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Abstract— A decentralized cooperative collision avoidance
control policy for planar vehicle recently proposed is herein
considered. Given some simple conditions on initial config-
urations of agents, the policy is known to ensure safety
(i.e., collision avoidance) for an arbitrarily large number of
vehicles. The method is highly scalable, and effective solutions
can be obtained for several tens of autonomous agents. On
the other hand, the liveness property of the policy, i.e. the
capability of negotiating a solution in finite time, is not yet
completely understood. First a 3D workspace extension is
proposed. Furthermore, based on a condition on targets con-
figuration previously proposed, some general results on the
liveness property are reported. Finally, qualitative evaluations
on the strategy and on the proposed target sparsity condition
are pointed out.

Keywords— Multi-vehicle systems, traffic management, de-
centralized control

I. INTRODUCTION

In the last few years, the problem of safely coordinating

the motion of several agents sharing the same environment

has received a great deal of attention, both in robotics

and in other application domains. Decentralized control

policies, based on locally available information, are scal-

able to large-scale systems, and robust with respect to

single-point failures. Few decentralized algorithms have

appeared recently, e.g. [4], [5] for holonomic robots,

and [6] for aircraft-like vehicles. The literature on flocking

and formation flight, which has flourished recently (e.g.,

[7]–[9]), while ultimately leading to conflict-free collective

motion, does not address individual objectives, and agents

are not guaranteed to reach a pre-assigned individual desti-

nation. Recently, Kyriakopoulos and coworkers introduced

decentralized control policies ensuring the safe coordina-

tion of several non-holonomic vehicles [10]. A number

of techniques have been developed for omni-directional

(holonomic) robots, most of them requiring some form

of central authority, either prioritizing robots off-line, or

providing an online conflict-resolution mechanism, e.g.,

[1]–[3].

A safe and decentralized collision-free strategy has been

recently proposed in [11] for mobile agents evolving on

the plane. Agents are modeled as nonholonomic vehicles,
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constrained to move at constant speed and with bounds

on the curvature. The environment in which the agents

move is considered to be unbounded and free of obstacles.

Furthermore, the information available to each agent is the

position and orientation of nearby agents, within a certain

sensing or communication radius. In particular, agents are

not supposed to communicate explicitly their goals or their

velocities. All agents make decisions based on a common

set of rules which are decided a priori, and rely on the

assumption that other agents apply the same rules. Some

areas of application of the considered problem include air

traffic control, manufacturing plants, automated factories,

and intelligent transportation systems.

The control policy, introduced in [11], is spatially decen-

tralized, and highly scalable. A first contribution of the pa-

per is the extension of the proposed decentralized strategy

to the 3D workspace case by introducing a altitude-layer

structure. The application to the airtraffic management

system problem is straightforward.

The proposed strategy was proven to be safe for an

arbitrarily large number of agents, [11]. Through a large

number of simulation the strategy has showed to be

very effective in negotiating conflicts of several tens of

agents. However, its liveness property is not yet completely

understood. In other words, while it is known that the

proposed policy never causes collisions under some mild

assumptions on the initial conditions, it is not clear under

what conditions on the initial and final configurations the

policy ensures that each vehicle will reach the intended

destination in finite time.

Simple conditions involving only final configurations

that can be sufficient to exclude livelocks, hence guarantee

a solution to be found in finite time have been proposed.

Unfortunately, the formal verification of the conjecture

appears to be overwhelmingly complex. Some preliminary

results have been obtained in [12] with a probabilistic

approach based on classical Monte Carlo methods [13]. In

that work, we assessed the correctness of the conjecture

in probability through the analysis of the results of a

large number of randomized experiments for systems with

10 agents and a fixed dimension. In this paper, several

extensions to the results obtained in [12] are provided. In

particular, we assert that the the conjecture is correct in

probability for an entire class of problems for which the

number of agents has value in {2, . . . , 10} and the safety

disc radius assumes different dimensions.

The proposed sparsity condition involving final con-

figuration is far from being necessary for liveness. In



other words, in many cases that do not satisfy the targets

condition all agents will eventually reach their goal. An-

other contribution reported in this paper is the qualitative

evaluation of the conflict resolution policy and of the

proposed target sparsity condition.

The paper is organized as follows: in section II basic

tools of probability estimation are described. In section III

we introduce some notation, define the problem we wish

to address and briefly report the generalized roundabout

policy. In section IV the liveness property of the policy is

analyzed and the sparsity condition is described. In section

V the probabilistic approach is applied to the liveness

verification problem and new results are reported. Finally,

in section VI, we draw some conclusions and discuss some

directions for future work.

