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Abstract

In this paper, we consider the problem of stabilizing the kinematic model of a car to a path in the plane
under rather general conditions. The path is subject to very mild restrictions, while the car model, although
rather simplified, contains the most relevant limitations inherent in wheeled robots kinematics. Namely,
the car can only move forward, its steering radius is lower bounder and a limited sensory information only
provides a partial knowledge of some state parameters. In particular, we consider the case that the current
distance and the heading angle error with respect to the closest point on the reference path can be measured
but only the sign of the path curvature is detected.

These constraints are such to make classical control techniques inefficient. The proposed approach is
based on an extensions of optimal synthesis results successfully applied in a previous work for tracking
rectilinear paths. Due to both the nature of the problem, and the solution technique used, the analysis of
the controlled system involves a rather complex switching logic. Hybrid formalism and verification techniques
prove extremely useful in this context to formally proof stability of the resulting system, and are described
in detail in the paper. The practicality of the proposed approach, in spite of nonidealities in real-world
applications, is finally demonstrated by reporting experimental results.

Keywords: nonholonomic vehicles, path tracking, hybrid systems.

1 Introduction

In this paper we consider the design of a control law for path tracking by a so–called Dubins’ model of a car.
Dubins’ car is the kinematic model of a wheeled (nonholonomic) vehicle that moves only forwards in a plane,
and possesses a lower–bounded turning radius. The model is relevant to the kinematics of road vehicles as well
as aircraft cruising at constant altitude, or sea vessels.

Although the design of control techniques for nonholonomic vehicles has been the subject of extensive
research recently (see e.g. [12, 14, 7]), the additional constraint that the steering radius of the vehicle is lower
bounded has not been explicitly considered. However, such a restriction appears to be crucial in making a
kinematic model of a car relevant to real–world vehicles encountered in most applications. Another important
assumption often used in the literature is that the full state of the system is available for measurement, and
that the path to be tracked is entirely known in advance. Instead, we consider in this paper the more realistic
and less demanding case that the vehicle can only measure its current distance and heading angle error with
respect to the closest point on the reference path in the plane, where only the sign of the path curvature is
detected.

The approach we follow to stabilization of Dubins’ cars is to adapt to the present general case an optimal
synthesis approach successfully applied in our previous work to tracking rectilinear paths [13]. Due to both
the nature of the problem, the type of sensors, and the solution technique used, the analysis of the controlled
system involves a rather complex switching logic. Hybrid formalism (see [6, 16, 2]) and verification techniques
(see [9, 8, 1]) are extremely useful in this context to formally proof stability of the resulting system.

This paper is organized as follows. In Section 2, a hybrid automaton that describes the motion of the vehicle
with respect to the path is introduced, while in Section 3 the path–tracking controller is developed. Such
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controller, described in detail in Section 3.2, is obtained by considering a local approximation of the desired
path with the tangent line, and by using a feedback controller designed for stabilization on straight paths
(reported in Section 3.1). The advantages of the novel hybrid path–tracking formalization are exploited in
Section 4, where the stability properties of the proposed controller are investigated. By a reachability analysis
in the continuous state space, a finite state abstract representation of the hybrid closed–loop automaton is
obtained. Though this representation is not a bisimulation, but rather a simulation, of the hybrid automaton
([6]), it suffices to prove the stability properties of the proposed control. It is shown that the proposed hybrid
feedback controller achieves stabilization of Dubins’ car on a generic reference path and sufficient conditions
for global attractivity are derived. Finally, experimental results obtained by the proposed control law on a
laboratory vehicle are presented in section 5, along with a discussion of practical issues in application of our
algorithms.

2 Hybrid path tracking modelling using switching Frenet’s frames

We consider the kinematic model of a car moving forwards on a plane, which was introduced by Dubins in [5]. A
configuration of the vehicle is defined by an ordered pair (M(x, y), θ) ∈ IR2×S1, where (x, y) are the coordinates
of a reference point M in the plane and θ is the angle made by the direction of the car with respect to the
x-axis. The kinematics of the car are described by


ẋ = V cos θ
ẏ = V sin θ

θ̇ = ω
with |ω| <

V

R
, (1)

where V is the constant forward velocity, ω the is turning speed and the input constraint models a lower bound
R > 0 on the turning radius of the Dubins’ car. The problem we are concerned with is that of steering the
vehicle to a given feasible path Γ, defined by an arclength parameterization as

Γ =
{
(x̂, ŷ) ∈ IR2 | (x̂, ŷ) = ĝ(β) for β ∈ IR

}
, (2)

with the following conditions:

A) ĝ(·) is a class C1 mapping from IR to IR2 and the orientation of Γ is that induced by increasing β;

B) Let κ(β) denote the extension by continuity from the left1of the curvature of Γ, expressed as a function of the
curvilinear abscissa β. There exists a positive real RΓ such that the normalized curvature κ̂(s) ≡ Rκ(s)
satisfies

|κ̂(β)| = R|κ(β)| ≤ R

RΓ
≡ C < 1. (3)

C) Considering the open neighbourhood of the path

TΓ =
{
x ∈ IR2 : ∃β ∈ IR, ‖x − ĝ(β)‖ < RΓ

}
⊂ IR2, (4)

for all x ∈ TΓ there exists a unique nearest point on Γ.

In order to describe the motion of the vehicle with respect to the reference path Γ a mobile Frenet’s frame
associated to the curve Γ is considered. Given a vehicle position M(x, y) ∈ TΓ, the Frenet’s frame ST (s)|s=β̄

is defined by the tangent, the principal normal and the binormal axes of the curve at the point (x̂(β̄), ŷ(β̄))
of Γ which is at minimum distance2 from M(x, y) (see Figure 1). As the vehicle moves with velocity V , the
Frenet’s frame ST (s) follows its motion so as to keep it on the principal normal axis. The arclength parameter s
locates the current Frenet’s frame. The tangent and the principal normal axes of ST (s) remain within the plane
containing the curve, while the binormal axis points either upwards, if the local curvature of Γ is counterclockwise
(i.e. κ(s) > 0), or downwards, if the local curvature is clockwise (i.e. κ(s) < 0). Introduce the transformed
coordinates (s, ỹ, θ̃), where:

1By definition, κ(β) = lims→β− κ(s), at points (x(β), y(β)) where the curvature of Γ is not defined.
2Note that, by A), B) and C), the Frenet’s frame is well-defined along Γ.
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Figure 1: Reference path and transformed coordinates.
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Figure 2: Hybrid automaton PTHA3 modelling the car in the transformed state space.

• the arclength parameter s defines the position of the Frenet’s frame along the curve;

• ỹ denotes the position of the car along the principal normal of ST (s) (lateral distance) normalized with
respect to the minimum turning radius R;

• θ̃ denotes its orientation with respect to the tangent axis of ST (s) (heading angle error), with sign taken
according to the local direction of the binormal axis (see Figure 1).

It can be noticed that this coordinate system is similar to the one used by Samson [10], except for the switchings
of the Frenet’s frame. In fact, a change of curvature along the path produces a jump of the variables ỹ and θ̃ to
the symmetric point with respect to the origin in the (ỹ, θ̃)–plane. The reason for introducing such discontinuity
in the model is related to the different behaviours that a vehicle with bounded curvature has when it approaches
a reference path. Indeed, the approach is apparently easier if the vehicle and the center of curvature of the
path lie on the opposite sides of the curve3. This formulation will turn out to be useful in the verification of
the proposed path tracking controller.

The motion of the car in the transformed state (s, ỹ, θ̃)T can be described by using the formalism of hybrid
automata (see [6, 3]). The discrete nature of the model arises from the fact that the Frenet’s frame ST (s)
changes its orientation during the motion, depending on the sign of the curvature κ̂(s). The discrete state,
referred to as bin , models the two possible orientations of the binormal axis of ST (s(t)) at time t and assumes
either the value upwards or the value downwards. Its initial value is upwards, if κ̂(s(0)) > 0, or downwards, if
κ̂(s(0)) ≤ 0. The dynamics the continuous states are obtained by simple computations in the new coordinates.
The complete (uncontrolled) Path–Tracking Hybrid Automaton, referred to as PTHA3 , is thus as depicted in
Figure 2.

Notice that, in the transformed state space adopted in this hybrid model, the path tracking problem reduces
to that of stabilizing (ỹ, θ̃) to (0, 0). However, in the dynamics of these two variables there appears the path
curvature function κ̂(s), which forces the model to include the evolution of the arclength abscissa s.

3For instance, if the vehicle is required to approach a circle with curvature 1/R, then it can approach it only from outside.
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Figure 3: Hybrid automaton PTHA2 of the vehicle with uncontrollable events (changes of curvature of the
tracked path) and a reduced state space.

On the other hand, we should like to design a control law without resorting to the practically unlikely
assumption that the path curvature at a generic point on the path is known beforehand or can be measured.
We instead assume that only the sign of κ̂(s), and not its amplitude, is available to the controller. To model such
case, the local curvature |κ̂(s)| in the model above is replaced by an unknown but bounded input disturbance
d(t) with respect to which the path tracking controller has to be robust. By (3), the disturbance d(t) satisfies

0 ≤ d(t) ≤ C < 1. (5)

The path tracking problem can be described in a reduced continuous state space (ỹ, θ̃). Curvature sign switching
conditions κ̂(s) > 0 and κ̂(s) < 0 are modelled by a discrete uncontrollable input σr, assuming either the value
switch (when a change of curvature sign occurs) or the silent move ε (otherwise). The reduced hybrid automaton,
referred to as PTHA2 , is reported in Figure 3.

