the image 
features. The occurrence of cusps are due to inver- 
sions of the sign of the control input ul and, in an 
application using visual servoing, makes the method 
of [1] inapplicable. In what  follows, we present there- 
fore a modified version of control law (11) with the 
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where: 

{ ul = k l f i  (12) 
a 

,f p if 4(0) • ( - ~ ,  9] 
t - p  otherwise ' 

a if a ( 0 ) •  ( - { ,  {] 
= a -  lr if cr(0) > { ; 

+ ~ ir 4(0) < - ~  
¢ if ~ ( 0 ) • ( - ~ , 9 ]  

= ¢ -  r if 4(0) > ~ ; 
¢ + lr if a(O) _< - ~  

and the control gains satisfy conditions 

k l > 0 ,  k ~ > 0 ,  k 2 >  4_klk3 (13) 
7r 

The proposed control law ensures the asymptotic 
stability of closed-loop visual system. As a first 
step, consider that  if a(0) • (--~, {], then a ( t )  • 
( - { ,  {J, vt > 0, with the above choice of the con- 
trol gains. In fact, it is sufficient to verify that  & 
is always strictly negative for c~ = {, and it is al- 

- v On the other ways strictly positive for a - - 5 "  
37 r _ lr lr hand, if a(0) • ( - 2  , 5] W (3, ~r),  by using 

the state variables 5, ¢ instead of a,  ¢, and chang- 
ing the direction of the forward velocity ul,  the same 
model in eq. (10) is obtained, with the property that  
~(t) • (--~,  {l, vt > 0. 
Let us consider the following quadratic Lyapunov 
function candidate: V = ½(p2 + c~2 + k3 ¢2). Simple 
computations show that  the derivative of V evaluated 
along the closed loop dynamics (10) with the control 
input (12) results: V = -kllcos(c~)lp 2 - k 2 a  2 <_ 

0. As in [1], the function V is negative semi- 
definite. By using the LaSalle invariance principle, 
the closed-loop system converges to the largest invari- 
ant set contained in the set f~ = {(p, e~, ¢) : V = 
0} = {(p, a, ¢) : p = a = 0}. By substituting the 
control law in system (10), we obtain the closed loop 
dynamics: 

6 = - k 2 a  + k i  ~ ks  ¢ • 
kl sin(c~) 

(14) 

From the second equation it follows that  & = kl k3 ¢ in 
every invariant set within ft. As the system converges 
to fl, a and hence & tend to zero, then also ¢ tends 
to zero. As a consequence, the asymptotic stability of 
3 



the origin follows from invariant set theorem. 
To make a comparison between the control approach 

ity information, consider a feature state vector 
[X1, Z1, h l , . . . , X n ,  Zn, hrj T, and its dynamics, ex- 
in eq. (11), and the modified control system ofeq.  (12), 
simulation results are reported in Fig. 2. Three tri- 
als are reported corresponding to the initial vehicle 
configurations ql = [1 1.2 0] T, q2 = [1 0 0] T, and 
qa = [1.2 - 1 0] T. In all cases, the desired Lagrangian 
coordinates are q(d) = (0, 0, 0). From observation of 
fig. 2, it can be easily checked tha t  cusps in the state 
t ra jectory may cause features escape quickly from the 
image plane. As opposite, the closed-loop system with 
the proposed control law (12) has a regular behavior 
due to the fact tha t  no inversions of motion occur, 
since ul  can not  change sign. 

v ~  m~ 
l i  

. ,. _ / . .  _... * ql.O.,a.o) 

27 
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Figure 2: Comparison between the control law pro- 
posed in [1] (dotted lines) and the modified version of 
eq. (12) (continuous lines). 

4 I m a g e - B a s e d  D y n a m i c  Es t i -  
m a t i o n  

To derive the system dynamics in the reduced coor- 
dinates of the configuration space, we have implicitly 
assumed to know the 3-D parameters  hi, i = 1 , . . . ,  n. 
Unfortunately, for unstructured environments, no a 
priori knowledge of these 3-D parameters  may be avail- 
able. 

In this section, we consider the problem of estimating 
the unknown, but  constant,  heights hi of the envi- 
ronment features, from measurements taken from the 
vehicle camera. In this phase, we do not use abso- 
lute positioning information of the vehicle. However, 
we do rely on velocity sensors on the vehicle, tha t  are 
usually available at the wheels (either directly, or by 
processing of encoder information) of real vehicles. 

To verify the identifiability of the 3-D parame- 
ters of the environment from visual and veloc- 
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pressed in the camera frame < c > 

Xi = - &  

21 • --V + X 1 0.) 

/a  = 0 

: (15) 

X. = 

h~ = 0 

Consider the image coordinates, which can be directly 
measured using the camera, as the output  of the above 
nonlinear system, 

X] 
Xl -~" fZl 

/ h l  
Yl Z1 

: (16) 
X~ 

X n  = 'fZ~ 

Yn Z. 