II. THE PROBABILISTIC APPROACH

We report here a brief account on the basic tools

of probability estimation described in [12]. The reader

is invited to refer to the specialized literature (e.g. the

excellent book [13]) for more details.

Given a dynamical system D subject to uncertainties

∆ and a predicate PD defined on D which we want to

verify. Let B be the bounded set in which uncertainties

are confined and f∆(∆) the associated probability density

function. Probabilistic verification consists in evaluating,

with a prescribed confidence, the probability

pD := PR∆{PD(∆)} =

∫

G

f∆(∆)d∆,

where G ⊆ B denotes the good set of ∆ ∈ B for which

PD(∆) = true.

Given a performance function JD(∆) of system D, the

probability that a given performance level γ is attained

under uncertainties as above can be expressed by the

predicate PD(∆) = {JD(∆) ≤ γ}.

The measure of the predicate veridicity is given by the

volume ratio r = V ol(G)/V ol(B) that can be evaluated

by a Monte Carlo approach if a uniform distribution func-

tion on Bd is considered. Indeed, under this assumpiton

pD = r. Let us denote by ∆
i, i = 1, . . . , N N random

samples within B. An estimate of r based on the empirical

outcomes of the N instances of the problem is given by

p̂D(N) = 1

N

∑N

i=1
IG(∆i) where IG(∆i) = 1 if ∆

i ∈ G
and 0 otherwise.

This result provides a finite N such that the empirical

mean p̂D(N) differs from the true probability pD less

than ǫ with probability greater than 1 − δ, i.e. Pr{|pD −
p̂D(N)| < ǫ} > 1 − δ, for 0 < ǫ, δ < 1. To determine

the minumum number N the Chernoff bound [14] can be

used:

N >
1

2ǫ2
log

(

2

δ

)

. (1)

Notice that the sample size N , given by (1), is independent

of the size of B and of the distribution f∆(∆).

Fig. 1. The reserved disc of a nonholonomic vehicle with bounded
angular velocity.

III. PROBLEM FORMULATION AND COORDINATION

POLICY

Let us consider n mobile agents moving on the plane

at constant speed, along paths with bounded curvature. Let

the configuration of the i-th agent be specified by the triple

gi = (xi, yi, θi), where xi and yi specify the coordinates

of a reference point on the agent’s body with respect to an

orthogonal fixed reference frame, and the heading θi is the

angle formed by a longitudinal axis on the agent’s body

with the y = 0 axis.

Each agent enters the environment at the initial config-

uration gi(0) = g0,i, and is assigned a target configuration

gf,i. The agents move along a continuous path according

to the model

ẋi(t) = vi cos(θi(t))
ẏi(t) = vi sin(θi(t))

θ̇i(t) = ωi(t)
(2)

where ωi : R → [− 1

RC
, 1

RC
] is a bounded signed curvature

control signal. Without loss of generality we can scale

the control ωi ∈ [−1, 1] by considering RC = 1. Linear

velocity vi is constant and can be supposed equal to 1 for

each agent without lost of generality.

A conflict is said to occur between two agents, whenever

the agents become closer than a specified safety Euclidean

distance ds. Hence, associating to each agent a safety disc

of radius RS = ds

2
centered in the agent position a conflict

occurs whenever two safety discs overlap.

A dynamic feedback control policy π is a map that

associates to an individual agent a control input, based

on a set of locally-available internal variables, and on the

current configuration of other agents in the environment.

The policy π is said spatially decentralized if it is a

function only of the configurations of agents that are within

a given alert distance da from the computing agent.

A brief description of the spatially decentralized policy

is now reported for reader convenience. Further details can

be found in [11] and [12].

Reserved disc: The proposed policy is based on the con-

cept of reserved disc, over which each active agent claims

exclusive ownership. Given the agent configuration g, the

associated reserved disc has radius R = 1+RS , is centered

in (xc, yc) = (x + sin(θ), y − cos(θ)) and inherits the



Fig. 2. A conflict resolution problem with 70 agents in narrow
space, for which the proposed policy provides a correct solution. Initial
configurations are identified by the presence of gray circles, indicating
their reserved discs.

agent’s heading θ, refer to Figure 1. Let gc = (xc, yc, θc)
be the configuration of the reserved disc, its dynamics is

described by ġc = ((1 + ω) cos θc, (1 + ω) sin θc, ω).