In this case the path tracking problem is formulated as follows:

Problem 1 Let Γ as in (2) be a feasible reference path. Given the hybrid automaton PTHA2 , find a feedback
control law ω(bin, (ỹ, θ̃)) satisfying curvature constraint (1) such that, from any initial state (bin0, (ỹ0, θ̃0)) the
trajectory (ỹ(t), θ̃(t)) converges to the origin under the action of any unknown disturbance d(t), bounded as
in (5), and any sequence of uncontrollable events σr.

3 Hybrid path–tracking feedback controller

3.1 Optimal feedback control for line tracking

In [13], the problem of driving a Dubins’ car to a straight path has been considered. An optimal feedback
control that minimizes the length traveled by the vehicle to reach the specified path was devised. The method
is briefly reported in this section to make this paper self-contained and more understandable. Define σN (ỹ, θ̃) =
ỹ + 1 + cos(θ̃) and σP (ỹ, θ̃) = ỹ − 1 − cos(θ̃). The optimal feedback control presented in [13] is defined inside
the region

D(ỹ,θ̃) =




(σN (ỹ, θ̃) < 0 ∧ θ̃ ∈ [π, 3
2π) ) ∨ (σP (ỹ, θ̃) ≤ 0 ∧ θ̃ ∈ (π

2 , π) ) ∨
(θ̃ ∈ [−π

2 , π
2 ], ỹ ∈ IR) ∨

(σN (ỹ, θ̃) ≥ 0 ∧ θ̃ ∈ [−π,−π
2 ) ) ∨ (σP (ỹ, θ̃) > 0 ∧ θ̃ ∈ (− 3

2π,−π) )
(6)

in the state space (ỹ, θ̃), which, modulo 2π angles on θ̃, corresponds to the whole space (see Figure 4). The
optimal controller is described by three modes,

• go straight, where ω = 0
• turn right, where ω = −V

R

• turn left, where ω = +V
R ,

(7)

which are chosen as follows

[go straight, if (ỹ, θ̃) ∈ Ω0] ∧ [turn right, if (ỹ, θ̃) ∈ Ω−] ∧ [turn left, if (ỹ, θ̃) ∈ Ω+] (8)
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Figure 4: Shortest paths synthesis when d = 0.

where the partition Ω0 ∪Ω− ∪Ω+ of domain D(ỹ,θ̃) is defined as in Table 1. In Figure 4 the boundaries between
the subsets of the partition Ω0 ∪ Ω− ∪ Ω+ are represented by dotted lines, and the direction of motion, when
the reference path is a straight line i.e. d = 0, is represented by directed curves.

3.2 Feedback tracking control for generic path

In this section a hybrid feedback controller that solves Problem 1 is derived from the one reported in the previous
section. The hybrid model of the vehicle PTHA2 is characterized by the two modes: upwards and downwards.
In mode downwards input ω appears with opposite sign with respect to mode upwards. Since the controller
modes in (8) has been set assuming an upwards binormal axis then, the controller modes turn right and turn left
have to be switched when the vehicle is in mode downwards. Hence, for a generic feasible path Γ, the full–state
feedback controller is defined in {upwards, downwards} × D(ỹ,θ̃) by setting the controller modes as follows

• go straight, if (bin, (ỹ, θ̃)) ∈ {upwards, downwards} × Ω0

• turn right, if (bin, (ỹ, θ̃)) ∈ (upwards × Ω−) ∨ (bin, (ỹ, θ̃)) ∈ (downwards × Ω+)
• turn left, if (bin, (ỹ, θ̃)) ∈ (upwards × Ω+) ∨ (bin, (ỹ, θ̃)) ∈ (downwards × Ω−)

(9)

where Ω0, Ω− and Ω+ are as in Table 1. The closed–loop hybrid automaton CLHA obtained by applying the
feedback (7),(9) to the vehicle hybrid automaton PTHA2 is depicted in Figure 5. Since the plant has two modes,
namely {upwards, downwards}, and the controller has three modes, namely {go straight, turn right, turn left},
then the hybrid closed loop system could have at most six discrete states. However, by carefully analyzing
the continuous dynamics of the hybrid automaton PTHA2 depicted in Figures 3 and relations (8) and (9), it
is easy to conclude that the following combinations of controller modes and plant modes give rise to the same
closed–loop dynamics

• (go straight, upwards) and (go straight, downwards}

• (turn right, upwards) and (turn left, downwards}

• (turn left, upwards) and (turn right, downwards}
Hence, the closed–loop hybrid system CLHA has a discrete state mode that assumes values in the set O =
{zero,negative, positive}, as follows

• mode = zero if (ỹ, θ̃) ∈ Ω0

• mode = negative if (ỹ, θ̃) ∈ Ω−

• mode = positive if (ỹ, θ̃) ∈ Ω+.

(10)
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O = {(0, 0)}

Ω0 = sr ∪ sl ∪ O
Ω− = r ∪ rsr ∪ rsl ∪ rl(1) ∪ rl(2)

Ω+ = l ∪ lsr ∪ lsl ∪ lr(1) ∪ lr(2)

r = r(1) ∪ r(2) ∪ r(3)

lr(1) = lr(1.1) ∪ lr(1.2) ∪ lr(1.3)

lsr = lsr(1) ∪ lsr(2)

rsr = rsr(1) ∪ rsr(2)

l = l(1) ∪ l(2) ∪ l(3)

rl(1) = rl(1.1) ∪ rl(1.2) ∪ rl(1.3)

rsl = rsl(1) ∪ rsl(2)

lsl = lsl(1) ∪ lsl(2)

σN (ỹ, θ̃) = ỹ + 1 + cos(θ̃)
σP (ỹ, θ̃) = ỹ − 1 − cos(θ̃)
σR(ỹ, θ̃) = ỹ + 1 − cos(θ̃)
σL(ỹ, θ̃) = ỹ − 1 + cos(θ̃)

r(1) = {(ỹ, θ̃)|θ̃ ∈ (0, π
2 ), σR(ỹ, θ̃) = 0}

l(1) = {(ỹ, θ̃)|θ̃ ∈ (−π
2 , 0), σL(ỹ, θ̃) = 0}

r(2) = {(ỹ, θ̃)|θ̃ ∈ [π
2 , π), σR(ỹ, θ̃) = 0}

l(2) = {(ỹ, θ̃)|θ̃ ∈ (−π,−π
2 ], σL(ỹ, θ̃) = 0}

r(3) = {(ỹ, θ̃)|θ̃ ∈ [π, 3
2π), σR(ỹ, θ̃) = 0} ∪ {(0, π)

l(3) = {(ỹ, θ̃)|θ̃ ∈ (− 3
2π,−π], σL(ỹ, θ̃) = 0}

lr(1.1) = {(ỹ, θ̃)|θ̃ ∈ (0, π
2 ), σN (ỹ, θ̃) ≥ 0, σR(ỹ, θ̃) < 0}

rl(1.1) = {(ỹ, θ̃)|θ̃ ∈ (−π
2 , 0), σL(ỹ, θ̃) > 0, σP (ỹ, θ̃) ≤ 0}

lr(1.2) = {(ỹ, θ̃)|θ̃ ∈ (−π
2 , 0], σN (ỹ, θ̃) ≥ 0, σL(ỹ, θ̃) < 0}

rl(1.2) = {(ỹ, θ̃)|θ̃ ∈ [0, π
2 ), σR(ỹ, θ̃) > 0, σP (ỹ, θ̃) ≤ 0}

lr(1.3) = {(ỹ, θ̃)|θ̃ ∈ (−π,−π
2 ], σN (ỹ, θ̃) ≥ 0, σL(ỹ, θ̃) < 0}

rl(1.3) = {(ỹ, θ̃)|θ̃ ∈ [π
2 , π), σR(ỹ, θ̃) > 0, σP (ỹ, θ̃) ≤ 0}

lr(2) = {(ỹ, θ̃)|θ̃ ∈ [π, 3
2π), σR(ỹ, θ̃) > 0, σN (ỹ, θ̃) < 0}

rl(2) = {(ỹ, θ̃)|θ̃ ∈ (− 3
2π,−π], σP (ỹ, θ̃) > 0, σL(ỹ, θ̃) < 0}

sr = {(ỹ, θ̃)|ỹ < −1, θ̃ = π
2 }

sl = {(ỹ, θ̃)|ỹ > +1, θ̃ = −π
2 }

lsr(1) = {(ỹ, θ̃)|θ̃ ∈ [0, π
2 ), σN (ỹ, θ̃) < 0}

rsl(1) = {(ỹ, θ̃)|θ̃ ∈ (−π
2 , 0], σP (ỹ, θ̃) > 0}

lsr(2) = {(ỹ, θ̃)|θ̃ ∈ [−π
2 , 0), σN (ỹ, θ̃) < 0}

rsl(2) = {(ỹ, θ̃)|θ̃ ∈ (0, π
2 ], σP (ỹ, θ̃) > 0}

rsr(1) = {(ỹ, θ̃)|θ̃ ∈ (π
2 , π), σR(ỹ, θ̃) < 0}

lsl(1) = {(ỹ, θ̃)|θ̃ ∈ (−π,−π
2 ), σL(ỹ, θ̃) > 0}

rsr(2) = {(ỹ, θ̃)|θ̃ ∈ [π, 3
2π), σR(ỹ, θ̃) < 0}

lsl(2) = {(ỹ, θ̃)|θ̃ ∈ (− 3
2π,−π], σL(ỹ, θ̃) > 0}

Table 1: Partition of domain D(ỹ,θ̃) used to define the shortest path synthesis.