The associated observability codistribution is 

001 0 .. 0 
0 002  .. 0 

0 0  = . . . .  . ( 1 7 )  

0 0 . . .  O0,~ 

where 

OOi = 

. L  x' 0 
Zi 

o 

_ ~ . 7 ~ .  2 / O + x  D 
Z~ Za 0 

Za 
2 / x :  h ,  - - @  - -  

Z i Z~ . 

(18) 

By choosing, for each block, the rows 1, 2, and 4, it 
is easy to verify tha t  rank (O0)  = 3n. We con- 
clude that  there exists inputs to the vehicle that  allow 
to identify 3-D features completely. 

Provided that  regular persistent inputs [3] are ap- 
plied to the vehicle, a simple approach to obtain an 
estimation of parameters hi, i = 1 , . . . , n ,  which are 
the only nontrivial unknowns of the problem, consists 
in rewriting the optical flow equations of the i - th  fea- 
ture (see eq. 2) as 

vhi; (19) 
/ 
4 



~ag* WU,* le ' .~ m 

A I00 

gain. The gradient-based estimator can be used in 
a preliminary self-calibration step in order to recover 
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Figure 3: First simulation: control strategy with known 
height, a) Image coordinates of object points x (pixels); 
b) Lagrangian coordinates; c) translational and angular 
velocities v (m/sec), w (rad/sec). 

where hi 1 = ~ .  The above expression can be writ ten 

in matr ix form as A~ = B~hi, i = 1 , . . . ,  n, where 
Ai E ~2× 1 and B~ E ~2× z are obviously defined. Since 
the unknown h~ appears linearly, a gradient estimator 
is designed as 

~ , _  P0 0[eTe'] 
2 0h----~-- = -P0 A~ T e, , (20) 

where e~ = / ~  - B~ = Aih~ - B~, and P0 is a positive 
2 7
the 3-D parameters of the target  object. The  estimates 
will then be used in the control loop to perform the 
vehicle-object relative positioning. 

5 S i m u l a t i o n  R e s u l t s  

Simulation have been performed for different posi- 
tions of target features. Two trials are reported: the 
first describes the vehicle behavior when the heights 
are known and are used in the recovery equations 
of the centroid; in the second, the off-line 3-D pa- 
rameters estimation procedure of eq. (20) is applied, 
and then the estimates are used in the next con- 
trol phase. The working conditions are the same 
for both trials: the starting and desired configura- 
tions of the vehicle are respectively qi = (1, 1.2, ~), 

and q(a) = (0, 0, 0); the initial 3-D points coordi- 
nates are: P1 = (1, -0 .1 ,  1), P2  = (1, 0.1, 1), P3  = 
(2, - 1 ,  2) and P4  = (3, 1, 2); with these values, 
the initial image points have corresponding coordi- 
nates: Pl  = (25.4, 51.4), P2 = (34.8, 54.7), P3 = 
(18.4, 65.2) and P4 = (108.5, 80.8). The desired val- 

ues of the image points are :  pig) = (--12, 120), p(2 d) = 

(12, 120), p(3 d) = (--60, 120) and p(4 d) = (40, 80). 
The sampling time, needed for the image elaboration 
and control is 50msec;  the gain have been chosen as 
kl = 1, k2 = 3, k3 = 1, P0 = 0.8, the focal length 
of the camera is 120 pixel. The trajectories of im- 
age coordinates for the first simulation are shown in 
Fig. 3. The behaviour of the closed-loop system is sat- 
isfactory when the heights of target  points are known. 
Notice that  the use of a redundant  number of fea- 
tures allows completion of the control task, even with 
a temporary  loss of features visibility. In the second 
simulation an off-line estimation phase that  allows to 
get approximate values of 3-D parameters is used, re- 
sults are shown in Fig. 4. True values of heights were 
hi = 1 m, h2 = 1 m, h3 = 2 m and h4 = 2 m, while 
the initial estimates hi = 2 m, h2 = 0.2 m, h3 = 3 m 
and h4 = 1 m, (an initial mismatch of up to 100%). 
From simulation trials, some instructive experience 
was gained. The  control inputs of the self-calibration 
phase have to be carefully chosen, as high velocities 
may cause oscillations in the estimates, and visibility 
of image features must be ensured. 
7 5  



based technique in robot team coordination tasks, 
such as self-localization and target  following. 
: |  ;\ [ ]  
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Figure 4: Second simulation: control and height adap- 
tation, a) Image coordinates of object points x (pixels); 
b) Lagrangian coordinates; c) translational and angular 
velocities v (m/s), w (rad/s); d) estimated height h (m). 

6 C o n c l u s i o n  

The problem of stabilizing the pose of the mobile robot 
with respect to a target  object  of interest using real- 
time visual data  has been investigated. The designed 
discontinuous feedback control law represents a novel 
visual servoing technique, which is able to deal with 
the nonholonomic constraints of the vehicle. Future 
investigation consists in applying the proposed vision- 
277
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