Notice that when the agent has control ωi = −1,

corresponding to a maximum curvature radius clockwise

turn, the center of the associated reserved disc is fixed,

see Figure 1. Hence the reserved disk can be stopped at

any time, by setting ω = −1 and it can be moved in any

direction, provided one waits long enough for the heading

θ to reach the appropriate value.

The proposed Generalized Roundabout Policy is based

on following 4 maneuvers; the reader can refer to [11] and

[12] for a more detailed description.

Straight: associated to the control ω = 0 , steers the center

of the agent’s reserved disk towards the position it would

assume at the target configuration;

Hold: as previously mentioned, setting ω = −1, causes an

immediate stop of an agent’s reserved disk’s motion.

Roll: if the path of the reserved disk is blocked by another

stationary reserved disc, a possible action is represented by

rolling in the counterclockwise direction on the boundary

of the blocking disc. This action is performed without

violating the safety constraints by setting ω = (1+RS)−1.

Roll2: in general, the reserved disk of an agent will not

necessarily remain stationary while an agent is rolling on

it. In this case the contact can be lost and the rolling agent

switches to this state, corresponding to ω = 1. In this

way the agent attempts to recover contact with the former

neighbour, and to exploit the maximum turn rate when

possible.

IV. LIVENESS ANALYSIS

The policy described in the previous section provides

effective solutions for large-scale problems, such as e.g. the

70-agents conflict resolution illustrated in fig. 2. Moreover,

the policy was shown in [11] to be well-posed and safe.

We are concerned here with the following property:

Liveness: The closed-loop hybrid system SGR is live-

lock free if all agents reach their final destinations:

∀i ∈ {1, . . . , n} ∃tif ≥ 0 : gi(tif) = gf,i. (3)

Although in [11] the condition on targets location was

proved to be sufficient for liveness in the case of two agents

only, a general condition ensuring liveness for an arbitrary

number of agents is not yet known.

Furthermore, in [12] we have reported two cases of

livelock occurring for problems of four and n agents

respectively. The analysis of these examples allows us to

observe that livelock generation appears to be possible in

cases where a number n of target configurations are closely

clustered. Such observations lead us to define the following

Sparsity condition: for all (x, y) ∈ R
2 and for m =

2, . . . , n,

card{(xc, yc) ∈ Bf : ‖(xc, yc) − (x, y)‖2 < ρ(m)} < m,
(4)

where Bf is the set of centers of reserved discs at the

target, n is the number of agents and

ρ(m) =

{

(1 + cot( π
m

))(1 + RS) for m ≥ 4,
2(1 + RS) otherwise.

(5)

In other words, any circle of radius ρ(m), with 1 < m ≤ n,

can contain at most m−1 reserved disc centers of targets.

We conjecture that the sparsity condition (4) is sufficient

for liveness. As already mentioned, the conjecture is very

difficult to prove analitically for n > 2. The probabilistic

approach reported in II is applied in the following section

to provide an estimate of the sufficiency of the sparsity

condition.

A. Extension to 3D workspace

The sparsity condition allows a dynamic management

of the agents. At each instant, it is possible to introduce

agents in the system provided that the associated reserved

discs do not overlap other reserved discs and satisfy the

sparsity condition. In our approach we consider an agent

that has reached the target configuration as not part of the

system anymore, i.e. whenever an agent reach the target the

number of agents in the system decrease of one. If in a

3D workspaces an altitude–layered structure is introduced

the roundabout strategy can be easily extened. To each

agent we now associate a safety cylinder whose base is

the safety disc and height the same height of the layers.

Conflicts need only to be resolved among agents moving

within the same layer. Each agent can change its layer only

if the sparsity condition is verified in the target layer and

the reserved disc of the agent do not overlap any other

reserved disc of agents in the target layer. This extension

of the decentralized strategy has a straightforward appli-

cation to the conflict resolution problems in the air traffic

management system (ATMS).



V. PROBABILISTIC VERIFICATION OF LIVENESS

In order to apply the probabilistic verification approach

described in section II, we now introduce some basic

notation, the reader can refer to [12] for more details.

Denote with g0,i and gf,i the initial and final configurations

of agent i, respectively, and with gc
0,i and gc

f,i the config-

urations of the center of the reserved disc associated to

g0,i and gf,i, respectively. Furthermore, let gc
0 = {gc

0,i, i =
1, . . . , N} ∈ (R2×S1)N and gc

f = {gc
f,i, i = 1, . . . , N} ∈

(R2 × S1)N , where N is the maximum number of agents

considered.