The initial state (mode0, (ỹ0, θ̃0)) of the hybrid automaton CLHA has to satisfy (10).
The coordinate transformation (x, y, θ) → (s, ỹ, θ̃) becomes singular when the vehicle lies on the center of the

local osculating circle to the path Γ. That is if, at some time t̄, ỹ(t̄) |κ̂(s(t̄))| = 1, or equivalently ỹ(t̄) d(t̄) = 1.
For any initial configuration (M(x0, y0), θ0), with M(x0, y0) ∈ TΓ as in (4), the corresponding state (ỹ0, θ̃0)
satisfies ỹ0 < C−1. Further, since by (5) d ≤ C, then ỹ0 d < 1 at the given initial condition. However, to ensure
that

ỹ d < 1 i.e. 1 − ỹ d > 0 (11)

holds along all the trajectories of CLHA , we need to further restrict the admissible initial vehicle configurations,
in terms of its initial orientation θ0.

Proposition 1 Let the continuous disturbance d be bounded to belong to the interval [0, C], with

C <
√

2 − 1 (12)

Then, (11) is satisfied along all trajectories of CLHA provided that the initial configuration (mode0, (ỹ0, θ̃0)) is
such that

(ỹ0, θ̃0) ∈ I(ỹ,θ̃) =
{

(ỹ, θ̃) ∈ D(ỹ,θ̃)| σ1(ỹ, θ̃) > 0 and σ2(ỹ, θ̃) < 0
}

. (13)

where

σ1(ỹ, θ̃) =
{

ỹ + C−1 if θ ∈ [0, π]
ỹ − (1 + C) + C−1 + (1 + C) | cos(θ̃)| = 0 if θ ∈ [−π

2 , 0) ∪ [π, 3
2π)

σ2(ỹ, θ̃) =
{

ỹ − C−1 if θ ∈ [−π, 0]
ỹ + (1 + C) − C−1 − (1 + C) | cos(θ̃)| = 0 if θ ∈ (− 3

2π,−π) ∪ (0, π
2 ]
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Figure 5: Hybrid model of the closed-loop system CLHA .

Proof of Proposition 1. We have to show that the set I(ỹ,θ̃) in (13) is a robust invariant set, under any
action of the continuous disturbance d, bounded by C as in (12), and any action of the discrete disturbance
σr = switch. To prove this we will first show that, along the trajectories of the closed–loop hybrid system
CLHA , σ̇1 > 0 in a right neighbourhood of the curve σ1(ỹ, θ̃) = 0, and σ̇2 < 0 in a left neighbourhood of the
curve σ2(ỹ, θ̃) = 0. The upper bound (12) for C guarantees that there exists a right neighbourhood of the curve
σ1(ỹ, θ̃) = 0 contained in the region rsr∪sr∪ lsr, and there exists a left neighbourhood of the curve σ2(ỹ, θ̃) = 0
contained in the region rsl ∪ sl ∪ lsl. This simplifies the analysis of the closed–loop system trajectories.

By (10) and (7), the closed–loop continuous dynamics are

˙̃y = sin(θ̃)
V

R
(14)

˙̃
θ =




− cos(θ̃)d
1−ỹd

V
R if mode = zero

(
− cos(θ̃)d

1−ỹd − 1
)

V
R if mode = negative

(
− cos(θ̃)d

1−ỹd + 1
)

V
R if mode = positive
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Hence, by (14), along the trajectories of the closed–loop hybrid system CLHA we have

σ̇1|(ỹ,θ̃)∈rsr∪sr∪lsr =




sin(θ̃) V
R if θ ∈ [0, π]

[
1 − (1 + C) sign(cos(θ̃))R

V θ̇
]

sin(θ̃)V
R if θ ∈ [−π

2 , 0) ∪ [π, 3
2π)

(15)

and

σ̇2|(ỹ,θ̃)∈rsl∪sl∪lsl =




sin(θ̃) V
R if θ ∈ [−π, 0]

[
1 + (1 + C) sign(cos(θ̃))R

V θ̇
]

sin(θ̃)V
R if θ ∈ [− 3

2π,−π) ∪ (0, π
2 )

(16)

Furthermore, for (ỹ, θ̃) ∈ rsr ∪ lsr, since, by Table 1 ỹ < −1, then by (11), 1−ỹd
d = 1

d − ỹ > 1
C + 1 and

d
1−ỹd < C

1+C . Hence, by (14), we have

R

V
˙̃
θ < − cos(θ̃)

C

1 + C
− 1 ≤ − 1

1 + C
for (ỹ, θ̃) ∈ rsr ⊂ Ω− where cos(θ̃) ≤ 0

R

V
˙̃
θ > − cos(θ̃)

C

1 + C
+ 1 ≥ +

1
1 + C

for (ỹ, θ̃) ∈ lsr ⊂ Ω+ where cos(θ̃) ≥ 0

R

V
˙̃
θ < − cos(θ̃)

d

1 − ỹd
− 1 ≤ −1 for (ỹ, θ̃) ∈ rsl ⊂ Ω− where cos(θ̃) ≥ 0

R

V
˙̃
θ > − cos(θ̃)

d

1 − ỹd
+ 1 ≥ +1 for (ỹ, θ̃) ∈ lsl ⊂ Ω+ where cos(θ̃) ≤ 0

From (15–16) and the above upper and lower bounds on ˙̃
θ we can conclude that in a right neighbourhood of

the curve σ1(ỹ, θ̃) = 0, contained in rsr ∪ sr ∪ lsr, we have σ̇1 > 0, and in a left neighbourhood of the curve
σ2(ỹ, θ̃) = 0, contained in rsl∪sl∪lsl, we have σ̇2 < 0. Finally, since under the action of the discrete disturbance
σr = switch the continuous state is reset to the symmetric point with respect to the origin, at which corresponds
a same value of functions σi(ỹ, θ̃), invariance the set I(ỹ,θ̃) is preserved under any switchings of the Frenet frame.

Remark 1 Relaxing condition C <
√

2 − 1 to C < 1
3 , an easier proof could be obtained of the same result (see

[4]).

In Figure 6, the boundary curves σ1(ỹ, θ̃) = 0 and σ2(ỹ, θ̃) = 0 are reported for C =
√

2 − 1 and C =
1/4. Notice that curve σ1(ỹ, θ̃) = 0 passes through the points (−C−1 + 1 + C,−π

2 ), (−C−1, 0), (−C−1, π),
(−C−1 + 1 + C, 3

2π), while the curve σ2(ỹ, θ̃) = 0 passes through the points (C−1 − 1 − C,− 3
2π), (C−1,−π),

(C−1, 0), (C−1 − 1 − C, π
2 ). In particular, for C −→

√
2 − 1, the curve σ1(ỹ, θ̃) = 0 passes through the

points (−1,−π
2 ) and (−1, 3

2π), while the curve σ2(ỹ, θ̃) = 0 passes through the points (+1,− 3
2π) and (+1, π

2 ).
Moreover, for any configuration (ỹ, θ̃) in the set I(ỹ,θ̃) condition (11) is satisfied when d belongs to the interval
[0, C].

Note that, for initial configurations satisfying (13) we have M(x0, y0) ∈ TΓ as in (4). By Proposition 1, if a
reference path Γ has minimum radius of curvature RΓ greater than twice the minimum turning radius R of the
vehicle, then for any initial configuration (M(x0, y0), θ0), with lateral position and orientation errors bounded
to belong to I(ỹ,θ̃) as in (13), condition (11) is ensured.

4 Verification of the hybrid path–tracking controller

In this section the behaviour of the hybrid automaton CLHA is analyzed by introducing an equivalence relation
∼ in the hybrid state space O ×D(ỹ,θ̃) and by computing the corresponding quotient system (see [6]).

Consider the partition Π(ỹ,θ̃) of the domain D(ỹ,θ̃) in (6) given by the 24 subsets

{
r(1), · · · , rl(2)l(3), · · · , lsl(2),O

}
,
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Figure 6: Curve σ1(ỹ, θ̃) = 0 (for negative ỹ) and curve σ2(ỹ, θ̃) = 0 (for positive ỹ), when C =
√

2 − 1 (dotted
line) and C = 1/4 (solid line).

defined in Table 1, with rl(2) and l(3) replaced by rl(2)l(3). We say that (mode1, (ỹ1, θ̃1)), (mode2, (ỹ2, θ̃2)) are
equivalent, i.e. (mode1, (ỹ1, θ̃1)) ∼ (mode2, (ỹ2, θ̃2)), iff (ỹ1, θ̃1) and (ỹ2, θ̃2) belong to the same subset p ∈ Π(ỹ,θ̃).
We associate to the corresponding quotient space Q∼ =

{
O × r(1), · · · ,O × O

}
a nonderministic finite state

machine, referred to as FSMPTC , whose states correspond to the equivalence classes in Q∼ (labeled, with
a slight abuse of notation, r(1), · · · ,O). The next–state function of FSMPTC is defined as follows: for any
Q1, Q2 ∈ Q∼, a transition from Q1 to Q2 occurs iff there exists an arc of trajectory of the hybrid automaton
CLHA from some (mode1, (ỹ1, θ̃1)) ∈ Q1 to some (mode2, (ỹ2, θ̃2)) ∈ Q2, for some discrete disturbance σr and
some continuous disturbance d.

Proposition 2 Given the hybrid system CLHA , if the discrete disturbance σr always takes the value ε, then,
for any initial hybrid state (mode, (ỹ0, θ̃0)) ∈ O×I(ỹ,θ̃) as in (13), under the action of any disturbance d bounded
as in (5) with C as in (12), we have:

• the quotient system obtained from the equivalence relation ∼ is the finite state machine FSMPTC depicted
in Figure 8;

• an upper bound for the space traveled by the origin of the Frenet’s frame along the path Γ, when the hybrid
state is in a given equivalence class is represented by the weight associated to the exiting arc;

• the quotient system FSMPTC remains in each equivalence class a bounded amount of time, except for the
equivalent class O where (ỹ, θ̃) = (0, 0).

Proof of Proposition 2. In this proof we show that the finite state machine FSMPTC , which abstracts
the behaviour of the closed–loop hybrid system CLHA , is as reported in Figure 8. Further, we provide upper
bounds for the time spent by FSMPTC in each state and upper bounds for the length of the corresponding arc
of the reference path Γ spanned by the origin of the Frenet frame. In the following, unless differently specified,
we assume, according to (12), C < 0.5, so that, by Proposition 1, condition (11) is guaranteed along hybrid
system trajectories.

Introduce

σN (ỹ, θ̃) = ỹ + 1 + cos(θ̃), (17)
σP (ỹ, θ̃) = ỹ − 1 − cos(θ̃). (18)
σR(ỹ, θ̃) = ỹ + 1 − cos(θ̃), (19)
σL(ỹ, θ̃) = ỹ − 1 + cos(θ̃). (20)

We’ll make use of the derivatives with respect to time of σP , σR, σN and σL, as defined in (18), (19), (17)
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and (20), respectively. Under feedback (9), we have

σ̇P = σ̇R =




− sin(θ̃) cos(θ̃)d
1−ỹd

V
R

in mode negative
sin(θ̃)

[
− cos(θ̃)d

1−ỹd + 2
]

V
R

in mode positive

(21)

and

σ̇N = σ̇L =




sin(θ̃)
[

cos(θ̃)d
1−ỹd + 2

]
V
R

in mode negative
sin(θ̃) cos(θ̃)d

1−ỹd
V
R

in mode positive

(22)

In the sequel, the behaviour of the closed-loop hybrid system CLHA in each region of the continuous state space
partition defined in Table 1 is discussed.

Regions rsr(1) and rsr(2). The system mode is negative. By Table 1, ỹ < −1 and cos(θ̃) < 0. Further,
by (11), 1−ỹd

d = 1
d − ỹ > 2. Then, 0 ≤ − cos(θ̃)d

1−ỹd < − cos(θ̃)
2 < 1

2 (where equality holds for d = 0) and
− cos(θ̃)d

1−ỹd − 1 < − 1
2 . Hence, by (14), ˙̃

θ < − 1
2

V
R . Therefore, the continuous state (ỹ, θ̃)

• cannot exit boundary θ̃ = 3
2π and enter lsr(2);

• may leave rsr(2) to enter rsr(1);

• may leave rsr(1) to enter sr.

Furthermore, by (21), if d = 0 then σ̇R = 0 and trajectories are parallel to r. While, if d > 0, then σ̇R < 0, for
θ̃ ∈ (π, 3

2π), and σ̇R > 0, for θ̃ ∈ (π
2 , π). Therefore, (ỹ, θ̃)

• neither reaches nor exits from r(3) ∪ r(2), if d = 0;

• leaves r(3) to enter rsr(2), if d > 0;

• may leave rsr(1) to enter r(2), if d > 0.

Regions lsr(1) and lsr(2). The system mode is positive. By Table 1, ỹ < −1 and cos(θ̃) ≥ 0. Further,
by (11), 1−ỹd

d = 1
d − ỹ > 2 Then, 0 ≤ cos(θ̃)d

1−ỹd < cos(θ̃)
2 < 1

2 (where equality holds for d = 0 or θ̃ = −π
2 ) and

− cos(θ̃)d
1−ỹd + 1 > 1

2 . Hence, by (14), ˙̃
θ > 1

2
V
R . Therefore, the continuous state (ỹ, θ̃)

• cannot exit the boundary θ̃ = −π
2 and enter rsr(2);

• may leave lsr(2) to enter lsr(1);

• may leave lsr(1) to enter sr.

Furthermore, by (22), if d = 0 then σ̇N = 0 and the trajectories are parallel to curve σN (ỹ, θ̃) = 0. While, if
d > 0, then σ̇N > 0, for θ̃ ∈ (0, π

2 ), and σ̇N < 0, for θ̃ ∈ (−π
2 , 0). Then, (ỹ, θ̃)

• neither reaches nor exits from lr(1.2) ∪ lr(1.1), if d = 0;

• leaves lr(1.2) to enter lsr(2), if d > 0;

• may leave lsr(1) to enter lr(1.1), if d > 0.

Regions rsl(1) and rsl(2). The system mode is negative. By Table 1, cos(θ̃) ≥ 0. Assuming (11), cos(θ̃)d
1−ỹd ≥ 0

(where equality holds for d = 0 or θ̃ = π
2 ) and − cos(θ̃)d

1−ỹd − 1 ≤ −1. Then, by (14), ˙̃
θ ≤ −V

R . Therefore, the
continuous state (ỹ, θ̃)
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• cannot exit boundary θ̃ = π
2 and enter lsl(2);

• may leave rsl(2) to enter rsl(1);

• may leave rsl(1) to enter sl.

Furthermore, by (21), if d = 0 then σ̇P = 0 and trajectories are parallel to σP (ỹ, θ̃) = 0. While, if d > 0, then
σ̇P < 0, for θ̃ ∈ (0, π

2 ), and σ̇P > 0, for θ̃ ∈ (−π
2 , 0). Therefore, (ỹ, θ̃)

• neither reaches nor exits from rl(1.1) ∪ rl(1.2), if d = 0;

• may leave rsl(2) to enter rl(1.2), if d > 0;

• may leave rl(1.1) to enter rsl(1), if d > 0.

Regions lsl(1) and lsl(2). The system mode is positive. By Table 1, cos(θ̃) < 0. Assuming (11), − cos(θ̃)d
1−ỹd ≥ 0

(where equality holds for d = 0) and − cos(θ̃)d
1−ỹd + 1 ≥ 1. Then, by (14), ˙̃

θ ≥ V
R . Therefore, the continuous state

(ỹ, θ̃)

• cannot exit boundary θ̃ = − 3
2π and enter rsl(2);

• may leave lsl(2) to enter lsl(1);

• may leave lsl(1) to enter sl.

Furthermore, by (22), if d = 0 then σ̇L = 0 and the trajectories are parallel to l. While, if d > 0, then by (22),
σ̇L > 0, for θ̃ ∈ (−π,−π

2 ), and σ̇L < 0, for θ̃ ∈ (− 3
2π,−π). Therefore, (ỹ, θ̃)

• neither reaches nor exits from l(3) ∪ l(2), if d = 0;

• leaves l(2) to enter lsl(1), if d > 0;

• may leave lsl(2) to enter l(3), if d > 0.

Regions rl(1.1), rl(1.2), and rl(1.3). The system mode is negative. By Table 1, σP (ỹ, θ̃) ≤ 0 which, by (11),
implies ỹ− 1

d−cos(θ̃) ≤ ỹ−1−cos(θ̃) ≤ 0. Assuming (11), one gets − cos(θ̃)d
1−ỹd −1 ≤ 0, where equality holds if d = 1

and σP (ỹ, θ̃) = 0. Therefore, by (14) and (12), ˙̃
θ < 0. Furthermore, by (21), if d = 0 then σ̇R = σ̇P = 0 and the

trajectories are parallel to r. While, if d > 0, then by (21), σ̇R = σ̇P > 0, for θ̃ ∈ (π
2 , π), and σ̇R = σ̇P < 0, for

θ̃ ∈ (0, π
2 ). Finally, by (22) and (21), σ̇L < 0 and σ̇P > 0, for θ̃ ∈ (−π

2 , 0). Therefore, the continuous state (ỹ, θ̃)

• cannot exit rl(1.3) through the boundary ỹ ∈ (−2, 0), θ̃ = π;

• may leave rl(1.3) to enter rl(1.2), rl(1.2) to enter rl(1.1), and rl(1.1) and enter l(1);

• neither reaches nor exits from r(2) ∪ r(1) ∪ rl(2) ∪ rsl(1) ∪ rsl(2), if d = 0;

• leaves r(2) to enter rl(1.3) and may leave rl(1.3) to enter rl(2)l(3), if d > 0;

• may leave rsl(2) to enter rl(1.2) and may leave rl(1.2) to enter r(1), if d > 0;

• may leave rl(1.1) to enter rsl(1), if d > 0.