Consider a predicate PSGR
(gc

0, g
c
f ), which is true if

the dynamical system SGR defined by the generalized

roundabout policy provides a solution in finite time for

initial and final configurations gc
0 and gc

f , respectively.

We will restrict to uniformly distributed uncertainties

∆ = (gc
0, g

c
f ) ∈ B, where B = B0 × Bf , B0 =

Bf = ([0, 800]× [0, 700]× [0, 2π))N
. Accordingly, G ⊂

B denotes the “good” set of problem data for which the

predicate applies.

Let C ⊂ B denote the set fulfilling the (4). Notice

that the sparsity condition (4) is defined on the target

configurations gc
f only, hence C is a cylinder with axis

B0. Verification of the conjecture above is tantamount to

showing that

r =
V ol(G ∩ C)

V ol(C)
= 1.

In order to obtain an empirical estimate of r thorugh ex-

ecution of numerical experiments, the predicate is modified

in the form

P ′
SGR

(gc
0, g

c
f) = {J(gc

0, g
c
f ) ≤ γ},

where J(gc
0, g

c
f ) denotes the time employed by the last

agent to reach its goal, and γ is a threshold to be suitably

fixed.

Finally, estimates of the ratio r have been evaluated

by the probabilistic approach previously described. Pre-

liminary results have been already reported in [12]. In

that paper a fixed number of agents and a fixed value of

the safety disc radius have been considered (n = 10 and

RS = 18).

Some extensions to those preliminary results are herein

reported. In order to have accuracy ǫ = 0.0075 with

99.25% confidence (δ = 0.0075), it was necessary

by (1) to run 50000 experiments, with initial and fi-

nal conditions uniformly distributed in the configura-

tion space C. Samples were generated by a rejec-

tion method applied to uniform samples generated in

Bn = ([0, 800]× [0, 700]× [0, 2π))
n

⊂ B, with n ∈
{2, . . . , 10} and RS ∈ {2, . . . , 18}. None of these 50.000

experiments failed to find a solution within time γ = 4000,

hence p̂D(N) = 1. Hence, with 99.25% of confidence

we can state that the sparsity condition is sufficient to

guarantee liveness of the generalized roundabout policy

to within an approximation of 0.75% for systems with a

number of agents varying from 2 to 10 and safety radius

from 2 to 18.

A. Qualitative evaluation of the sparsity condition and of

the liveness of the policy

We are now interested in providing qualitative evalua-

tions on sparsity condition on the targets and the liveness

of the chosen policy .

The dimension of C in B depends on the value of the

number of agents n and the value of the associated safety

radius RS . Figure 3 represents the normalized dimension

of C in Bn with respect to variation of n ∈ {2, . . . , 20}
and RS ∈ {2, . . . , 40}. In figure 4 the z-axis view is

reported. Projections of the isodimensional curves on the

(n, RS) plane appear to be hyperbolas, i.e. n RS = const..
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Fig. 3. The normalized dimension of C in B with respect to variation
of n and RS .
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Fig. 4. Projections of the isodimensional curves on the (n, RS) plane
appear to be hyperbolas.

Using values of n and RS such that the dimension

of C in Bn is larger or equal to 95% we have verified,

with the proposed probabilistic approach, that with 99%
confidence the sparsity condition is sufficient to guarantee



liveness of the generalized roundabout policy to within an

approximation of 1%. For the remaining 5% of Bn\C more

than 20000 simulations have been run. In the 96.433% of

cases such simulations have terminated with the reaching

of the goal configurations, i.e. no livelock has occurred. In

conclusion, regarding the liveness property of the proposed

Roundabout policy, we can affirm that for some particular

values of n and RS in more of 0.99·0.95+0.96433·0.05 =
99.8% of cases all agents will eventually reach the goal

configurations.

Furthermore, notice that for those value of n and RS ,

the total space occupied by agents is around the 4−5% of

the whole workspace. To give an idea, in terms of agents

occupancy this means that in a workspace of dimension

7meter × 8meter we are able to manage safely 10 agents

with a safety disc diamater of 60 centimeters.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have considered a decentralized cooper-

ative control policy for conflict resolution for multiple non-

holonomic vehicles. The liveness properties of the policy

has been investigated for an entire class of multi-agent

systems. A conjecture on the final vehicle configurations,

providing a sufficient condition for liveness, has been

studied with a probabilistic method. Several extensions to

previously obtained results are reported.

Future developments of this research will address tighter

necessary and sufficient conditions for the generalized

roundabout policy to apply, also with respect to the scale

of the environment and the number of agents involved.
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