Regions lr(1.1), lr(1.2) and lr(1.3). The system mode is positive. By Table 1, σL(ỹ, θ̃) < 0 which, by (11),
implies 1

d − ỹ − cos(θ̃) ≥ 1 − ỹ − cos(θ̃) > 0. Assuming (11), it gives − cos(θ̃)d
1−ỹd + 1 > 0. Hence, by (14), ˙̃

θ > 0.
Furthermore, by (22), if d = 0 then σ̇L = σ̇N = 0 and the trajectories are parallel to l. While, if d > 0, then
by (22), σ̇L = σ̇N > 0, for θ̃ ∈ (−π,−π

2 ), and σ̇L = σ̇N < 0, for θ̃ ∈ (−π
2 , 0). Finally, by (22) and (21), σ̇L > 0

and σ̇P < 0, for θ̃ ∈ (0, π
2 ). Therefore, the continuous state (ỹ, θ̃)

• may leave4 lr(1.3) to enter lr(1.2), lr(1.2) to enter lr(1.1), and lr(1.1) and enter r(1);
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• neither reaches nor exits from l(2) ∪ l(1) ∪ rl(2) ∪ lsr(1) ∪ lsr(2), if d = 0;

• may leave lr(2) to enter lr(1.3) and may leave lr(1.3) to enter l(2), if d > 0;

• leaves l(1) to enter lr(1.2) and may leave lr(1.2) to enter lsr(2), if d > 0;

• may exit lsr(1) to enter lr(1.1), if d > 0.

Region lr(2). The system mode is positive. By Table 1, ỹ < 0 and cos(θ̃) < 0. Then, by (11), 1 − ỹd ≥ 1
and − cos(θ̃)d

1−ỹd ≥ 0 (where equality holds for d = 0) and − cos(θ̃)d
1−ỹd + 1 ≥ 1. Hence, by (14), ˙̃

θ ≥ V
R . Furthermore,

if d = 0, by (22), σ̇N = 0 and the trajectories are parallel to σN (ỹ, θ̃) = 0. While, if d > 0, by (22) and (21),
σ̇R < 0 and σ̇N > 0. Therefore, the continuous state (ỹ, θ̃)

• cannot exit lr(2) through the boundary ỹ ∈ (−2, 0), θ̃ = π;

• may leave lr(2) to enter r(3);

• may leave lr(2) to enter lr(1.3), if d > 0.

Region rl(2). The system mode is negative. By Table 1, 0 < ỹ < 2, sin(θ̃) > 0 and cos(θ̃) < 0. If d = 0,
by (14), ˙̃

θ = −V
R < 0. Otherwise, if d > 0, by (14), we have ˙̃

θ = ỹd−1−cos(θ̃)d
1−ỹd

V
R . Introducing

φd(ỹ, θ̃) = ỹd − 1 − cos(θ̃)d, (23)

under assumption (11), we have ˙̃
θ < 0 (= 0, > 0) if and only if φd(ỹ, θ̃) < 0 (= 0, > 0, resp.). In particular,

1. if d ≤ 1
3 , then φd(ỹ, θ̃) ≤ ỹ

3 − 1 − cos(θ̃)
3 < 0, for all (ỹ, θ̃) in region rl(2) (being φd(ỹ, θ̃) = 0 for d = 3 and

(ỹ, θ̃) → (2,−π)). Therefore, ˙̃
θ < 0 in rl(2).

2. if d > 1
3 , on the boundary θ̃ = −π we have φd(ỹ,−π) = ỹd − 1 + d ≤ 0 iff ỹ ≤ 1

d − 1. Then, ˙̃
θ < 0 for

θ̃ = −π if and only if ỹ < 1−d
d . Hence, points (ỹ, θ̃) on the boundary ỹ ∈ (0, 2), θ̃ = −π are steered to the

interior of rl(2), if ỹ ∈ (0, 1−d
d ), while are steered to the interior of lr(1.3) if ỹ ∈ ( 1−d

d , 2).

Hence,

• if d = 0, by (21), σ̇P = 0, hence, the trajectories are parallel to σP (ỹ, θ̃) = 0 and exit rl(2) to enter l(3);

• if d ∈ (0, 1
3 ], then ˙̃

θ < 0 and, by (21), σ̇P > 0. Moreover, since 1
d − ỹ > 1 then 2( 1

d − ỹ) + cos(θ̃) > 1 and,
by (22), σ̇L > 0. Therefore, points (ỹ, θ̃)

– on the boundary ỹ ∈ (0, 2), θ̃ = −π are steered to the interior of rl(2);

– may leave rl(1.3) to enter rl(2);

– leave rl(2) to enter l(3).

• if d ∈ (1
3 , 2

5 ], then ˙̃
θ < 0 for θ̃ = −π if and only if ỹ < 1−d

d . Further, by (21), σ̇P > 0. Moreover, since
1
d − ỹ > 1

2 , then 2( 1
d − ỹ) + cos(θ̃) > 0 and, by (22), σ̇L > 0. Therefore, some trajectories

– may leave lr(1.3) to enter rl(2) (crossing the boundary θ̃ = −π at some point with ỹ ∈ (0, 1−d
d ));

– may leave rl(2) to enter lr(1.3) (crossing the boundary θ̃ = −π at some point with ỹ ∈ ( 1−d
d , 2));

– may leave rl(2) to enter l(3).

• if d ∈ (2
5 , 1], as above, ˙̃

θ < 0 for θ̃ = −π, iff ỹ < 1−d
d . Further, by (21), σ̇P > 0. Moreover, along the curve

l, by Table 1 and (22), we have σ̇L > 0 if and only if ỹ ∈ (0, d+2
3d ). Therefore, some trajectories

4The boundary ỹ ∈ (0, 2), θ̃ = −π is discussed in the analysis of region rl(2) below.
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– may leave lr(1.3) to enter rl(2), crossing the boundary at some point with ỹ ∈ (0, 1−d
d );

– may leave rl(2) to enter lr(1.3), crossing the boundary at some point with ỹ ∈ ( 1−d
d , 2);

– may leave rl(2) to enter l(3), crossing the boundary at some point with ỹ ∈ (1, d+2
3d );

– may leave l(3) to enter rl(2), crossing the boundary at some point with ỹ ∈ (d+2
3d , 2).

Region sr. The results on region rsr(1) and lsr(1) show that (θ̃− π
2 ) ˙̃θ < − 1

2
V
R . Therefore, the half line sr is

attractive from both sides and in the closed loop system a sliding motion is enforced on sr, for any disturbance
d(t) as in (5). By (14), ˙̃y = V

R .

Region sl. Assuming (11), the results on region rsl(1) and lsl(1) show that (θ̃ + π
2 ) ˙̃θ < −V

R . Therefore, the
half-line sl is attractive from both sides and in the closed loop system a sliding motion is enforced on sl, for
any disturbance d(t) as in (5). By (14), ˙̃y = −V

R .
Region r(1). Curve r(1) is on the boundary of lr(1.1) and rl(1.2). If d = 0 then σ̇R > 0 in lr(1.1), and

σ̇R = 0 in rl(1.2). Therefore, the trajectories are convergent to r(1) from lr(1.1) and are parallel to r(1) in
rl(1.2). Otherwise, if d > 0 then σ̇R > 0, in lr(1.1), and σ̇R < 0, in rl(1.2). Therefore, we have σRσ̇R < 0, in
a neighbourhood of r(1), and in the closed loop system a sliding motion is enforced on this arc of r(1), for any
disturbance d(t) as in (5).

Region r(2). Curve r(2) is on the boundary of rsr(1) and rl(1.3). If d = 0, since σ̇R = 0 in rsr(1) ∪ rl(1.3)

then, the trajectories are parallel to r(2) in rsr(1) and rl(1.3). Otherwise, if d > 0, since σ̇R > 0 in rsr(1)∪rl(1.3),
then, the trajectories across the curve r(2) from region rsr(1) to region rl(1.3).

Region r(3). Curve r(3) is a piece of the boundary of rsr(2) and lr(2). If d = 0 then σ̇R < 0, in lr(2), and
σ̇R = 0 in rsr(2). Therefore, the trajectories are convergent to r(3) from lr(2) and are parallel to r(3) in rsr(2).
Otherwise, if d > 0, since σ̇R < 0 in rsr(2) ∪ lr(2) then, the trajectories across the curve r(3) from region lr(2)

to region rsr(2).
Region l(1). Curve l(1) is a piece of the boundary of lr(1.2) and rl(1.1). If d = 0 then σ̇L < 0 in rl(1.1), and

σ̇L = 0 in lr(1.2). Therefore, the trajectories are convergent to l(1) from rl(1.1) and are parallel to l(1) in lr(1.2).
Otherwise, if d > 0, since σ̇L < 0 in rl(1.1) ∪ lr(1.2) then, the trajectories across the curve l(1) from region rl(1.1)

to region lr(1.2).
Region l(2). Curve l(2) is a piece of the boundary of lr(1.3) and lsl(1). If d = 0, since σ̇L = 0 in lr(1.3)∪ lsl(1)

then, the trajectories are parallel to l(2) in lr(1.3) and lsl(1). Otherwise, if d > 0, since σ̇L > 0 in lr(1.3) ∪ lsl(1),
then, the trajectories across the curve l(2) from region lr(1.3) to region lsl(1).

Region l(3). Curve l(3) is a piece of the boundary of rl(2) and lsl. If d = 0 then σ̇L > 0 in rl(2), and σ̇R = 0
in lsl(2). Therefore, the trajectories are convergent to l(3) from rl(2) and are parallel to l(3) in lsl(2). Otherwise,
if d > 0, two cases are in order, namely:

• if d ∈ (0, 2
5 ], trajectories leave rl(2) to enter l(3);

• if d ∈ (2
5 , 1], some trajectories

– may leave rl(2) to enter l(3), crossing the boundary at some point with ỹ ∈ (1, d+2
3d );

– may leave l(3) to enter rl(2), crossing the boundary at some point with ỹ ∈ (d+2
3d , 2).

In the following, we provide upper bounds L(·) for the length of the arc covered by the origin of the Frenet
frame along the reference path Γ, when the image of the robot in the reduced state space (ỹ, θ̃) moves inside
a given region of the partion Π reported in Table 1. The expression of the upper bounds L(·) are normalized
with respect to the minimum turning radius R. The motion of the origin of the Frenet frame is described by
the curvilinear abscissa s(t), whose dynamics is ṡ = cos(θ̃)

1−ỹd
V
R . Hence, given a region S ∈ Π, the upper bound

L(S) can be obtained by solving, for all possible initial conditions (ỹ1, θ̃1) ∈ S, an optimal control problem that
gives the worst disturbance d� for which ∫ τ

0

cos(θ̃)
1 − ỹd

V

R

13



is maximized, subject to the dynamics (14), and up to a time τ such that (ỹ(τ), θ̃(τ)) belongs to the boundary
of S.

By solving this optimal control problem we obtain that

• singular solutions correspond to trajectories belonging to either sr or sl, for which L(sr) = L(sl) = 0 since
the robot tracks a line perpendicular to the reference path Γ.

• for no–singular trajectories, d� is constant.

Furthermore, since inside any region S of Π, θ̃(t) is monotonic, then the maximum length traveled by the origin
of the Frenet frame can be obtained integrating with respect to θ̃ instead of time. By (14), we have

ds

dθ̃
=

[
dθ̃

dt

]−1

ṡ =
Ω cos(θ̃)

1 − ỹd − Ω cos(θ̃)d

Along trajectories (ỹ(t), θ̃(t)) obtained with d constant, say d = D, the above expression is rewritten as:

ds

dθ̃
= ± Ω cos(θ̃)√

P 2 − D2 sin(θ̃)2
(24)

where
P 2 = (1 − ỹ1D)[1 − ỹ1D − 2Ω cos(θ̃1)D] + D2 (25)

is a constant parameter and (ỹ1, θ̃1) is a point which belongs to (ỹ(t), θ̃(t)). Integrating (24) from θ̃1 to θ̃2 we
obtain

s(P, θ̃1, θ̃2) =




[
asin

(
sin(θ̃2)D

P

)
− asin

(
sin(θ̃1)D

P

)]
Ω
D

if D �= 0

[
sin(θ̃2) − sin(θ̃1)

]
Ω

if D = 0

(26)

In any interval [k π
2 , (k + 1)π

2 ], s(P, θ̃1, θ̃2) as in (26), is monotonic with respect to both θ̃1 and θ̃2. Hence, the
maximum of s(P, θ̃1, θ̃2) is achieved for θ̃1 and θ̃2 on the extreme points k π

2 and (k + 1)π
2 . So, maximizing (26),

we get

s(P ) = max
θ̃1,θ̃2

s(P, θ̃1, θ̃2) =




1
D asin

(
D
P

)
if D �= 0

1 if D = 0
(27)

where, by (25), P can be expressed in terms of points θ̃i = kπ (with i either 1 or 2) as follows

P =
{

1 − (ỹ + Ω)D if θ̃ = 0
1 − (ỹ − Ω)D if θ̃ ∈ {−π,+π} (28)

Regions rsr(1), rsr(2), lsr(1) and lsr(2). By (14) and (28), P = 1 − (ỹ + 1)D. For ỹ ≤ −1, ỹ + 1 ≤ 0 and,
since D ≥ 0, then P ≥ 1. Hence, 1

D asin
(

D
P

)
≤ 1

D asin(D) ≤ π
2 . Then, the maximum length of the arc traveled

by the origin of the Frenet frame along the reference path Γ is obtained with d = 1, i.e. L(rsr(1)) = L(rsr(2)) =
L(lsr(1)) = L(lsr(2)) = π

2 .
Regions lr(1.1), lr(1.2) and rl(1.3). By (14) and (28), P = 1− (ỹ + 1)D. According to the case lsr(1), when

ỹ ≤ −1 an upper bound for s(P ) is π
2 . However, when −1 < ỹ ≤ 1, since the excursion of θ̃ is lower than π

2 ,
then path traveled by the origin is smaller. Hence, L(lr(1.1)) = L(lr(1.2)) = L(rl(1.3)) = π

2 .
Regions rl(1.1), rl(1.2) and lr(1.3). By (14) and (28), P = 1 + (1 − ỹ)D. Remind that, by (11), ỹD < 1.

Hence, choosing D arbitrarily close to ỹ−1, D
P = D

D+(1−ỹD) goes arbitrarily close to 1. Then s(P ) is upper

bounded by π
2

1
D < π

2 ỹ. Further, ỹ is upper bounded by both 2 (by definition of rl(1.1), rl(1.2) and lr(1.3)) and
C−1. Hence, L(rl(1.1)) = L(rl(1.2)) = L(lr(1.3)) = π

2 min(2, C−1).
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Regions rsl(1), rsl(2), lsl(1) and lsl(2). Recall that the trajectory is bounded to belong to I(ỹ,θ̃)(C). Then,
similarly to the above, D

P = D
D+(1−ỹD) may go arbitrarily close to 1, by choosing D arbitrarily close to ỹ−1.

Hence, s(P ) is upper bounded by π
2

1
D < π

2 ỹ ≤ π
2 C−1, and L(rsl(1)) = L(rsl(2)) = L(lsl(1)) = L(lsl(2)) =

π
2 C−1.

Regions r(1) and lr(2). In the closed loop system, a sliding motion takes place along the arc r(1). By (14)
and (28) P = 1 − ỹD + D. For ỹ ≤ 0 and D ≥ 0, then P ≥ 1. Hence, 1

D asin
(

D
P

)
≤ 1

D asin(D) ≤ π
2 , and

L(r(1)) = π
2 . Since, the same bounds hold for region lr(2), we obtain L(lr(2)) = π

2 , as well.
Regions r(2), r(3), l(1) and l(2). The robot moves along this boundaries only if d = 0. Hence, the upper

bounds are L(r(2)) = L(r(3)) = L(l(1)) = L(l(2)) = 1.
Region l(3). In the closed loop system, a sliding motion takes place along the arc l(3) for ỹ ∈ (0, 1+2d

3 ),
or when d = 0 (the latter would give bound 1). The longest piece of sliding motion is obtained with d = 1.
By (14) and (28), P = 1 − ỹD + D ≥ 1. Hence, 1

D asin
(

D
P

)
≤ 1

D asin(D) ≤ π
2 , and L(l(3)) = π

2 .
Regions rl(2). An upper bound for L(rl(2)) can be more easily obtained in the robot motion space. See

Figure 7. When D > 1
2 , under control Ω = −1 from an initial configuration P1 with lateral error ỹ = ε and

orientation error θ̃ = −π+, with ε > 0 small enough, the robot performs a rotation of π radiant, around the
center of the reference circle, and reaches the configuration P2 (assuming no control switch occurs meanwhile),
with lateral error ỹ = 2

D − (2+ ε) and orientation error θ̃ = −π+. Then, it leaves the region rl(2) to enter region
rl(1.3). Hence, the space traveled by the car along the reference path is over bounded by L(rl(2)) = π.

P

P
2

1

.
.

Figure 7: Worst path in region rl(2).

The upper bounds for the space traveled by the origin of the Frenet frame in each region are summarized in
Table 2. The proof of Proposition 2 is completed by associating to all outgoing arc of each node of the graph

regions L()

sr, sl 0

rsr(1), rsr(2), lsr(1), lsr(2),
lr(1.1), lr(1.2), rl(1.3), lr(2) r(1),
l(3)

π
2

rl(1.1), rl(1.2), lr(1.3) π
2 min(2, C−1)

rsl(1), rsl(2), lsl(1), lsl(2) π
2 C−1

r(2), r(3), l(1), l(2) 1

rl(2) π

Table 2: Upper bounds for the length of the corresponding arc of the reference path Γ spanned by the origin of
the Frenet frame.

FSMPTC , reported in Figure 8, a weight corresponding to the upper bounds obtained in Table 2.
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Figure 8: Quotient system FSMPTC representing the behaviour of the closed–loop hybrid system CLHA ,
when σr = ε.

If the reference path Γ has curvature always of the same sign, the convergence of Dubins’ car to the path is
guaranteed by:

Corollary 1 If the reference path Γ has curvature always of the same sign and amplitude lower than 1
2R , the

hybrid feedback control (7) and (9), ensures the tracking of Γ for any initial vehicle configuration in the domain
I(ỹ,θ̃) as in (13). The origin of the Frenet’s frame covers at most a distance of

{
1 + 9

2π + π
C if C ∈ [0, π

6+5π )
4 + 7π + π

2C if C ∈ [ π
6+5π , 1

2 ) (29)

along the reference path Γ before the vehicle approaches it with correct orientation.

The proof of the above corollary is obtained by computing the longest path to the node O.
By Proposition 2, if Γ is a straight line then the closed–loop system enforces sliding motions (see [15] for

a tutorial) in the space (ỹ, θ̃) on the lines sr, sl and the arcs r(1), l(1), r(3), l(3) until the origin is reached. If
the reference path Γ is not a straight line, sliding motions are enforced only on the lines sr, sl, on the arcs
r(1), r(3) and on a piece of the arc l(3). Under ideal sliding motion, around the origin the control ω switches
at infinite frequency between V

R , 0 and −V
R . The mean value of such control (i.e. the equivalent control) is the

signal κV that makes the car follow the reference path Γ with velocity V . In the real implementation smoothing
techniques are applied to avoid the chattering of the control signal between the three values V

R , 0 and −V
R .

The behaviour of the closed–loop system CLHA under the action of the discrete disturbance σr is charac-
terized by the following propositions.
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Proposition 3 Given an initial condition (ỹ0, θ̃0) in the open neighbourhood of the origin

N(ỹ,θ̃) =
{

(ỹ, θ̃) : |ỹ| < 1,− arccos
(

1
2
− ỹ

2

)
< θ̃ < arccos

(
1
2

+
ỹ

2

)}
(30)

(see Figure 9), the hybrid closed–loop system CLHA keeps the continuous–time trajectory (ỹ(t), θ̃(t)) inside
N(ỹ,θ̃), under any disturbance d(t) bounded as in (5) and any sequence of events σr.

Proof of Proposition 3. In the sequel, applying a reachability analysis, we show that the hybrid system
CLHA under the action of the continuous disturbance d(t) and the discrete disturbance σr keeps the trajectories
inside N(ỹ,θ̃).

First of all, notice that N(ỹ,θ̃) is symmetric with respect to the origin. Therefore, states in N(ỹ,θ̃) remain
inside N(ỹ,θ̃) after any state reset ỹ := −ỹ and θ̃ := −θ̃ due to an event σr = switch.

Consider a partition of the set N(ỹ,θ̃) into the sets r(1)\{(−1, π
2 )}, l(1)\{(1,−π

2 )}, lr(1.1)∩N(ỹ,θ̃), rl
(1.1)∩N(ỹ,θ̃),

rl(1) ∩N(ỹ,θ̃), and lr(1.2) ∩N(ỹ,θ̃).
Region r(1)\{(−1, π

2 )}. According to Proposition 2, the state (ỹ, θ̃) is steered to the origin with ‖(ỹ(t), θ̃(t))‖
monotonicly decreasing. Under the action of an event σr = switch, the state jumps instantaneously to the
symmetric point in l(1) \ {(1,−π

2 )}.
Region l(1) \ {(1,−π

2 )}. According to Proposition 2, either the state (ỹ, θ̃) is steered to the origin if
d(t) = ∞ (‖(ỹ(t), θ̃(t))‖ monotonicly decreasing) or enters region lr(1.2) if d(t) < ∞ at some θ̃ > −π

2 . Under
the action of an event σr = switch, the state jumps instantaneously to the symmetric point in r(1) \ {(−1, π

2 )}.
Region lr(1.1)∩N(ỹ,θ̃). The hybrid system CLHA is in mode mode = positive. By (1), ỹ < 0 and Therefore,

by (5), we have 0 < 1
d(t)−ỹ < 1. From (14), ˙̃

θ > 0 and ˙̃y > 0. Then, any state (ỹ, θ̃) ∈ lr(1.1) ∩ N(ỹ,θ̃) is steered
to r(1) \ {(−1, π

2 )}. If an event σr = switch occurs, the state jumps instantaneously to the symmetric point in
region rl(1.1) ∩N(ỹ,θ̃).

Region rl(1.1) ∩ N(ỹ,θ̃). The hybrid system CLHA is in mode mode = negative. By (14), ˙̃
θ < 0 and ˙̃y < 0.

Then, any state (ỹ, θ̃) ∈ lr(1.1) ∩ N(ỹ,θ̃) is steered to l(1) \ {(1,−π
2 )}. If an event σr = switch occurs the state

jumps instantaneously to the symmetric point in region lr(1.1) ∩N(ỹ,θ̃).

Region rl(1.2) ∩ N(ỹ,θ̃). The hybrid system CLHA is in mode mode = negative. Consider the function

σ
up
N (ỹ, θ̃) = −1 − ỹ + 2 cos(θ̃) and observe that, within region rl(1.2), σ

up
N (ỹ, θ̃) > 0 ⇔ (ỹ, θ̃) ∈ N(ỹ,θ̃). By (14)

σ̇
up
N = sin(θ̃)

(
1 + 2 cos(θ̃)

d(t)−ỹ

)
U
R > 0 for all states within this region, except for θ̃ = 0. Therefore, any trajectory

originating in rl(1.2) ∩ N(ỹ,θ̃) cannot escape the region through the upper boundary σ
up
N = 0, and will either

reach the sliding surface r(1) \ {(−1, π
2 )} (for some θ̃ > 0), pass to rl(1.1) ∩ N(ỹ,θ̃) through the boundary θ̃ = 0,

or jump symmetrically to lr(1.2) ∩N(ỹ,θ̃) under the action of an event σr = switch.

Region lr(1.2) ∩ N(ỹ,θ̃). The hybrid system CLHA is in mode mode = positive. Consider the function

σdw
N (ỹ, θ̃) = −1 + ỹ + 2 cos(θ̃). Within this region, we have σdw

N (ỹ, θ̃) < 1 and σdw
N (ỹ, θ̃) > 0 ⇔ (ỹ, θ̃) ∈ N(ỹ,θ̃).

Further, by (14), σ̇dw
N = − sin(θ̃)

(
1 − 2 cos(θ̃)

d(t)−ỹ

)
U
R . Therefore, for any θ̃ �= 0, σ̇dw

N (ỹ, θ̃) > 0 ⇔ 0 < σdw
N (ỹ, θ̃) <

d(t) − 1. Since σdw
N (ỹ, θ̃) always increases except for σdw

N (ỹ, θ̃) > d(t) − 1, being by (5) d(t) − 1 nonnegative,
(ỹ, θ̃) never crosses the boundary σdw

N (ỹ, θ̃) = 0. Then, trajectories originating in lr(1.2) ∩ N(ỹ,θ̃) cannot leave

this region through the boundary σdw
N = 0. Instead, they may leave region lr(1.2) ∩ N(ỹ,θ̃) either through the

boundary with lr(1.1) ∩N(ỹ,θ̃), θ̃ = 0, with ỹ > −1, or by jumping symmetrically to region rl(1.2) ∩N(ỹ,θ̃) for an
event σr = switch.

Proposition 4 If the reference path Γ is such that changes in the curvature sign are at distance greater than
(5 + π

2 )R along it, then the hybrid feedback control (7), with modes chosen according to (9) stabilizes Dubins’
car along the reference path Γ.
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Figure 9: On the left:quotient system FSM D
PTC representing the behaviour of the closed–loop hybrid system

CLHA , when the initial state belongs to O×N(ỹ,θ̃). On the right: regions in the domain D(ỹ,θ̃) where Ẇ > 0.

T. he set N(ỹ,θ̃) defined in (30) is such that

N(ỹ,θ̃) ⊂ O ∪ r(1) ∪ l(1) ∪ lr(1.1) ∪ lr(1.2) ∪ rl(1.1) ∪ rl(1.2) .

Since, by Proposition 3, N(ỹ,θ̃) is a robust invariant set for the closed–loop hybrid system CLHA , then, if

we restrict our attention to the domain N(ỹ,θ̃), the transitions from lr(1.2) to lsr(2) and from rl(1.1) to rsl(1)

in the quotient system FSMPTC should be removed. Furthermore, notice that, under the action of the dis-
crete disturbance σr = switch, the reset ỹ := −ỹ and θ̃ := −θ̃ introduces the mutual transitions r(1) ←→ l(1),

lr(1.1) ←→ rl(1.1), and lr(1.2) ←→ rl(1.2). Hence, in the presence of the discrete disturbance σr and for any dis-

turbance d as in (5), when the initial state belongs to O×N(ỹ,θ̃), the quotient system FSM D
PTC obtained from

the equivalent relation ∼ is as in Figure 9.
To analyze the convergence of the trajectories to O, introduce the function

W (ỹ, θ̃) =
1
2
(ỹ2 + θ̃2). (31)

W (ỹ, θ̃) has the property that, if at time t = t̄, σr = switch, then W (ỹ(t̄), θ̃(t̄)) = W (ỹ(t̄−), θ̃(t̄−)). The
derivative with respect to time of W evaluates to

Ẇ (ỹ, θ̃) =

[
ỹ sin(θ̃) − θ̃

cos(θ̃)d
1 − ỹd

− θ̃


]
V

R
, (32)

where 
 = 0,−1, and 1 in mode zero, negative, and positive, respectively. The study of the sign of Ẇ (ỹ, θ̃) is
extended to the entire domain D(ỹ,θ̃). Under assumption (11), multiplying (32) by R

V (1 − ỹd), we have

Ẇ > 0 ⇔ µ(ỹ, θ̃) = d
[
−ỹ2 sin(θ̃) − θ̃ cos(θ̃) + 
ỹθ̃

]
+

[
ỹ sin(θ̃) − 
θ̃

]
> 0,

for some disturbance d bounded as in (5). Hence, for any (ỹ, θ̃) such that η1(ỹ, θ̃) = ỹ sin(θ̃) − 
θ̃ > 0, there
exists d as in (5) such that µ(ỹ, θ̃) > 0 and Ẇ > 0. Otherwise, if (ỹ, θ̃) is such that η1(ỹ, θ̃) < 0, then there
exists d as in (5) such that Ẇ > 0 if and only if µ(ỹ, θ̃) is positive for d = 1. That is, if

η2(ỹ, θ̃) = − sin(θ̃)ỹ2 +
[
sin(θ̃) + 
θ̃

]
ỹ −

[
θ̃ cos(θ̃) + 
θ̃

]
> 0.
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The regions in the domain D(ỹ,θ̃) where function (31) locally increases are reported in Figure 9. Such regions
are delimited by the curves η1(ỹ, θ̃) = 0 and η2(ỹ, θ̃) = 0. By (32), the continuous disturbance d that maximizes
Ẇ (t) is

d� =
{

1 if θ̃ cos(θ̃) < 0 i.e. θ̃ ∈ (−π
2 , 0) ∪ (π

2 , 3
2π)

0 if θ̃ cos(θ̃) > 0 i.e. θ̃ ∈ (− 3
2π,−π

2 ) ∪ (0, π
2 )

. (33)

Consider an initial condition (ỹ0, θ̃0) in a neighbourhood of the origin contained in N(ỹ,θ̃) ∩ rl(1.2). At the initial
time, the hybrid model CLHA is in mode negative. Let us assume that σr = ε, for the moment, and let us
analyze the evolution of the hybrid model CLHA (see Figure 9). Under the action of the worst disturbance (33),
the trajectory (ỹ(t), θ̃(t)) originating from (ỹ0, θ̃0) reaches the curves r(1). First W (t) decreases (in rl(1.2)), then
it increases (in rl(1.1)). Hence, mode switches to positive. W (t) decreases (in the first part of lr(1.2)), and it
increases again later on (in lr(1.2) and lr(1.1)) until (ỹ(t), θ̃(t)) reaches r(1). Finally, following a sliding motion
along the curve r(1), (ỹ(t), θ̃(t)) reaches the origin.

Along this trajectory W (t) assumes two local maxima, which correspond to the intersections of l(1) and
r(1), and two local minima: the first on the line θ̃ = 0 when ỹ > 0, and the second inside region rl(1.2). Let
δ = ‖(ỹ0, θ̃0)‖. Since the trajectory (ỹ(t), θ̃(t)) is continuous with respect to the initial condition (ỹ0, θ̃0), then
there exist two continuous functions ζmax, ζmin : IR → IR such that

max
d

max
t

‖(ỹ(t), θ̃(t))‖ = ζmax(δ), min
d

min
t

‖(ỹ(t), θ̃(t))‖ = ζmin(δ). (34)

Further, since the local maximum and minimum points tend to the origin as ‖(ỹ0, θ̃0)‖ tends to zero, then
limδ→0 ζmax(δ) = 0 and limδ→0 ζmin(δ) = 0.

Suppose now that a discrete disturbance σr = switch occurs at the precise time t̄ at which (ỹ(t̄−), θ̃(t̄−))
is opposite to (ỹ0, θ̃0) with respect to the origin. Then, the state (ỹ(t̄−), θ̃(t̄−)) is reset to (ỹ(t̄), θ̃(t̄)) =
(−ỹ(t̄−),−θ̃(t̄−)) ∈ N(ỹ,θ̃), which lies on the same line to the origin of (ỹ0, θ̃0). If W (ỹ0, θ̃0) > W (ỹ(t̄), θ̃(t̄)) =
W (−ỹ(t̄−),−θ̃(t̄−)) then the convergence is preserved. But, if W (ỹ0, θ̃0) < W (ỹ(t̄), θ̃(t̄)) = W (−ỹ(t̄−),−θ̃(t̄−))
then, under the action of the discrete disturbance σr = switch, the state (ỹ, θ̃) is reset to a point farther away
from the origin than the initial state (ỹ0, θ̃0) and convergence can be lost.

However, if the reference path Γ is such that changes in the curvature sign are at a distance greater than
(5 + π

2 )R along it, between to successive actions of the discrete disturbance σr, the state (ỹ, θ̃) has enough time
to reach the origin. In fact, assuming that, in the worst case, (ỹ(t̄), θ̃(t̄)) ∈ N(ỹ,θ̃) ∩ rl(1.2), an upper bound on
the length the arc of Γ spanned by the origin of the Frenet’s frame as (ỹ(t), θ̃(t)) converges to the origin, is
given by L(rl(1.2))+ L(rl(1.1))+ L(l(1))+ L(lr(1.2))+ L(lr(1.1))+ L(r(1)) that, according to the weights reported
on the quotient system FSMPTC depicted in Figure 8, evaluates to (5 + π

2 )R.
To prove the robust stabilization of the car along the reference path Γ we have to show that for any ε > 0,

there exists δ > 0 such that any trajectory (ỹ(t), θ̃(t)) of the hybrid system CLHA , originating from any (ỹ0, θ̃0)
with ‖(ỹ0, θ̃0)‖ < δ, we have ‖(ỹ(t), θ̃(t))‖ < ε. Given any ε > 0, consider any initial condition (ỹ0, θ̃0) with

‖(ỹ0, θ̃0)‖ ≤ δ = ζ−1
max(ζ

−1
min(ζ−1

max(ε))). (35)

The trajectory (ỹ(t), θ̃(t)) evolves inside a ball of radius ζ−1
min(ζ−1

max(ε)). If a disturbance σr = switch occurs
at some time t̄, then the state is reset to (ỹ(t̄), θ̃(t̄)) = (−ỹ(t̄−),−θ̃(t̄−)) ∈ N(ỹ,θ̃). In the evolution for t > t̄

the trajectory reaches the origin before a further discrete disturbance occurs. Moreover, since ‖(ỹ(t̄), θ̃(t̄)‖ ≤
ζ−1
min(ζ−1

max(ε)) then, the trajectory (ỹ(t), θ̃(t)) for t > t̄ does not exit a ball of radius ζmax(ζ−1
max(ε)) = ε. Then, the

hybrid feedback control (7), with modes chosen according to (9) robustly stabilizes the car along the reference
path Γ.

5 Experimental Results

Experiments were devised to assess practicality of the proposed methods against discrepancies of our models
from real-world implementation, such as nonnegligible dynamics, disturbances in state measurements, and low
sampling and communication time. The system used for experiments is the same of that described in [13],
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Figure 10: Data from experiment no. 1: nominal path and trajectory reconstructed by sensors (left); trajectories
in the reduced state space (middle); control activity in time (right).
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Figure 11: Data from experiment no. 2: nominal path and trajectory reconstructed by sensors (left - vehicle
moves leftward); trajectories in the reduced state space (middle); control activity in time (right).

and consists of a mobile vehicle (model LabMate of Transition Research Corporation) equipped with a laser-
based position sensor (a SIMAN laser scanner, with internal pre-processing unit), a PC mounted on-board,
and a fixed PC communicating via a radio-modem link (4800 bps). Code concerning low-level treatment
of laser measurement is implemented on the processor embedded in the sensor, while the low-level feedback
control laws are run by the on-board CPU. The code resident on the fixed PC implements the high level
planning and GUI. The latter consists of such functions as describing the reference path, setting parameters
for the sensor and controller, and collecting and processing experimental data for analysis and visualization.
As in [13], the minimum turning radius is set to 25 cm. in our experiments, and forward velocity is fixed to 5
cm/sec. Information on the vehicle position and orientation is obtained by a Kalman filter processing odometric
information (encoder measurement of wheel rotations) along with angular measurements given by the ladar.

In the first experiment, reported in fig. 10, a circular reference path of radius 75cm is tracked, starting
from an external position. The vehicle approaches the reference path by a trajectory composed of two circular
arcs of opposite maximum curvature, hence keeps on the path by rapidly switching among the turn right and
turn left modes. Results of this experiment show that model nonidealities do not influence much the overall
satisfactory behaviour of the system. In the second experiment, documented in fig. 11, the reference path was
composed of a circular arc of radius 60cm, a segment of length 50cm, and a circular arc of radius 75cm. The
vehicle initial position is closest to the first arc. In this more challenging problem, it is possible to observe some
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Figure 12: Data from experiment no. 3: nominal path (same as in experiment 2) and trajectory reconstructed
by sensors (left); trajectories in the reduced state space (middle); control activity in time (right).

interesting effects of unmodelled phenomena. Indeed, vehicle and actuator dynamics are such that the actual
angular velocity of the vehicle does not take values in the nominal set {0, ±V/R}, rather is an interpolate
thereof. Even more important is the effect of implementing the proposed control scheme, requiring very high
control activity, on a platform with limited loop bandwidth, such as due in this case to computational and
communication limitations. These effects are such that the system misses hooking up to the sliding surface at
first transversal.

The latter problem is akin to what is known in the sliding mode literature as “chattering” ([15]), and can
be reduced by standard saturation techniques (see e.g. [11]), which effectively introduce thin “boundary layers”
about lines of control discontinuity in state space. Although a thorough treatment of the new system arising from
modifying the proposed controller by introducing a further region in the state space for modelling the boundary
layer is potentially complex, and not studied yet, it is to be expected from experience in sliding control that a
degree smoothing in the switching control law would not alter the general behaviour and performance. That
this is the case in the experimental setup above is indeed shown in fig. 12.
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7 Conclusions

In this paper, we have used modern techniques developed for hybrid systems simulation and verification to solve
and prove stability of a closed-loop control strategy a difficult problem, that is route tracking by nonholonomic
vehicles with bounds on the curvature and limited sensory information. The proposed controller is reminiscent
of a synthesis proposed elsewhere for an optimal control problem to track straight routes, whose generalization
to generic routes turned out to be difficult to analyze otherwise. We believe that this case study, besides its
intrinsic interest in applications, also has a value in showing the potential of hybrid systems analysis techniques
as applied to complex control problems.
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